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Abstract: We review recent results on how to extend the supersymmetry SUSY formalism
in Quantum Mechanics to linear generalizations of the time-dependent Schrödinger equation
in (1+1) dimensions. The class of equations we consider contains many known cases, such
as the Schrödinger equation for position-dependent mass. By evaluating intertwining rela-
tions, we obtain explicit formulas for the interrelations between the supersymmetric partner
potentials and their corresponding solutions. We review reality conditions for the partner
potentials and show how our SUSY formalism can be extended to the Fokker-Planck and the
nonhomogeneous Burgers equation.
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1. Introduction

Supersymmetry (SUSY) is a theory that intends to unify the strong, the weak and the electromagnetic
interaction. Technically, SUSY assigns a partner (superpartner) to every particle, the spin of which
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differs by one-half from the spin of its supersymmetric counterpart. For an introduction to SUSY the
reader may refer to the book [1]. At first sight, it is therefore somewhat surprising that the SUSY
formalism has become very popular in the context of nonrelativistic Quantum Mechanics, a theory that
does not take the spin of particles into account. The reason of SUSY’s popularity lies in its computational
aspects: while the theoretical framework of SUSY simplifies considerably, the practical assignation
of a superpartner to a given system (represented by its Hamiltonian) becomes important. This is so,
because in nonrelativistic Quantum Mechanics there are solvable models, the most famous of which
being associated to potentials like the harmonic oscillator or the Coulomb potential. Now, to each of such
solvable models, the quantum mechanical SUSY formalism generates a new solvable model, namely,
the superpartner. In other words, if we have a given solution of a Schrödinger equation for a certain
potential, then by means of SUSY we obtain a solution for a Schrödinger equation with a different
potential (also called superpartner of the initial potential). Quantum mechanical superpartners are related
to each other in many interesting ways, especially in the stationary case. As examples let us mention that
superpartners share their energy spectra (isospectrality), and their Green’s functions are interrelated by
a very simple trace formula [2,3]. Note that there are many exhaustive reviews on the SUSY formalism
for the stationary Schrödinger equation, as examples let us mention [4], [5] and [6]. Furthermore, in the
references of the latter reviews some recent applications of SUSY for the stationary case can be found.
In the present work we will focus on the time-dependent situation, the correspoding SUSY formalism
was introduced in [7]. As is well known, there are even less solvable cases of the time-dependent
Schrödinger equation (TDSE) than of its stationary counterpart, such that SUSY is one of the very few
methods to obtain explicit solutions. It should be pointed out that the mapping that relates solutions
of SUSY superpartners to each other, is known as Darboux transformation. This transformation was
introduced in a purely mathematical context [8] and only eventually it was found to be equivalent to the
mapping that interrelates SUSY superpartners. Darboux transformations do not only exist in the context
of Schrödinger equations, but they have been established for many linear and nonlinear equations [9].
Thus, the Darboux transformation can exist independently of SUSY, but within the quantum-mechanical
SUSY framework, the Darboux transformation and the SUSY transformation (the mapping between
superpartners) coincide. This is true not only for the TDSE, but for a generalized linear version of it,
which we will focus on in the present review. For details on the Darboux transformation for generalized
TDSEs consult [10]. Our generalized TSDE comprises all known linear special cases - as an example let
us mention the TDSE for position-dependent mass - and the SUSY formalism that we will derive here,
reduces correctly for each special case. Before we start seeing the generalized TDSE, in section 2 we give
a brief review of the conventional SUSY formalism for the TDSE. Section 3 is devoted to the generalized
TDSE and the corresponding generalized SUSY formalism. Afterwards we derive a condition for the
superpartner potentials to be real-valued (reality condition), as is required in the majority of physical
applications, and we verify that our reality condition reduces correctly to the well known case, if our
generalized TDSE coincides with a conventional TDSE (section 4). For selected particular cases of
the generalized TDSE we then state the corresponding SUSY data (SUSY transformation, explicit form
of the superpartners, reality condition) in section 5. We apply our generalized SUSY formalism to a
concrete example in section 6 in order to illustrate how a superpartner of a given TDSE can be obtained.
Section 7 is devoted to an extension of the SUSY transformation to equations that are different from the
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TDSE. In particular, we first introduce a concept to generalize the SUSY transformation, and then apply
this concept to the Fokker-Planck equation and to the nonhomogeneous Burgers equation. For more
details than contained in this review, the reader may refer to the references given above (section 2), to
our recent papers [10,11] and references therein (sections 3, 4 and 5), and to the paper [12] (section 7).

