
Symmetry 2009, 1, 10-20; doi:10.3390/sym1010010 

 

symmetry
ISSN 2073-8994 

www.mdpi.com/journal/symmetry 

Article 

Using Group Theory to Obtain Eigenvalues of Nonsymmetric 
Systems by Symmetry Averaging 

Marion L. Ellzey, Jr. 

Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968-0513, USA;  

E-mail: lellzey@utep.edu 

Received: 10 July 2009; in revised form: 5 August 2009 / Accepted: 6 August 2009 / 

Published: 6 August 2009 

 

Abstract: If the Hamiltonian in the time independent Schrödinger equation, H E   , is 

invariant under a group of symmetry transformations, the theory of group representations 

can help obtain the eigenvalues and eigenvectors of H. A finite group that is not a symmetry 

group of H is nevertheless a symmetry group of an operator Hsym projected from H by the 

process of symmetry averaging. In this case H = Hsym + HR where HR is the nonsymmetric 

remainder. Depending on the nature of the remainder, the solutions for the full operator may 

be obtained by perturbation theory. It is shown here that when H is represented as a matrix 

[H]  over a basis symmetry adapted to the group, the reduced matrix elements of [Hsym] are 

simple averages of certain elements of [H], providing a substantial enhancement in 

computational efficiency. A series of examples are given for the smallest molecular graphs. 

The first is a two vertex graph corresponding to a heteronuclear diatomic molecule. The 

symmetrized component then corresponds to a homonuclear system. A three vertex system 

is symmetry averaged in the first case to Cs and in the second case to the nonabelian C3v. 

These examples illustrate key aspects of the symmetry-averaging process. 

Keywords: Hamiltonian symmetry; group theory; symmetry-adapted basis; reduced matrix 

elements; symmetry-averaging 
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1. Introduction 

In the context of the time independent Schrödinger equation: 

       H E   (1) 

the elements of a symmetry group G commute with H [1-3]: 

     , Ga a aHG G H G   (2) 

Commutativity requires that H and G do not mix each other’s invariant spaces so that the 

eigenfunctions of H must (barring accidental degeneracy) transform according to the irreducible 

representations of the symmetry group. The methods of group representations can help determine the 

eigenvalues and eigenvectors of H. 

Suppose that H does not commute with a particular finite unitary group G but that the behavior of H 

under the group elements is known and given by: 

               1, 1, 2,...,a aG HG a g 
 (3) 

Then a symmetrized operator, Hsym, is projected from H by symmetry averaging, summing over all 

transformations and dividing by the order of the group: 

               

11

1

g

sym a ag
a

H G HG



 
 (4) 

The symmetrized operator commutes with all elements of G: 

           , 1, 2,...,a sym sym aG H H G a g 
 (5) 

and is Hermitian. 

The original operator is the sum: 

                  sym RH H H 
 (6) 

where HR is the remainder. If Hsym is nonzero and the remainder HR is sufficiently small in some sense, 

perturbation theory may give acceptable approximations to the eigenvalues and eigenvectors of H. A 

number of groups may be used for any particular system, but the optimum choice for analysis would 

generally be the largest group yielding a nonzero Hsym. In general, the larger the group, the more the 

reduction in analytical requirements. 

This approach may be compared to established perturbation methods in which the total Hamiltonian 

is expressed as the sum of a high-symmetry zero-order Hamiltonian plus a symmetry lowering 
perturbation: 0H V . Symmetry-averaging is systematic, ensures that HR has no identity component 

and provides a relationship between reduced matrix elements of Hsym and matrix elements of H. 

It is usual to have a matrix representation, [H], of the Hamiltonian over a suitable basis of a Hilbert 

space, either as an initial definition or as a first step in analysis. If the basis is symmetry-adapted to the 

group G the matrix of the symmetrized operator [Hsym] will be reduced although [H] will not be. By a 

corollary to the symmetry-generation theorem [4-6], the reduced matrix elements of [Hsym] are simple 

averages of certain elements of [H] making the construction of [Hsym] much more efficient than the 
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computationally demanding projection. Therefore, even though Hsym may not be the Hamiltonian of a 

real molecule [Hsym] is readily determined.  

Symmetry-averaging as a projection is presented in the next section and the use of the symmetry-

adapted basis for symmetry-averaging is described in the third section. In the fourth section, the 

simplest example of a heteronuclear diatomic molecule corresponding to a two-vertex graph with one 

edge is presented. In the fifth section, symmetry-averaging of a three vertex system to two different 

groups is described. The sixth section is the conclusion. 

