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Abstract: Accumulating evidence suggests that tissue factor (TF) is selectively expressed in
pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological
angiogenesis, the formation of neovasculature, is involved in many clinically significant human
diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid
arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as
atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well
documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in
these pathological angiogenesis-dependent human diseases and on disease-associated macrophages.
Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely
restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner
layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages
and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also
overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also
expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of
CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting
therapeutic antibody-like immunoconjugates (ICON and L-ICON1) and antibody-drug conjugates
that are currently being tested in preclinical and clinical studies for the treatment of some of these
human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting
immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the
treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated,
human diseases.

Keywords: tissue factor; factor VII; antibodies; antibody-like immunoconjugates (ICON and
L-ICON1); solid cancer; Leukemia; age-related macular degeneration; endometriosis; rheumatoid
arthritis; atherosclerosis; angiogenesis; vascular endothelial cell; cancer cell; cancer stem cell;
macrophage; fibroblast; B cell

1. Introduction

Tissue factor (TF) is a 47-kDa membrane-bound cell surface receptor [1–3]. It is also known as
thromboplastin, coagulation factor III (fIII) or CD142. Under physiological condition, TF is not
expressed by circulating peripheral blood lymphocytes and quiescent vascular endothelial cells
(VECs). TF expression is restricted to the cells that are not in direct contact with the blood, such as
pericytes, fibroblasts and smooth muscle cells, which are localized in the sub-endothelial vessel wall
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and sequestered from circulating coagulation factor VII (fVII), the natural ligand for TF. In these cells,
the majority of TF is localized in intracellular pools [4]. Upon disruption of vessel wall integrity, TF in
pericytes and smooth muscle cells is released and can be bound by fVII, leaking from blood circulation,
to initiate blood coagulation in order to stop bleeding [5,6]. Besides its role as the primary initiator of
coagulation, TF is also a modulator of pathological angiogenesis [7–9]. It is worth noting that there
is a truncated version of TF, called alternatively spliced TF (asTF), which lacks the transmembrane
and cytoplasmic domains and therefore, is not membrane bound as a soluble isoform. The soluble
asTF also plays roles in cancer and angiogenesis [10–14]. However, this review will focus on the
membrane-bound TF, also called full length TF (flTF), which is an angiogenic specific receptor
since it is selectively expressed on vascular endothelial growth factor (VEGF)-stimulated human
microvascular endothelial cells (HMVEC) as an angiogenic VEC model (Figure 1) [15]. TF is also
the therapeutic oncotarget for cancer cells and cancer stem cells (CSC) [16] (Figures 2 and 3) for
fVII-targeted immunotherapy using coagulation active site-mutated fVII-IgG1 Fc immunoconjugate
(called an ICON) (Figure 4) and fVII-targeted photodynamic therapy (fVII-tPDT) using fVII-conjugated
photosensitizers) [15,16], as summarized below.

Angiogenesis, the formation of new capillaries from pre-existing vessels, is involved in both
physiological conditions (such as reproduction and tissue repair) as well as in more than 20 human
diseases [17], including but not limited to cancer [17,18], age-related macular degeneration (AMD),
endometriosis and rheumatoid arthritis (RA) [19–21]. In cancer, angiogenesis was identified as one of
the “hallmarks of cancer” by Hanahan and Weinberg [22,23] due to the recognition that this process is
crucial during the transition from benign hyperplastic nodules to malignant lesions [18]. Identification
of target molecules specific for angiogenic VEC, the inner layer of pathological neovasculature,
is critical for discovery and development of neovascular-targeting therapy for these pathological
angiogenesis-dependent, clinically significant human diseases.
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Figure 1. Tissue factor (TF) is an angiogenic specific receptor. Representative confocal imaging of
TF (green) and endothelial marker CD31 (red) expression on human microvascular endothelial cells
(HMVEC) before 0-hour (0 h) as a normal resting vascular endothelial cell (VEC) model (a) and 4 h (4 h)
after vascular endothelial growth factor (VEGF) stimulation (4–6 h reaching peak expression) as an
angiogenic VEC model (b). Cell nuclei were counterstained by DAPI (4′,6-Diamidino-2-Phenylindole,
Dihydrochloride) (blue). Scale bars: 20 µm. Modified from ref. [15].
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Figure 3. TF is a novel oncotarget in cancer stem cells (CSCs) isolated from in vitro cultured 

human lung cancer H460 cell line (a), human triple-negative breast cancer MDA-MB-231 

line (b) and from patients’ breast tumor tissues (c). (a) CD133+ CSCs from H460 lung 

cancer cell line was immunofluorescently stained for expression of CD133 (red) and TF 

(green). Their nuclei were stained by DAPI (blue) and the cells were photographed under 

confocal microscopy (Zeiss). Scale bar: 20 μm. (b) Immunoblotting for TF expression on 

CD133+ CSCs and CD133- non-CSC MDA-MB-231 cells. CD133 expression was confirmed 

on CD133+ CSCs and GAPDH was used for assessing sample loading. (c) Representative 

imaging of TF expression on breast cancer patients’ CD133+ CSCs and CD133-non-CSCs, 