2. Conventional SUSY formalism

In this section we give a brief review of the standard SUSY formalism, as it applies to the TDSE. For
details and more information the reader may refer to [13] and references therein.

Preliminaries and the matrix TDSE. Let us start by considering two TDSEs in atomic units (m =

1/2, ~ = 1), that is,

(i ∂t −H1) ψ = 0 (1)

(i ∂t −H2) φ = 0, (2)

where the symbol ∂ denotes the partial derivative, the functions ψ = ψ(x, t), φ = φ(x, t) stand for the
respective solutions and the Hamiltonians H1, H2 are given by

Hj = −∂xx + Vj, j = 1, 2, (3)

for potentials V1 = V1(x, t) and V2 = V2(x, t). Let us now write the TDSEs (1) and (2) in matrix form:[(
i ∂t 0

0 i ∂t

)
−

(
H1 0

0 H2

)](
ψ

φ

)
= 0. (4)

If we define a matrix Hamiltonian H via H = diag(H1, H2), together with a matrix solution Ψ =

(ψ, φ)T , then our equation (4) takes the following form:

[i ∂t −H] Ψ = 0. (5)

The components of the vector Ψ will turn out to contain the solutions that belong to a supersymmetric
pair of Hamiltonians.

The supercharges. As in the stationary case [4], our goal is to construct a superalgebra with three
generators, two of which are called supercharge operators or simply supercharges. These are mutually
adjoint matrix operators of the following form

Q =

(
0 0

L 0

)
, Q+ =

(
0 L+

0 0

)
, (6)

where L and its adjoint L+ are linear operators, the purpose of which will be explained below. The
supercharges act on two-component solutions of the matrix TDSE (5), in particular we have for Ψ =

(ψ, φ)T that

Q(Ψ) =

(
0 0

L 0

)(
ψ

φ

)

=

(
0

L(ψ)

)
. (7)
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It is immediate to see that the first component ψ of Ψ has been taken into the second component, and
the operator L has been applied to it. The supercharge Q+ adjoint to Q reverses the above process (7):

Q+(Ψ) =

(
0 L+

0 0

)(
ψ

φ

)

=

(
L+(φ)

0

)
. (8)

Next, let us understand the purpose of introducing the operators L and L+.

The intertwining relation and its adjoint. Note that Ψ is a solution of our matrix TDSE (5), that is,
its first and second component ψ and φ solve the TDSEs (1) and (2), respectively. Now, we want this
property to be preserved after application of the supercharges, i.e., L(ψ) and L+(φ) are required to be
solutions of the TDSEs (2) and (1), respectively. Consequently, L must be an operator that converts
solutions of the first TDSE (1) into solutions of the second TDSE (2), and its adjoint L+ must convert
solutions of the second TDSE (2) into solutions of the first TDSE (1). Let us first consider the operator
L, which we will determine from the following equation:

(i ∂t −H2) L = L (i ∂t −H1) . (9)

This operator equation is called intertwining relation, as it intertwines the two TDSEs (1), (2) by
means of the operator L. This is why L is often called an intertwiner. In order to understand how
the intertwining relation works, let us assume that we apply both sides of it to a solution ψ of the first
TDSE (1). Consequently, the right hand side of (9) vanishes, since we assumed L to be linear, implying
L(0) = 0. But if the right hand side of equation (9) is zero, so must be its left hand side, which means
that L(ψ) is a solution of the second TDSE (2). In order to find the operator L from our intertwining
relation (9), assume it to be a linear, first-order differential operator of the form