2. Symmetry-averaging 

Using the methods of finite group algebra, the identity for a finite group is given in terms of simple 

projectors as: 

                           

M

I e




 (7) 

where the sum is over the M irreducible representations of the group and the projectors eα are 

commuting orthogonal idempotents: 

                    ,e e e e e       
 (8) 

This is the notation of Littlewood [7] and Weyl [8] in which irreducible representations are indexed 

by lower case Greek letters. It is convenient to take the lead term, α = 1 to correspond to the totally 

symmetric irreducible representation occurring in every group. Then the corresponding projector is the 

symmetrizer: 

                       

1 1

1

g

ag
a

e G


 
 (9) 

where the sum is over all g elements of the group. The effect of the symmetrizer on an arbitrary 

operator is to project out the totally symmetric component: 

                       

1 11
g

sym a ag
a

H e H G HG  
 (10) 

where the “ ” operation is defined as shown to be the appropriate linear combination of equivalence 

transformations. Then Hsym commutes with all elements of the group. The original operator is 

expressed as the sum of Hsym and a remainder: 

            

1

2

M

sym R

H I H e H e H

H H





  

 

  

  

Since the right hand side of Equation 10 is the average of all the system orientations produced by 

the group transformations, the term symmetry-averaging is appropriate. 
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3. Symmetry-adapted basis 

The elements of a basis symmetry-adapted to a group G transform irreducibly under the elements of 

the group according to: 

              
 

 

1

; ;
f

a a r r
r

G r G r


   




 
 (11) 

where α denotes an irreducible representation of G, r  and r index the rows and columns of the f(α) 

×f(α) matrix [Ga]
α, ρ distinguishes repeated irreducible representations, and ω identifies the complete 

space. The representation of the group on a symmetry-adapted basis is completely reduced. A 

symmetry-adapted basis is suitably-conditioned if all of the |ω;ραr , ρ = 1,..., f(ω;α), transform 

according to identical matrices [Ga]
α. Here, f(ω;α) is the number of times the α irreducible 

representation occurs, given by the usual character formula. Matrix elements of an operator H are 

expressed on this basis as: 

                        
; ;r H r      

 (12) 

If the operator is defined as a matrix [H]ω on some defining basis: {|ωi , i  = 1,...,f(ω)}, it is 

necessary to perform the transformation to the symmetry-adapted basis: 

           

 

1

;
f

i

r i i r


    


 
 (13) 

On a symmetry-adapted basis, the elements of an operator, Hsym, that commutes with G satisfy the 

relation [9]: 

        
   ; ; , , ; ;sym symr H r r r H                  

    (14) 

where the far right factor is a reduced matrix element. Since these elements are zero unless α equals   
and r equals r , and the reduced matrix elements are independent of r, the matrix is partitioned into 

scalar submatrices on the symmetry-adapted basis. Reordering the basis to group together elements 

with the same α and r gives a partition with f(α) identical f(ω;α)×f(ω;α) blocks down the diagonal 

resulting in a factored secular polynomial. These blocks are the reduced matrices. Suppose, for 

example, that a basis symmetry-adapted to the point group C3v contains one A1 and two E irreducible 

representations: 

                           11 , 1 1 , 1 2 , 2 1 , 2 2A E E E E
 (15) 

then the corresponding representation of the group element Ga is: 

            

 
   
   

   
   

1

11

11 12

21 22

11 12

21 22

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

A

a

E E

a a

E E

a a

E E

a a

E E

a a

G

G G

G G

G G

G G

 
 
 
 
 
 
 
 
    (16) 
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The matrix of an operator that commutes with the group has the form: 

          

1 11 1 0 0 0 0

0 1 1 0 1 2 0

0 0 1 1 0 1 2

0 2 1 0 2 2 0

0 0 2 1 0 2 2

sym

sym sym

sym sym

sym sym

sym sym

A H A

E H E E H E

E H E E H E

E H E E H E

E H E E H E

 
 
 
 
 
 
 
 
 
    (17) 

A reordering of the basis to group together elements with the same r: 

                             11 , 1 1 , 2 1 , 1 2 , 2 2A E E E E
 (18) 

results in further reduction to block diagonal form: 

       

1 11 1 0 0 0 0

0 1 1 1 2 0 0

0 2 1 2 2 0 0

0 0 0 1 1 1 2

0 0 0 2 1 2 2

sym

sym sym

sym sym

sym sym

sym sym

A H A

E H E E H E

E H E E H E

E H E E H E

E H E E H E

 
 
 
 
 
 
 
 
 
    (19) 

illustrating the power of group theory. 