CD133 expression was confirmed on CD133+ CSCs (Original magnification: 25 μm under 
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Figure 2. Tissue factor (TF) is the therapeutic target for fVII-targeted immunoconjugate (ICON).
Representative Western blots using mouse ICON (mfVII/hIgG1Fc, an immunoconjugate of murine fVII
fused to the Fc domain of human IgG1, called an ICON) and human ICON (hfVII/hIgG1Fc, human fVII
fused to human IgG1 Fc immunoconjugate) to immune-precipitate their cognate receptor TF that was
detected by monoclonal antibody against human TF (HTF) (clone HTF1). Note that both mouse and
human ICONs contain a coagulation active site mutation (K341A) in their fVII peptides. The negative
controls were untransfected Chinese Hamster Ovary (CHO-K1) cells. Human IgG was an isotype
control. Cell lysates were derived from CHO-K1 cells expressing tissue factor (TF), endothelial protein
C receptor (EPCR) or both (TF + EPCR). Modified from ref. [15].
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Figure 3. TF is a novel oncotarget in cancer stem cells (CSCs) isolated from in vitro cultured human lung
cancer H460 cell line (a), human triple-negative breast cancer MDA-MB-231 line (b) and from patients’
breast tumor tissues (c). (a) CD133+ CSCs from H460 lung cancer cell line was immunofluorescently
stained for expression of CD133 (red) and TF (green). Their nuclei were stained by DAPI (blue) and the
cells were photographed under confocal microscopy (Zeiss). Scale bar: 20 µm. (b) Immunoblotting
for TF expression on CD133+ CSCs and CD133- non-CSC MDA-MB-231 cells. CD133 expression was
confirmed on CD133+ CSCs and GAPDH was used for assessing sample loading. (c) Representative
imaging of TF expression on breast cancer patients’ CD133+ CSCs and CD133-non-CSCs, CD133
expression was confirmed on CD133+ CSCs (Original magnification: 25 µm under ZEO Fluorescent
Cell Imager, Bio-Rad, Hercules, CA, USA). Modified from ref. [16].
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2. Tissue Factor in Pathological Neovasculature of Cancer, Age-Related Macular Degeneration
and Endometriosis

Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis-dependent
cancer and non-malignant human diseases [24], such as macular degeneration [25], rheumatoid
arthritis [26] and endometriosis [27]. Specifically, VEGF stimulates angiogenesis by binding to VEGF
receptors on VECs in the pathological neovasculature (usually micro- or capillary vessels) in those
angiogenesis-dependent diseases. It was previously known that VEGF could induce TF expression
on human umbilical vein endothelial cells (HUVEC) [10,15,28–30], a commonly used VEC model in
angiogenesis studies. Noting that although VEGF receptors are relatively expressed at higher levels
on tumor VECs, they are also expressed by normal VECs [31], indicating that VEGF receptors are
not specific for neovascular endothelial cells. To better mimic pathological angiogenesis, an ideal
angiogenic VEC model should be derived from micro- or capillary vessels. Using VEGF-induced in vitro
angiogenic VEC models, our laboratory recently reported that, unlike VEGFRs, TF is an angiogenic
specific receptor and the target for ICON immunotherapy (Figure 4) and fVII-tPDT [15]. We reviewed
below its selective expression on angiogenic VECs in vivo in the pathological neovasculature of
cancer [7,32–36], AMD [19] and endometriosis [21] from animal models to patients.

2.1. Tissue Factor Expression in Pathological Neovasculature of Cancer

TF expression on tumor VECs was first reported by Contrino et al. in 1996 in primary tumor
tissues from 7 breast cancer patients [32]. Importantly, they also reported that TF expression was
not detected in normal VECs in adjacent breast tissues. Hu and Garen independently reported that
TF was selectively expressed in tumor neovasculature of human melanoma xenografts in vitro and
in vivo [33,37]. Our laboratory further showed that TF was specifically expressed on the tumor VECs
in tumor xenografts of human lung cancer [35] and chemoresistant breast cancer [36] grown in mice
but was not expressed on resting VECs in the brain, lungs and spleen of mice [35].

2.2. Tissue Factor Expression in the Neovasculature of Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly
population (age 55 and older) globally. Severe loss of central vision frequently occurs with the
exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature
(CNV) that damages the macular region of the retina. To identify a therapeutic target for AMD,
in collaboration with the Kaplan laboratory during his tenure at the University of Louisville, Bora et al.
reported in 2003 that the endothelial cells of the CNV membrane selectively expressed TF in a pig
model [19], whereas the normal retinal vascular endothelium did not express TF. The normal choroidal
endothelium also did not express TF [19]. Several earlier studies have shown the presence of growth
factors, including FGF, TGF and VEGF in surgically-excised CNV [38–40] and tumor necrosis factor
α (TNFα) in macrophages in CNV [41]. In 2002, Grossniklaus et al. immunostained post-mortem
eyes with CNV and surgically-excised CNV for expression of VEGF and TF [42]. The results [42]
showed that VEGF was variably expressed in macrophages and strongly expressed in Retinal pigment
epithelium (RPE), a major component of CNV both in post-mortem eyes and surgical specimens. VEGF
was also expressed in fibroblasts and photoreceptors. TF was strongly expressed in macrophages and
variably expressed in RPE. There was stronger staining for VEGF and TF in inflammatory active versus
inflammatory inactive surgically excised CNV [42]. Taken together, these growth factors, including
VEGF and TNFα in macrophages and RPE, can contribute to CNV angiogenesis and induction of TF
in CNV.

2.3. Tissue Factor Expression in the Neovasculature of Endometriosis

Endometriosis is a gynecological disorder characterized by the presence of endometrial tissue,
the inner layer of uterus, outside of the uterus. Endometrial lesions are primarily located on the



Antibodies 2018, 7, 8 5 of 22

pelvic peritoneum and ovary but can also be located in the pericardium, pleura, lung and even the
brain. The disease affects up to 10% of all reproductive-aged women and the prevalence rises to
20%–50% in infertile women. Dr. Lockwood’s laboratory has extensively examined the expression
of TF in endometriosis [43–46]. In normal endometrium, TF expression is limited to stromal cells of
the secretory phase with far lower expression in glandular epithelium. In endometriosis, however,
TF is greatly overexpressed in both glandular epithelium and stromal cells. Interestingly, the most
intense TF immunostaining was observed on macrophages in endometriotic tissues. In 2010, Krikun
et al. reported that the endothelial cells in ectopic endometriotic lesions highly expressed TF [21],
whereas no TF was detected on gland cells, stromal cells, endothelial cells and vessel walls in eutopic
proliferative endometrium from patients [21].