L = L0 + L1 ∂x, (10)

where the coefficients L0 = L0(x, t) and L1 = L1(x, t) are to be determined. After inserting (10) and
the Hamiltonians (3) into the intertwining relation (9), we expand the latter and require the coefficients
of the respective derivative operators to be the same on both sides. We do not give the calculation here,
since it is a special case of a calculation that will be done in full detail for the generalized TDSE. After
having evaluated our intertwining relation using (10), we obtain the following results on the L0 and L1

that appear in (10): we have L1 = L1(t), that is, L1 does not depend on the spatial variable. Furthermore,
the function L0 is given by L0 = −L1 ux/u, where u is a solution of the first TDSE (1). If these two
conditions are satisfied, then the operator L as given in (10) becomes

L = L1

(
∂x − ux

u

)
. (11)

Clearly, application to the solution ψ of the first TDSE (1) gives φ = L(ψ) in the form

φ = L1

(ux

u
ψ + ψx

)
. (12)
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If in addition ψ and u are linearly independent, then φ is a nontrivial solution of the second TDSE
(2), where the potential V2 is under the following constraint:

V2 = V1 + i
L′1
L1

− 2 log (u)xx , (13)

where the prime denotes the derivative with respect to t, since L1 does not depend on x. Let us point
out here that in the notation log (u)xx the index refers to a derivative of the logarithm and not only to
a derivative of its argument. Now, let us make a remark on the solution u of equation (1) that appears
in (12). If we want to apply the operator L to a solution ψ of our first TDSE (1), we must provide this
solution ψ. Furthemore, we must provide another solution u of the same TDSE (1) in order to determine
the operator L. Therefore, the function u is often referred to as auxiliary function or auxiliary solution of
the TDSE (1), and throughout the remainder of this note we will adopt that terminology. Let us further
point out that in the stationary case the function L0 is often referred to as superpotential. Roughly
speaking, this is due to the fact that the stationary Hamiltonians factorize as products of the operators L

and L+. Since this is not true in the present, time-dependent case, we will not use the term superpotential
here. Now, the characterization of L as given in (12) is complete and it remains to find its adjoint L+,
which can be done as follows: suppose that the differential operators i ∂t−Hj , j = 1, 2, are self-adjoint,
and take the adjoint of our intertwining relation (9):

L+ (i ∂t −H2) = (i ∂t −H1) L+. (14)

This intertwining relation will be used to find L+, which is therefore called intertwiner, just as its
adjoint L. If we assume L+ to be a linear, first-order differential operator, then we find after substitution
into (14) and evaluation that

L+ = L1

(
−ux

u
− ∂x

)
.

Application to a solution φ of the second TDSE (2) gives then ψ = L+(φ) is given by

ψ = L1

(
−ux

u
φ− φx

)
,

where the function u = u(x, t) is a solution of the second TDSE (2) and L1 does not depend on the
spatial variable. Then, if φ and u are linearly independent, the function ψ = L+(φ) is a nontrivial
solution of the first TDSE (1), the potential V1 of which is constrained as

V1 = V2 + i
L′1
L1

− 2 log (u)xx .

Hence, the characterization of L+ is complete and we can continue with the construction of our
superalgebra.

