Next Issue
Previous Issue

Table of Contents

Antibodies, Volume 5, Issue 4 (December 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Systemic and Mucosal Antibody Responses to Soluble and Nanoparticle-Conjugated Antigens Administered Intranasally
Antibodies 2016, 5(4), 20; doi:10.3390/antib5040020
Received: 7 June 2016 / Revised: 16 July 2016 / Accepted: 18 September 2016 / Published: 1 October 2016
PDF Full-text (2328 KB) | HTML Full-text | XML Full-text
Abstract
Nanoparticles (NPs) are increasingly being used for drug delivery, as well as antigen carriers and immunostimulants for the purpose of developing vaccines. In this work, we examined how intranasal (i.n.) priming followed by i.n. or subcutaneous (s.c.) boosting immunization affects the humoral immune
[...] Read more.
Nanoparticles (NPs) are increasingly being used for drug delivery, as well as antigen carriers and immunostimulants for the purpose of developing vaccines. In this work, we examined how intranasal (i.n.) priming followed by i.n. or subcutaneous (s.c.) boosting immunization affects the humoral immune response to chicken ovalbumin (Ova) and Ova conjugated to 20 nm NPs (NP-Ova). We show that i.n. priming with 20 mg of soluble Ova, a dose known to trigger oral tolerance when administered via gastric gavage, induced substantial systemic IgG1 and IgG2c, as well as mucosal antibodies. These responses were further boosted following a s.c. immunization with Ova and complete Freund’s adjuvant (Ova+CFA). In contrast, 100 µg of Ova delivered via NPs induced an IgG1-dominated systemic response, and primed the intestinal mucosa for secretion of IgA. Following a secondary s.c. or i.n. immunization with Ova+CFA or NP-Ova, systemic IgG1 titers significantly increased, and serum IgG2c and intestinal antibodies were induced in mice primed nasally with NP-Ova. Only Ova- and NP-Ova-primed mice that were s.c.-boosted exhibited substantial systemic and mucosal titers for up to 6 months after priming, whereas the antibodies of i.n.-boosted mice declined over time. Our results indicate that although the amount of Ova delivered by NPs was 1000-fold less than Ova delivered in soluble form, the antigen-specific antibody responses, both systemic and mucosal, are essentially identical by 6 months following the initial priming immunization. Additionally, both i.n.- and s.c.-boosting strategies for NP-Ova-primed mice were capable of inducing a polarized Th1/Th2 immune response, as well as intestinal antibodies; however, it is only by using a heterogeneous prime-boost strategy that long-lasting antibody responses were initiated. These results provide valuable insight for future mucosal vaccine development, as well as furthering our understanding of mucosal antibody responses. Full article
Figures

Figure 1

Review

Jump to: Research

Open AccessReview Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21
Antibodies 2016, 5(4), 21; doi:10.3390/antib5040021
Received: 11 June 2016 / Revised: 1 August 2016 / Accepted: 9 August 2016 / Published: 2 November 2016
Cited by 1 | PDF Full-text (1047 KB) | HTML Full-text | XML Full-text
Abstract
TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY
[...] Read more.
TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a cytosolic Fc receptor and briefly discusses pathological circumstances where intracellular antibodies have been described, or are hypothesized to occur, and may benefit from further investigations of the role of TRIM21. Full article
(This article belongs to the Special Issue Intracellular Innate Immunity of Antibodies)
Figures

Figure 1

Open AccessReview Current Controversies in Lupus Anticoagulant Detection
Antibodies 2016, 5(4), 22; doi:10.3390/antib5040022
Received: 27 September 2016 / Revised: 17 November 2016 / Accepted: 18 November 2016 / Published: 2 December 2016
Cited by 1 | PDF Full-text (248 KB) | HTML Full-text | XML Full-text
Abstract
Antiphospholipid syndrome is an autoimmune, acquired thrombophilia diagnosed when vascular thrombosis or pregnancy morbidity are accompanied by persistent antiphospholipid antibodies. Lupus anticoagulants (LA) are one of the criteria antibodies but calibration plasmas are unavailable and they are detected by inference based on antibody
[...] Read more.
Antiphospholipid syndrome is an autoimmune, acquired thrombophilia diagnosed when vascular thrombosis or pregnancy morbidity are accompanied by persistent antiphospholipid antibodies. Lupus anticoagulants (LA) are one of the criteria antibodies but calibration plasmas are unavailable and they are detected by inference based on antibody behaviour in a medley of coagulation-based assays. Elevated screening tests suggest the presence of a LA, which is confirmed with mixing tests to evidence inhibition and confirmatory tests to demonstrate phospholipid-dependence. At least two screening tests of different principle must be used to account for antibody heterogeneity and controversy exists on whether assays, in addition to dilute Russell’s viper venom time and activated partial thromboplastin time, should be employed. A variety of approaches to raw data manipulation and interpretation attract debate, as does inclusion or exclusion of mixing studies in circumstances where the presence of a LA is already evident from other results. Therapeutic anticoagulation compromises coagulation-based assays but careful data interpretation and use of alternative reagents can detect or exclude LA in specific circumstances, and this aspect of LA detection continues to evolve. This review focuses on the main areas of debate in LA detection. Full article
(This article belongs to the Special Issue Antiphospholipid Antibodies and Syndrome)

Journal Contact

MDPI AG
Antibodies Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Antibodies Edit a special issue Review for Antibodies
logo
loading...
Back to Top