3. Tissue Factor Expression in Cancer

3.1. Tissue Factor Expression on the Cancer Cells of Solid Cancers, Leukemia and Sarcoma

In addition to its expression on tumor neovasculature, TF is also highly expressed on the cancer
cells in solid cancers [47–49] and leukemia [49]. As summarized in Table 1, TF expression is detected
on the cancer cells in 80%–100% of breast cancer patients, 40%–92% of lung cancer patients and 84%
of ovarian cancer patients [49]. Interestingly, Goldin-Lang et al. [12] reported that 8 out of 12 (66.7%)
adenocarcinoma lung cancer patients were moderately positive for flTF when using a rabbit polyclonal
antibody against flTF (American Diagnostica, Stamford, CT, USA), whereas 11 out of those same
12 tumors (91.7%) were moderately positive for asTF when using a polyclonal rabbit anti-human asTF
antibody (vendor not listed). Similar to cancer of the breast, lung and ovary, TF is also expressed at
high percentages in many other human solid cancers (Table 1) [16,49], for instance, 95% in primary
melanoma and 100% in metastatic melanoma, 53%–90% in pancreatic cancer, 57%–100% in colorectal
cancer, 63%–100% in hepatocellular carcinoma, 60%–78% in primary and metastatic prostate cancer
and 47%–75% in glioma.

Table 1. Tissue factor expression in solid cancers, leukemia and sarcoma.

Type of Tumor Case Number % on TC % on TVEC References

Breast cancer

115 81% ND [50]

7 100% 100% [32]

213 91% 98.6% (stromal cells) [51]

Human chemoresistant
breast tumor xenograft from

mice *
+ + [36]

Melanoma

41 primary
42 metastatic

95%
100% ND [52]

Human melanoma xenograft
from mice * + + [33]

Lung cancer
25 28% 78% (stromal

macrophages, VECs) [53]

191 (NSCLC) 43% ND [54]

55 80% ND [55]

50 88% ND [56]

12 (snap-frozen
adenocarcinoma NSCLC

tissues)

66.7% (8/12) moderately
positive for flTF and 91.7%
(11/12) for asTF ** vs. the
overall negative control

healthy tissue

ND [12]

Hepatocellular
carcinoma (HCC)

58 100% ND [57]

62 63% ND [58]
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Table 1. Cont.

Type of Tumor Case Number % on TC % on TVEC References

Pancreatic cancer

55 53% TF negative in normal
pancreas [59]

113 88.4% ND [60]

240 (10 normal pancreas 70
intraductal papillary

mucinous neoplasms 40
pancreatic intraepithelial
neoplasia, 130 resected or

metastatic pancreatic
adenocarcinomas)

87.9% overall (77%
pancreatic intraepithelial

neoplasias 91% intraductal
papillary mucinous

neoplasms 89% pancreatic
cancers)

ND
(TF negative in normal

pancreas)
[61]

Colorectal cancer

67 primary, of which 18 with
liver metastasis

46% of primary, 88.9% of
liver metastasis ND [62]

100 57.0% ND [63]

50 100% ND [64]

Prostate cancer

67 73% ND [65]

73 75.3% ND [66]

32 early stage 22
advanced stage

78% early-stage 60%
advanced stage

ND
(TF negative in benign

prostate gland)
[67]

Human prostate tumor in
mice *** + + [34]

Ovarian cancer 32 84% ND [68]

Glioma

44 (10 benign gliomas 14
anaplastic astrocytomas 20

glioblastomas)

75% overall (10% in Grade
I-II, 86% in grade III 95% in

grade IV)
ND [69]

68 (23 glioblastomas 13
anaplastic astrocytomas 32
low-grade astrocytomas)

47% overall (91.3%
glioblastomas, 46.2%

anaplastic astrocytomas and
15.6% low-grade

astrocytomas)

44% overall (73.9%
glioblastomas, 53.8%

anaplastic astrocytomas,
0% low grade
astrocytomas)

[70]

34 gliomas
5 normal brain tissues

58.8% overall (20% of grade
I 43% of grade II, 58% of

grade III 90% of grade IV)

ND
(TF negative in normal

brain tissues)
[71]

Leukemia

Human AML lines and
leukemic cells from patients

with AML
+

TF negative on the
normal peripheral

mononuclear cells unless
stimulated by endotoxin
or other cytokines [72]

[73–78]

Human ALL lines and
leukemic cells from patients

with ALL
+ TF negative on myeloid

precursor cells [75] [79,80]

Sarcoma
Mouse Meth-A sarcoma cells + [81]

Rat osteosarcoma cells + [82]

Kaposi’s sarcoma **** + [83]