Construction of the superalgebra. We will need to have another generator besides the supercharges,
which we obtain as follows. Consider the operators S1 and S2, defined by

S1 = L+ L, S2 = L L+. (15)
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We will now see that S1 is a symmetry operator of the first TDSE (1). To this end, we evaluate the
following commutator:

[S1, i ∂t −H1] =
[
L+ L, i ∂t −H1

]

= L+ L (i ∂t −H1)− (i ∂t −H1) L+ L. (16)

Now we substitute the intertwining relations (9) and (14) in the first and the second term of (16),
respectively. This gives

[S1, i ∂t −H1] = L+ (i ∂t −H2) L− L+ (i ∂t −H2) L

= 0. (17)

In a similar way one proves that

[S2, i ∂t −H2] = 0. (18)

The vanishing commutators (17) and (18) imply that S1 and S2 are symmetry operators of the TDSEs
(1) and (2), respectively. Consequently, S = diag(S1, S2) is a symmetry operator of our matrix TDSE
(5). We are now ready to show that the supercharges Q, Q+ and the symmetry operator S generate
a superalgebra. To this end, we need to evaluate a couple of commutators and anticommutators [13],
denoted by {·, ·}).

{Q,Q} =
{
Q+, Q+

}
= 0. (19)

This follows from the fact that the supercharge matrices (6) are nilpotent. Next, we have

[Q, S] = Q S − S Q

=

(
0 0

L 0

)(
L+ L 0

0 L L+

)
−

(
L+ L 0

0 L L+

)(
0 0

L 0

)

= 0. (20)

In the same fashion one shows that
[
Q+, S

]
= 0. (21)

Finally we find
{
Q,Q+

}
= Q Q+ + Q+ Q

=

(
0 0

L 0

)(
0 L+

0 0

)
+

(
0 L+

0 0

) (
0 0

L 0

)

=

(
L+ L 0

0 L L+

)

= S. (22)

In the same way we find
{
Q,Q+

}
= S. (23)
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As in the stationary case [4], our results (19)-(23) imply that the operators Q,Q+ and S are the
generators of the simplest superalgebra. If the solutions and potentials of our TDSEs (1) and (2) are
related by means of (12) and (13), respectively, then the corresponding Hamiltonians H1 and H2 are
called supersymmetric partners. This term is also applied to their respective potentials, one says that
V1 and V2 are supersymmetric partners. The relation (12) was first introduced in [8] and is known as
Darboux transformation, the corresponding operator (11) is called Darboux operator.

3. Generalized SUSY formalism

In this section we develop the SUSY formalism for a generalized form of the TDSE, where we sum-
marize results from [11]. In principle we follow the steps that were taken in the previous section, but this
time the intertwining relation and its solution will be studied in detail.

The generalized TDSE. Let us consider the following equation, which we will call generalized TDSE:

i ψt + F ψxx + G ψx − U ψ = 0. (24)

Here F = F (x, t), G = G(x, t), denote arbitrary coefficient functions, U = U(x, t) is the potential,
and ψ = ψ(x, t) stands for the solution. In order to set up the SUSY formalism for equation (24), we
first rewrite it in a different form. To this end, let us set

F =
f

h
, G =

fx

h
, U =

V1

h
, (25)

introducing arbitrary functions f = f(x, t), h = h(x, t) and V1 = V1(x, t). After insertion of the settings
(25) into TDSE (24), the latter obtains the following form:

i ψt +
f

h
ψxx +

fx

h
ψx − V1

h
ψ = 0. (26)

Note that the settings (25) do not reduce the number of free parameters, the equation is just written in
a different form without imposing any restriction.

Generalized matrix TDSE and supercharges. Now let us consider another generalized TDSE, which
we will relate to its counterpart (26):

i φt +
f

h
φxx +

fx

h
φx − V2

h
φ = 0, (27)

where V2 = V2(x, t) is the potential and φ = φ(x, t) stands for the solution. As in the previous section
we will develop a generalized SUSY formalism that relates the TDSEs (26) and (27). The corresponding
Hamiltonians we define as

Hj = −f

h
∂xx − fx

h
∂x +

V2

h
, j = 1, 2. (28)

Using these Hamiltonians, the two generalized TDSEs join as components of the following matrix
equation:

[(
i ∂t 0

0 i ∂t

)
−

(
H1 0

0 H2

)](
ψ

φ

)
= 0. (29)
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This equation has exactly the same form as its conventional counterpart (4). If we define a matrix
Hamiltonian H via H = diag(H1, H2), together with a matrix solution Ψ = (ψ, φ)T , then our equation
(29) takes the following form:

[i ∂t −H] Ψ = 0. (30)

Next, we define the supercharge operator and its adjoint as in the conventional case (6):

Q =

(
0 0

L 0

)
, Q+ =

(
0 L+

0 0

)
, (31)

for two operators L and L+ that are to be determined. It is clear that these supercharges have the
properties (7) and (8). The difference between the present and the conventional case lies in the form of
the operators L and L+.

The intertwining relation for L. In order to determine L, we require it to convert solutions of the
first TDSE (26) into solutions of the second TDSE (27), and its adjoint L+ must convert solutions of the
second TDSE (27) into solutions of the first TDSE (26). The intertwining relation involving the operator
L is given by (9), where the Hamiltonians are taken from (28):

(i ∂t −H2) L = L (i ∂t −H1) . (32)

At this point it is necessary to expand the intertwining relation in order to get conditions for the sought
operator L. Let us assume that L is given in the form (10), substitution of which in combination with
(28) renders (32) in the form

(
i ∂t +

f

h
∂xx +

fx

h
∂x − V2

h

)
(L0 + L1 ∂x) = (L0 + L1 ∂x)

(
i ∂t +

f

h
∂xx +

fx

h
∂x − V1

h

)
.

(33)

We will now expand both sides of this intertwining relation and find the coefficients of the derivative
operators. The intertwining relation can only be fulfilled if the coefficients of a derivative operator are
the same on both sides, which gives conditions on the coefficients. Let us first evaluate the left hand side
of the latter intertwining relation:

(
i ∂t +

f

h
∂xx +

fx

h
∂x − V2

h

)
(L0 + L1 ∂x) =

=
f

h
L1 ∂xxx +

[
f

h
L0 + 2

f

h
(L1)x +

fx

h
L1

]
∂xx + i L1 ∂xt +

+

[
2

f

h
(L0)x +

fx

h
L0 + i (L1)t +

f

h
(L1)xx +

fx

h
(L1)x − V2

h
L1

]
∂x +

+ i (L0)t ∂t +

[
i (L0)t +

f

h
(L0)xx +

fx

h
(L0)x − V2

h
L0

]
. (34)
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Next, we process the right hand side of (33) in the same way:

(L0 + L1 ∂x)

(
i ∂t +

f

h
∂xx +

fx

h
∂x − V1

h

)
=

=
f

h
L1 ∂xxx +

[
f

h
L0 +

fx

h
L1 − f hx

h2
L1 +

fx

h
L1

]
∂xx + i L1 ∂xt +

+

[
fx

h
L0 +

fx

h
L1 − f hx

h2
L1 − V1

h
L1

]
∂x +

+ i L0 ∂t +

[
−V1

h
L0 − (V1)x

h
L1 +

V1 hx

h2
L1

]
. (35)

Again, the intertwining relation (33) can only hold if its two sides (34) and (35) are the same. It
is easy to see that the terms associated with the derivatives ∂xxx, ∂xt and ∂t are already equal on both
sides and therefore cancel in the intertwining relation. Since there are more terms in the coefficients that
cancel in the same way, let us now recombine (34) and (35) after simplification, that is, without equal
terms that appear on both sides.

2
f

h
(L1)x ∂xx +

[
i (L1)t + 2

f

h
(L0)x +

f

h
(L1)xx +

fx

h
(L1)x − V2

h
L1

]
∂x +

+

[
i (L0)t +

f

h
(L0)xx +

fx

h
(L0)x − V2

h
L0

]

=

[
fx

h
L1 − f hx

h2
L1

]
∂xx +

[
fx

h
L1 − f hx

h2
L1 − V1

h
L1

]
∂x +

+

[
−V1

h
L0 − (V1)x

h
L1 +

V1 hx

h2
L1

]
(36)

As mentioned before, we now collect the coefficients of each derivative operator on both sides of the
latter intertwining relation and require the coefficients to be the same.