The partitioning of matrix (17) into scalar blocks illustrates the invariances that give rise to the 

symmetry-generation theorem [6]. If Hsym is obtained by symmetry-averaging of H, as in equation (10), 

and if the basis is suitably conditioned, then the trace of a block in matrix (17) is the sum of traces of 

corresponding transformed bocks of the matrix of H :     , 1
a aG H G

       . Then as a corollary to 

the symmetry-generation theorem the reduced matrix elements of Hsym on a suitably conditioned 

symmetry-adapted basis are given by: 

             
 

 
1

1

; ; ; ;
f

sym f
r

H r H r


         


  
 (20) 

That is, the reduced matrix elements of the symmetry-averaged operator are simple averages of 

particular matrix elements of the original operator over the symmetry-adapted basis. 

4. Two dimensional matrix 

The simplest case is a two vertex graph corresponding to a two dimensional Hermitian matrix: 

           
 H

a c

c b











 (21) 

The weighted graph is: 
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Figure 1 

a bc

 
The symmetry group to be used is of order two and consists of the identity and the transposition 

(12): 

      {E, (12)} 

The effect of the transposition on the matrix is: 

       
   12 12

a c b c

c b c a

   
   

      (22) 

so that symmetry averaging yields: 

              

   
 

 
1 212 12
2

2

a b
ca c a c

I I
c b c b a b

c

 
      

              
   (23) 

Let 

                            s = (a + b)/2       and        d = (a - b)/2                   (24) 

then: 

       

0

0

a c s c d

c b c s d

     
             (25) 

as in Equation 6. Clearly, the smaller the value of d the closer [H] is to [Hsym] and the more appropriate 

this choice of symmetry. A symmetry-adapted basis is: 

   

 
 

1
2

1
2

1 2

1 2

  

  

 (26) 

where {|1 , |2 } is the defining basis. The matrix of Hsym on this basis is: 

    

0

0sym

s c
H

s c

 
         (27) 

and for the difference, HR: 

      0

0R

d
H

d

 
  
 

 (28) 

Evidently, as a perturbation [HR] makes only a second order correction. 

Consider the numerical case a = −40.0, b = −30.0 and c = −5.00. The exact eigenvalues to three 

significant figures are: 
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  λ1 = −42.1 

 (29) 

  λ2 = −27.9 

From [Hsym] the zero-order eigenvalues are −40.0 and −30.0. With the second order correction, 
these become −42.5 and −27.5.  

5. Three-vertex examples 

The next two illustrations refer to a weighted three-edge, three-vertex graph: 

Figure 2 

a1

a2

a3

b1

b 3

b 2

 
corresponding to the matrix: 

     

 H

a b b

b a b

b b a


















1 1 2

1 2 3

2 3 3  (30) 

This graph could be embedded in Euclidean three-space so that the groups considered would be 

point groups such as Cs , D3 or C3v. If the effect of these operations is to permute the vertices of the 

graph, the Hamiltonian matrix will be permuted. These are the examples considered here. If the 

weights associated with two of the vertices, say numbers one and two, are closer to each other than to 

the third, then it would be appropriate to consider a reflection plane through vertex three and bisecting 

the edge between vertex one and two. The effect on the Hamiltonian matrix would be exchange of 

index one with two. On the other hand, if the weights associated with all three vertices are similar, then 

the point group C3v would be suitable, transforming the Hamiltonian matrix by the permutation group 

S3. 

 

S2 Averaging 
First consider the choice of G as the two-fold symmetry group   2S , 12E . Using symmetry 

averaging on the original the invariant matrix is: 

     3

sym

u v v

H v u v

v v a

 
      
     (31) 

where 
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 

 

1
1 22

1

1
2 32

u a a

v b

v b b

 



  
 (32) 

Using a symmetry adapted basis will give the reduced matrix directly. This basis is:  

     

 

 

1
2

1
2

;1 1 2

;2 3

; 1 2

A

A

A







 



  
 (33) 

and the matrix on this basis is: 

                     

 
     

   
     

1 1 1
1 2 1 2 3 1 22 2 2

1 1
2 3 3 2 32 2

1 1 1
1 2 2 3 1 2 122 2

2

2

a a b b b a a

H b b a b b

a a b b a a b



    
 

   
 

       (34) 

The reduced matrix elements of symH


   are then: 

            

3

;1 ;1 ;1 ;1

;2 ;2 ;2 ;2

;1 ;2 ;1 ;2 2

; ; ; ;

sym

sym

sym

sym

A H A A H A u v

A H A A H A a

A H A A H A v

A H A A H A u v

   

   

   

   

  

 

 

     
 (35) 

so that the invariant matrix on this basis is: 

    

3

2 0

2 0

0 0
sym

u v v

H v a

u v



 
 

     
     (36) 

The repetition of the A irreducible representation gives rise to a 2×2 block that must be diagonalized 

while the non-repeated A  eigenvalue can simply be read off the diagonal. 