Abbreviations: ND, not determined; TC, tumor cells; TVEC, tumor vascular endothelial cells; NSCLC, non-small
cell lung cancer; HCC: hepatocellular carcinoma; flTF: full length TF; asTF: alternatively spliced TF; AML: acute
myeloid leukemia; ALL: acute lymphocytic leukemia. Score systems in these studies are generally graded as follows:
negative (0%), moderately positive (+, <25%), positive (25%–50%), strongly positive (50%–75%) and very strongly
positive (>75%). Positive percentages included all cases graded from moderately positive through very strongly
positive. Symbols *, Human breast and melanoma tumor xenografts were removed from mice and paraffin or
frozen sections were made and immunohistochemically stained for endothelial TF by using a rabbit polyclonal
anti-mouse TF antibody [36] and murine fVII/human IgG1 Fc protein (mouse ICON) [33], respectively. **, Only
this study examined flTF and asTF. Other studies in Table 1 and elsewhere throughout the entire text examined
flTF or simply referred as TF unless specified. ***, Mouse Icon protein was intravenously injected into the SCID
mice carrying subcutaneous human prostate tumor xenografts and the bio-distribution of mouse Icon protein was
studied by immunofluorescence staining for the human IgG1 Fc of the mouse Icon protein using an FITC-conjugated
anti-human IgG antibody [34]. ****, Kaposi’s sarcoma is vascular origin. +, TF expression was positively detected on
those cancer cells/cell lines, regardless of the level of TF expression. The table was updated from ref [49].
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Leukemia is a malignant neoplasm of hematopoietic tissue originating in the bone marrow and
infiltrating the peripheral blood and often also the spleen, liver and lymph nodes. Acute leukemia,
including acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) are characterized by
proliferation of immature cells or blasts. If untreated, death usually occurs within 6 months in most
cases. ALL is the most common childhood malignancy and the second most common adult leukemia
and AML is the second most common childhood malignancy. It was reported that TF is expressed
on the human leukemic cell lines HL-60 [72,73,79,85,86], Molt-4 [87], THP-1 [11,87] and on leukemic
cells from patients with AML [73–78] and ALL [79,80]. TF is not expressed on the normal peripheral
mononuclear cells unless stimulated by endotoxin or other cytokines [72], nor on myeloid precursor
cells [75]. TF was also detected in the plasma of patients with leukemia [79,80] and in HL-60 culture
medium [79].

In sarcoma, TF expression was also detected on mouse Meth-A sarcoma cells [81], rat osteosarcoma
cells [82] and vascular origin of Kaposi’s sarcoma [83]. It remains to investigate if TF is expressed in
human sarcoma.

3.2. Tissue Factor Expression on Cancer Stem Cells

Besides the cancer cells and tumor neovasculature, cancer stem cell (CSC) is also an important
tumor compartment in the tumor microenvironment. CSC contributes to tumor angiogenesis, resistance
to multiple therapies [88,89] and metastasis [88,90,91]. Targeting CSC therapy can treat cancer at the
root and may overcome drug resistance, recurrence and metastasis. Our group recently reported, to our
knowledge for the first time, that TF is also expressed on CD133+ and CD24-CD44+ cancer-initiating
stem cells and TF can serve as a novel oncotarget for CSC isolated from human cancer cell lines (such
as breast, lung, ovarian, head and neck cancer), tumor xenografts and breast cancer patients [16].
Furthermore, TF-targeting immunotherapy agent ICON (discussed below) can eradicate CSC without
drug resistance [16].

4. Tissue Factor in Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, often progressive, systemic inflammatory condition of
unknown cause. It is characterized by a mononuclear infiltration (T cells, B cells, plasma cells and
macrophages) into the synovial tissue and a symmetric, erosive arthritis of peripheral joints but it may
also cause systemic manifestations. Tumor necrosis factor α (TNFα) plays an important role in the
pathogenesis of RA [92].

4.1. TF Expression in Arthritic Joints

Busso et al. [93] immunohistochemically stained synovial tissue specimens from 10 RA patients
and reported that TF expression was detected in fibroblasts, smooth muscle cells and macrophages
but not in endothelial cells. Chen et al. [94] observed TF expression on Ki-67 positive synoviocytes,
B cells and endothelial cells. The controversial results regarding TF expression on endothelial cells in
RA could be due to the time point at which TF expression was evaluated. We hypothesize that upon
stimulation of pro-inflammatory cytokines and growth factors, endothelial cells express TF in the early
stage of RA (acute phase, for example, TF reaching peak expression at 4–6 h post VEGF stimulation,
Figure 1b) and then endothelial TF expression may decrease or even disappear in later stages of RA
(chronic phase, for example, TF expression started decreasing 8–24 h post VEGF stimulation) (Figure 1
in reference [15], not shown here). Nevertheless, the two published studies provided independent
evidence supporting our hypothesis that TF is expressed by macrophages, B cells, Ki-67 positive
synoviocytes and angiogenic VECs in RA and targeting TF represents a novel therapeutic approach for
immunotherapy of RA. However, it remains to investigate what role TF plays on each of synovial cells
in the initiation and progression of RA and if other cytokines also contribute to induction of TF on
those synoviocytes.
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4.2. Angiogenesis and Angiogenic Endothelial TF in RA

RA is also associated with angiogenesis, which enables leukocyte transendothelial migration
into the inflamed synovial tissue [17,95–104]. There are numerous angiogenic mediators, such as
TNFα and VEGF and endogenous inhibitors in the RA synovium with an imbalance yielding to
increased capillary formation in arthritis. Specifically, vascular endothelial cells (VECs) are involved in
a number of mechanisms underlying synovial inflammation [105]. Angiogenic VECs are responsible for
increased vascular permeability, leukocyte extravasation (a key feature of inflammation) and secretion
of numerous inflammatory mediators during the initiation and progression of RA. Anti-angiogenesis
has also been tested for treatment of RA [95]. Many pro-inflammatory cytokines and growth factors
such as TNFα, IL-1 and VEGF are known stimuli for induction of TF on VECs [106]. Thus, angiogenic
VECs can serve as a target for TF-targeting therapy of RA.