Resolution of the intertwining relation. Since there are only three different derivative operators left
in our intertwining relation (36), namely, ∂xx, ∂x and the multiplication (derivative of order zero), we
obtain three equations. These equations have the following form:

2
f

h
(L1)x =

fx

h
L1 − f hx

h2
L1 , (37)

i (L1)t + 2
f

h
(L0)x +

f

h
(L1)xx +

fx

h
(L1)x − V2

h
L1 =

fx

h
L1 − f hx

h2
L1 − V1

h
L1 , (38)

i (L0)t +
f

h
(L0)xx +

fx

h
(L0)x − V2

h
L0 = −V1

h
L0 − (V1)x

h
L1 +

V1 hx

h2
L1 . (39)

We will now solve this system of equations with respect to the coefficients L0 and L1 in our operator
L, recall its form as given in (10). Since we are dealing with three equations, we will need a third
function as a variable, which we take to be the potential V2 of the TDSE (27). In order to solve the above
three equations, we start with (37) and determine L1:

2 (L1)x

L1

=

(
f

h

)

x

h

f

Ã L1 = N

√
f

h
, (40)
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where N = N(t) is an arbitrary constant of integration. It remains to solve equations (38) and (39) by
determining L0 and the potential V2, which will be done by elimination of the potential difference. In
order to do so, we first need to write equations (38) and (39) in a slightly different form:

i (L1)t + 2
f

h
(L0)x +

f

h
(L1)xx +

fx

h
(L1)x +

fx

h
L1 − f hx

h2
L1 =

V2 − V1

h
L1

i (L0)t +
f

h
(L0)xx +

fx

h
(L0)x +

(V1)x

h
L1 − V1 hx

h2
L1 =

V2 − V1

h
L0.

Now we multiply the first and the second of these equations by L0 and L1, respectively, such that the
right hand sides of these equations become the same. Consequently, the left hand sides must also be the
same, and we can equate them to each other. This results in the following equation:

i (L1)t L0 + 2
f

h
(L0)x L0 +

f

h
(L1)xx L0 +

fx

h
(L1)x L0 +

fx

h
L0 L1 − f hx

h2
L0 L1 =

= i (L0)t L1 +
f

h
(L0)xx L1 +

fx

h
(L0)x L1 +

(V1)x

h
L2

1 −
V1 hx

h2
L2

1. (41)

We will now solve this equation with respect to L0. To this end, we will introduce a new function
K defined by K = L0/L1. Before we substitute this function into (41), we first evaluate the following
expressions, which we will need in the substitution:

2 (L1)x

L1

=
h

f

(
f

h

)

x

,
(L1)xx

L1

= −
(

h

f

)

xx

f

2 h
+

3

4

[(
h

f

)

x

f

h

]2

, (42)

where we have used the explicit form (40) of L1. We use this explicit form and the derivatives (42) in
order to rewrite equation (41), where we substitute L0 by L0 = KL1. After simplification we arrive at
the following equation:

i Kt =

(
−f

h
Kx +

f

h
|K|2 − fx

h
K − V1

h

)

x

. (43)

We see that our former equation (41), which depends on L0 and L1, has been converted to an equation
that depends on K only. Unfortunately, we cannot solve (43), as it is an equation of Riccati type for
K, which is not integrable in a general case like ours [14]. Still, for practical reasons it makes sense to
linearize (43) by means of the following setting:

K = −ux

u
, (44)

introducing a new function u = u(x, t). Assuming that u is twice continuously differentiable, implying
uxt = utx, we substitute (44) in (43) and get after simplification the following equation for the function
u: [

i
ut

u
+

f

h

uxx

u
+

fx

h

ux

u
− V1

h

]

x

= 0 . (45)