 

S3 Averaging 

The S3  symmetry averaged matrix is: 

      sym

x y y

H y x y

y y x

 
      
  

 (37) 

where 

                     1 2 3 3x a a a  
 (38) 
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and 

                  1 2 3 3y b b b  
 (39) 

It is unnecessary, however, to obtain this matrix, since [H] can be directly transformed to a 

symmetry-adapted basis. Assuming that the elements of the defining basis are centered at the vertices 

and transform in the same way, a symmetry-adapted basis is: 

     1
1 3

; 1 2 3A   
 

     1
2

; 1 2 3E  
 (40) 

     1
6

; 2 2 1 2 3E   
 

where the C3v names of the irreducible representations of have been used. On this basis, the matrix is: 

 
        

     
      

1 2 1 1
3 31 2 3 1 2 3 2 3 1 2 1 2 3 1 2 36 12

1 1 1
22 3 1 2 2 3 3 2 3 1 26 6

1 1 1
61 2 3 1 2 3 2 3 1 2 1 2 3 1 2 312 6

2 2

2 2 2

2 2 2 2 4 4 4 2

a a a b b b a a b b a a a b b b

H a a b b a a b a a b b

a a a b b b a a b b a a a b b b



             
 

          
 

               
 

 (41) 

From equation 20 the reduced matrix elements of [Hsym]ω are then: 

           1 1 1 1;1 ;1 ;1 1 ;1 1 2symA H A A H A x y     
 

 (42) 

               
 1

2;1 ;1 ;1 1 ;1 1 ;1 2 ;1 2symE H E E H E E H E a b        
 

so that the invariant matrix is: 

         

2 0 0

0 0

0 0
sym

x y

H x y

x y


 

       
    (43) 

and the difference matrix is: 

            (44) 

It is instructive to consider some numerical values. The first case appears to have little symmetry. 

 
10.0 4.00 5.00

4.00 20.0 6.00

5.00 6.00 30.0

H

   
     
      

 
    

     
      

1 1
2 3 1 2 1 2 3 1 2 36 12

1 1 1
61 2 3 1 2 1 2 3 1 2 3 2 3 1 26 6

1 1 1
61 2 3 1 2 3 2 3 1 2 1 2 3 1 2 312 6

0 2 2

2 2 2 4 2 2

2 2 2 2 2 2 2 4

a a b b a a a b b b

H a a b b a a a b b b a a b b

a a a b b b a a b b a a a b b b




        
 

             
                
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The symmetry averaged component on the symmetry adapted basis is: 

30.0 0 0

0 15.00

0 0 15.00
symH


 
       
    

with the difference matrix: 

 1

0 4.49 9.53

4.49 4.00 3.27

9.53 3.27 4.00

H


 
    
    

The first order solutions are −30.0, −19.0, and −11.0.  The exact solutions to three significant 

figures are −34.4, −17.4, −8.18. 

A second example may be considered more symmetrical since the elements of the difference matrix 

are smaller. 

 
19.0 4.90 5.00

4.90 20.0 5.10

5.00 5.10 21.0

H

   
     
      

which gives the same symmetrized component as before on the symmetry adapted basis: 

          

3 0 .0 0 0

0 1 5 .0 0

0 0 1 5 .0
sy mH


 

       
    

with a difference matrix of: 

 

 
0 0.449 0.953

0.449 0.400 0.327

0.953 0.327 0.400
RH


 
    
    

The first order solutions are −30.0, −15.4, and −14.6, close to the exact eigenvalues to three 

significant figures of −30.1, −15.4, −14.5. The elements of the difference matrix are smaller by a factor 

of ten then in the previous case. 

6. Conclusion 

Since symmetry-averaging by projection requires a sum of triple matrix products it becomes 

computationally impractical as the sizes of basis and symmetry group increase. As shown here this 

calculation is unnecessary on a suitably conditioned symmetry-adapted basis so that symmetry-

averaging is practical even for large systems.  

The examples given here are purposely extremely small and simple; nevertheless, important 

properties of symmetry averaging can be determined from them. First, even if the system seems to 

have no symmetry, symmetry-averaging can be useful. For the two-vertex example the symmetry 

determined eigenvalues are good to second order. In the S2 treatment of the three vertex example the 
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exact eigenvalues separate into two groups similar to the approximate result. In the second S3 

treatment, the smaller difference term gives an indication of how symmetry averaging can be useful. In 

this case, the approximate eigenvalues are within 1% or less of the exact values. 

It is anticipated that ab initio and DFT calculations can profit from this theory. Fock and Kohn-

Sham matrices would be reduced on a suitably-conditioned symmetry-adapted basis and the matrix 

elements determined by the method described here. 

A more general extended approach is to project out all the different irreducible symmetry 

components of the parent H. The noninvariant remainder HR would then be the sum of several 

irreducible tensorial operators. The Wigner-Eckart theorem can then be used to evaluate the matrix 

elements of these operators. This approach is being developed. 
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