4.3. Macrophages in RA Expressing TF

It is well documented that macrophages play several roles in RA initiation and progression. First,
macrophages can serve as one of the antigen presenting cells to abnormally present self-antigen leading
to activation of autoreactive T cells. Second, macrophages produce and secrete pro-inflammatory
cytokines, chemokines, growth factors and enzymes, such as TNFα, IL-1, IL-6, IL-18, IL-15 and IL-32,
to further activate other cells, contributing to disease progression. Third, macrophages stimulate
synoviocytes to release enzymes, such as collagenases and proteases, which may lead to cartilage
and bone damage. We believe targeting macrophage represents a novel therapeutic approach for
the treatment of RA. It has been documented that TF is expressed by macrophages in rheumatoid
synovium [93,94]. Importantly, TF is not normally expressed by unstimulated monocytes [107,108] but
TF can be induced on monocytes by inflammatory mediators including bacterial lipopolysaccharide
(LPS, also known as endotoxin) [109], TNFα [110] and IL-1 [111].

4.4. Fibroblasts in RA Expressing TF

It is documented that TF is expressed on human fibroblast lines [112,113] and human embryonic
fibroblasts [114]. Synovial fibroblasts are involved in the pathogenesis of RA via secreting a wide range
of cytokines, chemokines, growth factors and enzymes such as matrix metalloproteinases (MMPs).
Studies have shown that inhibiting the growth of synovial fibroblasts could reduce the severity of
inflammatory arthritis [115]. Thus, targeting fibroblast via binding to TF may lead to development of
novel therapeutic agents for the treatment of RA.

4.5. B Cells in RA Expressing TF

B cells are another type of infiltrating immune cells in arthritic joints in RA. B cells play an
important role in the pathogenesis of RA, not only serving as the precursors of auto-antibody
producing plasma cells but also being involved in antigen presentation, T cell activation and cytokine
production [116]. Thus, B cell-directed therapy may provide therapeutic effect in the treatment of
RA [117–119]. A recent study showed that B cells in human RA express TF [94], whereas normal B cells
do not express TF [120]. The reason why RA-associated B cells express TF is still unknown. It could
be due to induction by one or a mixture of inflammatory cytokines and chemokines. As evidence,
a subpopulation (CD19+CD79b+CD38+CD40+CD5-) of normal human B cells, representing 30% of
total B cells, expressed TF after induction by phorbol myristate acetate (PMA) [120,121]. Interestingly,
T cells and natural killer (NK) cells do not express TF even after stimulation via LPS or PMA [120].
We previously observed that the NK cell is the major effector cell to mediate antibody-dependent
cell-mediated cytotoxicity (ADCC) effect of TF-targeting ICON immunotherapy in vitro and in vivo in
an animal model of cancer [84]. The finding of negative TF expression on NK cells is very important not
only to better understand the efficacy but also to ensure the safety of TF-targeting immunoconjugates
in clinical trials.
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5. Cytokines and Growth Factors in RA, Endometriosis and Tumor Microenvironment
Contributing to Induction of TF and Angiogenesis

Many cytokines and chemokines are present in rheumatoid synovium [122] and/or in the plasma
of RA patients [123–125], including pro-inflammatory cytokines (e.g., IL-1, IL-6, TNFα, IL-12, IL-15,
IL-17, IL-18, IFNγ, GM-CSF, etc.), anti-inflammatory cytokines (IL-10, IL-1Rα, TGFβ, IL-11, IL-13, etc.),
chemokines (e.g., IL-8, MIP-1α, MCP-1, RANTES, etc.) and growth factors (e.g., VEGF, PDGF, FGF).
Some of these stimuli can contribute to angiogenesis and increased vascular permeability of VECs
(e.g., VEGF) [26] and/or to induction of TF on VECs (e.g., TNFα) [126] or on monocytes (LPS) [109],
TNFα [110] and IL-1 [111].

Due to the scope of this review, we did not discuss and summarize all growth factors and cytokines
commonly involved in RA, endometriosis, AMD and tumor microenvironment. As discussed above,
however, VEGF, a potent growth factor, plays a central role in angiogenesis-dependent cancer and
non-malignant human diseases [24], such as AMD [25], RA [26] and endometriosis [27].

6. Tissue Factor in Macrophage-Involved Human Diseases

6.1. Tissue Factor in Atherosclerosis

Atherosclerosis is an inflammatory disease characterized by the accumulation of lipids in medium
to large sized arteries, such as coronary arteries. During atherosclerosis, formation of atherosclerotic
plaques in the vessel wall results in narrowing of the lumen of the artery. Atherosclerosis and
subsequent atherothrombosis is the leading cause of death in the world. Atherosclerotic plaques
are highly procoagulant largely due to the high levels of TF [127–129], which is expressed on
macrophages and vascular smooth muscle cells in the plaques as well as on microvesicles (also
known as microparticles or extracellular vesicles) and foam cell-derived debris within the necrotic core
(see the review by Tatsumi and Mackman) [130]. It is worth noticing that normal monocytes do not
express TF [107,108]. Interestingly, over 90% of microvesicles within plaques are CD14 positive [131],
suggesting their origin of monocyte/macrophage. Several groups [132–135] have reviewed and linked
TF to atherothrombosis and atherosclerosis. Animal models of atherosclerosis have been developed in
mice, rabbits, swine and non-human primates, of which mice and rabbits are the most commonly used
models. Importantly, similar to the atherosclerosis in humans, high levels of TF are also present in
atherosclerotic lesions in rabbit models and in the Apoe−/− mouse model [130]. The findings of TF
expression in these animal models are very important. This is because it provides not only animal
models mimicking the progression of atherosclerosis in humans for basic science research but also
provides animal models for testing TF-targeting therapeutic agents for the treatment of atherosclerosis
in humans. In addition, hypercholesterolemia [136] and smoking [137] can increase the levels of
TF-expressing monocytes and TF-positive microvesicles in atherosclerotic lesions, which could be
induced by oxidized LDL via engagement of a TLR4/TLR6 complex [138].