Clearly, this equation holds if the expression in square brackets does not depend on x. We integrate
on both sides and multiply with u:

i ut +
f

h
uxx +

fx

h
ux − V1

h
u = C u, (46)
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where C = C(t) is a purely time-dependent constant of integration. Equation (46) is identical to the
initial equation (26) for C = 0. However, setting C to zero is not a restriction, since solutions to (46)
with C 6= 0 and C = 0 differ from each other only by a purely time-dependent factor, which cancels out
in (44). Thus, our equation (46) can be taken in the form

i ut +
f

h
uxx +

fx

h
ux − V1

h
u = 0. (47)

The function u is called auxiliary solution of the TDSE (26), as it is needed for determining the
function L0 that appears as a coefficient in the operator L. Once a solution u of (47) is known, then
the function K can be found from (44), which in turn determines the sought coefficient L0 by means of
L0 = KL1. Taking into account the explicit form (40) of L1, we obtain

L0 = −N

√
f

h
log (u)x . (48)

Thus, with the coefficients L0 and L1 we have determined the sought operator L, as given in (10),
completely.

Potential difference and the operator L. Before we state the operator L in its explicit form, let us
find the potential V2 by solving (38):

V2 = V1 +
(L1)xx

m L1

+
2 f (L0)x

L1

+ fx
(L1)x

L1

− h

(
fx

h

)

x

+ i h
(L1)t

L1

. (49)

This can be specified more by inserting the explicit form of L1 and L0, as given in (40) and (48),
respectively. We obtain

V2 = V1 + i
N ′

N
− i

h

2
log

(
h

f

)

t

− 2
√

f h

(√
f

h

ux

u

)

x

−
√

f h

[
1

h

(√
f h

)
x

]

x

. (50)

The operator L is given explicitly by

L = N

√
f

h

[
∂x − log(u)x

]
. (51)

Finally, the solution φ = L(ψ) of the second TDSE (27) can now be given using the latter form of L:

φ = L(ψ) = N

√
f

h

[
ψx − log(u)x ψ

]
. (52)

Hence, if ψ is a solution of the first TDSE (26), then φ = L(ψ) is a solution of the second TDSE (27),
provided the potential V2 is related to the potential V1 via (50). Let us briefly verify that our expressions
for the operator L and the potential V2 reduce correctly to their conventional counterparts that are given
in (12) and (13), respectively. To this end, we observe that in the conventional case we have f = h = 1.
On substituting this setting into (52), we recover immediately the correct expression (12), if we take
N = L1. As for the potential V2, plugging f = h = 1 into its explicit form (50), we obtain

V2 = V1 + i
N ′

N
− 2

(ux

u

)
x

= V1 + i
N ′

N
− 2 log(u)xx,

which coincides with the desired expression (13) for N = L1.
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The adjoint operator L+. The next task is to find the operator L+ in the same way as it was just done
for L. The intertwining relation to be used is given by the adjoint of (32):

L+ (i ∂t −H2) = (i ∂t −H1) L+,

where the Hamiltonians are of generalized form (28) and we assumed that the operators i ∂t − Hj ,
j = 1, 2, are self-adjoint. The calculation scheme for finding L+ is the same as for L and consists in ex-
panding the two sides of the intertwining relation, collecting the respective coefficients of the derivative
operators, and requiring them to be the same on both sides of the intertwining relation. Afterwards, the
resulting conditions for L+ have to be resolved. Since the calculations for finding L+ are similar and as
tedious as in the case of its counterpart L, we do not present the whole scheme in detailed form. Instead,
we state the result, which is the explicit form of the operator L+:

L+ = N

√
f

h

[
− ∂x − ux

u
− 1

4
log (f h)x

]
(53)

Let φ and u be linearly independent solutions of the second TDSE (27), then the function ψ, given by

ψ = L+(φ) = N

√
f

h

[
− φx − ux

u
φ− 1

4
log (f h)x φ

]
,

is a solution of the first TDSE (27), provided the potential V1 is given by

V1 = V2 + i h
N ′

N
+ i

h

2
log

(
h

f

)

t

+ 2
√

f h

(√
f

h

ux

u

)

x

+
√

f h

[
1

h

(√
f h

)
x

]

x

.