6.2. Tissue Factor Expression on HIV-Infected Macrophages

Rapidly after the discovery of the human immunodeficiency virus-1 (HIV-1), it was found that
HIV-1 has two types of major target cells in peripheral blood in vivo, namely T lymphocytes, which
have been extensively studied and macrophages [139,140], which have been neglected but deserve
to be extensively investigated based on the observations described below. While the viral replication
cycle is usually rapid and cytopathic in T cells, infected macrophages survive for months in vitro and
in vivo and accumulate large vacuoles containing infectious viral particles. As a result, HIV genes
are actively expressed and viral particles are assembled in HIV-infected macrophages [139]. Thus,
macrophages play a critical role in the pathogenesis of HIV infection for early stage viral transmission
and dissemination within the host and more importantly, as a reservoir of virus persistence. In addition,
macrophages in chronic HIV infection selectively express a cell membrane receptor TF [141]. However,
TF is not normally expressed by unstimulated monocytes [107] and other quiescent blood cells and
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VECs in blood vessel walls [29,30,33,34,142]. Elevated TF on macrophages contributes to increased risk
of in vivo coagulation, i.e., arterial and venous thrombosis, a common adverse effect in HIV patients
after highly active antiretroviral therapy (HAART) [141]. In addition, the level of macrophage TF
was correlated with the HIV level in plasma [141]. TF expression could be induced on monocytes by
LPS [141], which is a bacterial product probably derived from the gastrointestinal tract and has high
circulating levels in chronically HIV-infected individuals [143]. Thus, HIV-infected macrophages are
considered to be a reservoir for spreading the virus and contribute to increased risk of intravascular
thrombosis due to TF expression.

6.3. Tissue Factor Expression in Ebola-Infected Macrophages

The Ebola virus can cause acute mortality in approximately 80% of outbreaks in humans and
nearly 100% in monkey models, due to severe hemorrhagic fever. The mechanism underlining
coagulation abnormalities in Ebola hemorrhagic fever is that the Ebola virus can induce TF expression
in primate monocytes and macrophages during viral replication [144]. Blockage of fVIIa/TF by
a recombinant nematode anticoagulant protein c2 (rNAPc2) reduced the level of TF activity and
significantly increased the survival of treated non-human primates in a rhesus macaque model of
Ebola hemorrhagic fever [145].

7. Targeting TF Antibodies and Antibody-Like Immunoconjugates in Preclinical Studies

7.1. First Generation of TF-Targeting Antibody-Like Immunoconjugates (Called an ICON or ICON-1)

In earlier work at Yale University, Zhiwei Hu and Alan Garen co-invented the first neovascular-
targeting Immuno-Conjugate named ICON (Figure 4) [33,34,37,84]. ICON is a chimeric antibody-like
homodimer with a molecular weight (MW) of 210 kilodalton (kDa) that consists of murine or human
factor VII (fVII, the full-length peptide with 406 amino acid residues, the natural ligand to TF) fused to
the Fc region of IgG1 (Figure 4a) [33,34,37,84]. The procoagulant effects of ICON-encoded zymogen
fVII have been significantly eliminated via targeted mutation of the lysine reside at position 341
(K341A) [34].

ICON can be administered via intravenous injection of a recombinant protein [142] or intra-
lesional injection of an adenovirus vector [34,37,84]. Intra-lesional ICON immunotherapy of
experimental melanoma, prostate and head and neck tumors leads to marked tumor inhibition and
in some cases, complete eradication without affecting normal tissues [33,34,37,84]. Upon binding to
TF-expressing malignant cells, ICON can mediate NK-ADCC and complement-dependent cytotoxicity
(CDC) as its mechanism of action [84]. Particularly, NK cell level and activity are crucial for the efficacy
of ICON in vivo in animal models of cancer and potentially for other therapeutic antibodies in cancer
patients [84,146]. Based on these observations, we highly recommend that NK cell actual counting
and activity should be monitored in cancer patients before and throughout future clinical trials of
TF-targeting immunoconjugates [146].

As discussed above, we believe that TF is a common yet selective therapeutic target in cancer for
the cancer cells, tumor neovasculature and CSCs and that TF-targeting therapies represent novel
therapeutic approaches with the ability to selectively and effectively target and eliminate these
three major and important tumor compartments. These findings may now help us understand
that our earlier observations of remarkable effects of ICON immunotherapy without recurrence [34],
metastasis [33,37] and drug resistance [16], i.e., complete eradication of well-established primary
tumors (up to 600 mm3) and metastases, were probably achieved by targeting not only the cancer cells
and tumor neovasculature [15,34,37] but also cancer stem cells [16] in mouse models of human and
murine prostate [34], melanoma [33,37] and head and neck [84] cancer.
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Figure 4. Diagram and characterization of the first generation TF-targeting immunoconjugate (ICON)
protein. (a) Molecular weight of the ICON protein produced by Chinese Hamster Ovary (CHO) cells
analyzed by SDSPAGE. fVII: mouse factor VII with K341A mutation; H: hinge region of a human
IgG1 Fc; CH2 and CH3: the second and third domains of the constant region on the heavy chain of a
human IgG1 Fc. (b) Binding activity of ICON protein to human tongue cancer TCA8113 cells by flow
cytometry. Control: TCA8113 cancer cells were not incubated with ICON but with secondary antibody
FITC. Mouse ICON: the cells were incubated with ICON protein then with the secondary antibody to
human IgG Fc FITC. (c) Immunoprecipitation Western-blotting analysis of ICON protein production
by TCA8113 cells one day after infection with AdmICON (lane 1) or AdBlank (lane 2). The serum free
culture medium from uninfected TCA8113 cells was used as an uninfected control (lane 3). M: Protein
markers (Bio-Rad). Molecular weights (kDa) of the protein markers are indicated. Modified from
ref [84].

As a neovascular-targeting stand-alone immunotherapy agent, ICON has shown efficacy
and safety for the treatment of angiogenesis-dependent diseases via eradication of pathological
neovascularization in mouse models of cancer [33,34,37,84,142,147], in mouse and pig models of
wet-form macular degeneration [19,20] and in a mouse model of human endometriosis [21]. As a novel
neovascular-targeting agent, ICON is being tested in a Phase I clinical trial in ocular melanoma patients
and a Phase II clinical trial for patients with age-related macular degeneration (AMD, wet form)
(NCT01485588). However, ICON may have some potential limitations in future clinical cancer
trials when it is administered systemically as intravenous injections of a recombinant protein. First,
its large molecular mass (210 kDa, Figure 4) [84] may limit its ability to penetrate into solid tumor
tissues. Second, the procoagulation activity in ICON was not completely depleted [34] and may cause
coagulation disorder in cancer patients who usually have a hypercoagulation status [148].

7.2. Second Generation TF-Targeting Antibody-Like Immunoconjugate (L-ICON1)

To address these limitations, our laboratory has invented a second-generation ICON (US patent
application), named L-ICON1 for lighter ICON. L-ICON1 (GenBank accession no. KX760097) consists
of only the light chain (the first 152 aa) of fVII fused to an IgG1 Fc. L-ICON1 has the following
important improvements over the original ICON (Hu et al. 2015 SITC Annual Meeting Abstract and
2016 SITC Annual Meeting Late-breaking Abstract P12), including 50% smaller molecular weight,



Antibodies 2018, 7, 8 12 of 22

complete depletion of procoagulation activity and more effective than the original ICON in vivo in
animal models of cancer.

The ICON and L-ICON molecules have several important advantages as compared to anti-TF
monoclonal antibodies and antibody-drug conjugates: (i) The dissociation constant (Kd) for fVII
binding to TF is up to 10−12 M [149], in contrast to anti-TF antibodies that have a Kd in a range of
10−8 to 10−9 M for TF [150]. (ii) ICON is produced by recombinant DNA technology, allowing mouse
ICON (mouse fVII/hIgG1 Fc, GenBank accession no. AF272773) to be made and tested in animal
models of diseases and human ICON (human fVII/hIgG1 Fc, also named hI-con1 or ICON-1, GenBank
accession no. AF272774) to be made from human sources for future clinical trials without the need
of a humanization process that is required for monoclonal antibodies. (iii) Most of antibody-drug
conjugates (ADCs) exist as heterogeneous mixtures and require sophisticated site-specific conjugation
technologies [151].

7.3. TF-Targeting Antibodies and Antibody-Drug Conjugates (ADC)

Several TF-targeting humanized monoclonal antibodies and/or antibody-drug conjugates
(TF-ADC) are being studied and reviewed in preclinical and clinical studies [10,152–154]. Breij et
al. generated humanized IgG1 antibodies (HuMab) against TF in humanized mice using a purified
peptide of extracellular domain of TF and TF-expressing NSO cells [152]. Three of them, named
TF-011, -098 and -111, could induce efficient inhibition of TF:fVII-dependent intracellular signaling,
ADCC and rapid receptor internalization but had minimal impact on TF procoagulant activity in vitro.
They conjugated those TF HuMab clones with cytotoxic agents and showed that HuMax-TF-ADC
was the most potent ADC and the dominant mechanism of action in vivo was auristatin-mediated
tumor cell killing. TF-011-MMAE induced complete tumor regression in patient-derived xenograft
(PDX) models with variable levels of TF expression. Interestingly, the TF-targeting ADC was also
effective in the PDX models with TF expression in 25% to 50% of their tumor cells. We believe the
reason for the efficacy of the ADC, even in a low TF expressing tumor cell model, is that in addition to
cancer cells, the TF-targeting ADC might also target other TF-positive tumor compartments, such as
tumor neovasculature and/or cancer stem cells that selectively express or overexpress TF and could
be targeted and eradicated by TF-targeting ICON immunotherapy and fVII-tDT in vitro [15,16] and
in vivo [33,37]. The results of ADC demonstrated independently that TF-targeting immunotherapy
could have a therapeutic potential to treat multiple types of solid cancers, even with low levels of
TF expression on their tumor cells. They further compared the efficacy of TF-targeting ADC with
those targeting other cancer cell receptors, such as EGFR and HER2 [155]. They conjugated TF,
EGFR and HER2-specific antibodies with duostatin-3, a toxin that induces potent cytotoxicity upon
antibody-mediated internalization. They showed that TF-ADC was relatively potent in reducing tumor
growth compared with EGFR- and HER2-ADCs in xenograft mouse models.

8. TF-Targeting ICON and ADC in Clinical Trials

8.1. ICON in Clinical Trials in Patients with Ocular Melanoma and AMD

As a neovascular-targeting agent, ICON has entered clinical trials in patients with AMD and
ocular melanoma. A completed Phase 1/2 trial (Clinical trial identifier: NCT01485588) of human ICON
(hI-con1, Iconic Therapeutics, South San Francisco, CA, USA) was designed to investigate the safety
and tolerability of single and repeated doses of hI-con1™ following administration by intravitreal
injection in patients with AMD. The completed multi-center clinical study evaluated the safety and
tolerability of a single, intravitreal injection of three different doses of hI-con1 in a total of 18 wet
AMD patients. The results have been presented at the American Academy of Ophthalmology Retina
Subspecialty Day on 10 November 2012 in Chicago. The results showed that hI-con1 was well tolerated
by all patients. Importantly, there were clear indications of dose-related, biologic activity in a number
of patients, as indicated by increased visual acuity, reduced retinal thickness and CNV regression [156].
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Human ICON was further tested in a Phase 2 randomized, double-masked, multicenter,
active-controlled study evaluating administration of repeated intravitreal doses of hI-con1™ in patients
with choroidal neovascularization secondary to AMD (NCT02358889). The purpose of this study was
to evaluate the safety, biological activity and pharmacodynamic effect of repeated intravitreal doses of
0.3 mg hI-con1 (ICON-1) administered as monotherapy and in combination with 0.5 mg anti-VEGF
antibody ranibizumab (Lucentis, Genentech, South San Francisco, CA, USA) compared to ranibizumab
0.5 mg monotherapy in treating 88 patients with choroidal neovascularization (CNV) secondary to
AMD. Ranibizumab is a humanized recombinant monoclonal antibody fragment (antigen binding
fragment, Fab) that can bind and neutralize human VEGF-A, thereby preventing binding of VEGF-A
to its receptors VEGFR-1 and VEGFR-2. The results of the Phase 2a trial was recently presented for the
first time at the Angiogenesis, Exudation and Degeneration meeting on 11 February 2017 (ARVO 2017
Annual Meeting Abstracts). No serious ocular adverse events were reported. Repeated intravitreal
ICON-1 0.3 mg injections alone or in combination with ranibizumab were well tolerated. And the
results provided biological signals of ICON-1 activity on the reduction of CNV progression [157].

Human ICON is also being tested in a Phase 1 trial in patients with uveal melanoma
(NCT02771340). The purpose of this multicenter study is to evaluate the safety, tolerability, biological
activity, pharmacokinetics and pharmacodynamic activity of single and repeated escalating intravitreal
doses (a single or two intravitreal doses of ICON-1 0.3 mg or 0.6 mg) of ICON-1 (hI-con1TM) in patients
with primary uveal melanoma who are planned to undergo enucleation or brachytherapy of the
affected eye. According to the ClinicalTrials.gov website, patient recruitment was completed but the
results of this clinical trial are not available yet.

8.2. ADC in Clinical Trials in Cancer Patients

An anti-human TF antibody-drug conjugate (HuMax-TF-ADC or called tisotumab vedotin,
Genmab, Copenhagen, Denmark) was planned in Phase 1/2 trials (NCT02001623, recruiting and
NCT02552121, active but not recruiting) in patients with solid tumors in ovary, cervix, endometrium,
prostate, esophagus, lung or head and neck cancers. According to the ClinicalTrials.gov website,
the Phase 1/2 trial (NCT02001623) is planning to recruit 144 participants. Currently the same ADC
is under a new Phase 2 trial (NCT03245736) in 25 patients with solid tumors known to express TF,
including cancers of the ovary, cervix, endometrium, bladder, prostate, esophagus, lung (non-small
cell lung cancer, NSCLC) and head and neck (squamous cell carcinoma). The purpose of the trial is
to evaluate efficacy and safety of continued treatment with tisotumab vedotin. According to the c
website, these clinical studies (NCT02001623 and NCT03245736) are anticipated to be completed in
December 2018 and January 2022.

9. Conclusions

In summary, TF is expressed on the diseased cells in angiogenesis-dependent human diseases
as well as in macrophage-associated human diseases. In angiogenesis-dependent diseases, notably
solid cancers, AMD, endometriosis and RA, TF is selectively expressed on angiogenic VECs in the
pathological neovasculature. In cancer, TF is also overexpressed by cancer stem cells and by the
cancer cells, including solid cancer cells, AML and ALL leukemic cells and sarcoma cells. In RA, TF is
additionally expressed by macrophages, B cells, fibroblasts and Ki-67 positive synoviocytes in arthritic
joints. In macrophage-associated human diseases, TF is abnormally expressed by monocyte-derived
macrophages and foam cells in atherosclerosis and by HIV- and Ebola-infected macrophages in these
viral infections. These TF-expressing cells (angiogenic VECs, cancer cells, CSCs, macrophages/foam
cells, fibroblasts, B cells) are all involved in disease progression, whereas normal VECs, monocytes,
T and NK cells do not express TF. Thus, targeting TF represents novel therapeutic approaches with
potential to broadly treat these clinically significant diseases.

As discussed above, there are two approaches for making therapeutic antibodies against TF.
One approach was to fuse fVII or its light chain, the natural ligand for TF, to an IgG1 Fc to make
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ICON and L-ICON1. The other approach was to make humanized monoclonal antibodies against
TF. As discussed above, we believe that fVII-containing antibody-like immunoconjugates (ICON
and L-ICONs) have advantages over humanized monoclonal antibodies, for higher affinity to TF
and no need of humanization. In ADC, those antibodies against TF serve more like a targeting
molecule to deliver cytotoxic agents into cancer cells via internalization upon antibody/antigen
binding, rather than therapeutic antibodies via ADCC and CDC. The ADC approach is similar to that
of fVII-targeted photodynamic therapy that we developed earlier [49], in which fVII (with a coagulation
active site mutation K341A) serves as a targeting molecule to selectively deliver photosensitizers into
TF-expressing cancer cells [29,30,35,36], tumor VECs [15,29,30,35,36] and CSCs [15] via internalization
(reaching peak internalization at 30 minutes post fVII binding to TF) [29].

Some TF-targeting agents, such as ICON and therapeutic ADCs, are being evaluated in
early clinical trials, while newer and improved ICONs are being evaluated in preclinical studies
with potential to translate into clinical trials. An ideal feature for any TF-targeting antibody-like
immunoconjugates or antibodies is that they bind TF but do not have procoagulation activity, so that
they will not cause disseminated intravascular coagulation disorders in these human diseases. In this
regard, we anticipate that the newer and improved ICONs are more ideal since their procoagulation
activity has been completely depleted. Nevertheless, if efficacy and safety of any of these TF-targeting
immunoconjugates (ICON and L-ICON1) can be proven in clinical trials, they may impact the treatment
regimen for these angiogenesis-dependent as well as macrophage-associated human diseases in the
near future.
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