This completes the characterization of the operator L+.

Construction of the superalgebra. Since the operators L and L+ in the generalized case are now
determined, at the same time the supercharges Q and Q+, as given in (31), are determined. As in the
coventional case we construct the superalgebra by adding one more generator besides the supercharges,
which will be constructed from the following operators S1 and S2:

S1 = L+ L, S2 = L L+.

This is the same definition as for the conventional case (15). We observe that S1 and S2 are symmetry
operators for the TDSEs (26) and (27), respectively, such that S = diag(S1, S2) provides a symmetry
operator for the matrix TDSE (30). This can be proved exactly as in the conventional case, see the
calculations (16)-(18). Furthermore, the results (19)-(23) transfer to the present, generalized case without
change of notation:

{Q,Q} =
{
Q+, Q+

}
= [Q,S] =

[
Q+, S

]
= 0

{
Q,Q+

}
=

{
Q+, Q

}
= S

This implies that Q, Q+ and S generate the simplest superalgebra. As in the conventional case, if the
solutions and potentials of our TDSEs (26) and (27) are related by means of (52) and (50), respectively,
then the corresponding Hamiltonians H1 and H2, as given in (28), are called supersymmetric partners
(the same can be said about the potentials V1 and V2). The operator (51) is called generalized Darboux
operator, and its application (52) is called generalized Darboux transformation [10].
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4. Reality condition

Throughout this section we continue summarizing results from [11]. In general, the potential V1 and
its supersymmetric partner V2, as given in (50), are allowed to be complex-valued. In fact, even if one
of the potentials is real, its supersymmetric partner can still turn out to be non-real. This is sometimes
not desirable, as in many applications one is interested in real-valued potentials only. In this section
we review a condition on the potential V2 in the second TDSE (27) to be real-valued, provided both the
potential V1 of the first TDSE (26), and the parameters f , h are real. This condition is called reality
condition, and it is usually fulfilled by choosing the arbitrary function N in (50) accordingly. Since N

does not depend on the spatial variable, the reality condition is not guaranteed not have a solution. As
a byproduct of our reality condition, we obtain the corresponding condition for the conventional case
after setting f = h = 1 in the final result. Now, before we start considering the reality condition, we
first rewrite the function N in a form that will prove convenient for our purposes. Observe that N can be
complex, so let us first find its real and imaginary parts. Write N in polar coordinates as

N = N1 exp (i N2) ,

where the real-valued functions N1 = N1(t) and N2 = N2(t) denote the absolute value and the argument
of N , respectively. We obtain

N ′

N
=

(N1 exp (i N2))
′

N1 exp (i N2)
(54)

= log(N1)
′ + i (N2)

′. (55)

Here the prime stands for the derivative, note that N1 and N2 depend on t only. We are now ready to
extract the imaginary part of the potential V2, as given in (50). After substitution of (55) we obtain the
following result for the imaginary part of V2:

Im(V2) = h

[
log(N1)

′ − 1

2
log

(
h

f

)

t

]
+ 2

√
f h

[
Im

(ux

u

) √
f

h

]

x

. (56)

If this expression is zero, then the potential V2 must be real. After regrouping terms, requiring (56) to
be zero, and solving with respect to the logarithm containing N1 we arrive at the following condition:

log(N1)
′ =

1

2
log

(
h

f

)

t

− 2

√
f

h

[
Im

(ux

u

) √
f

h

]

x

. (57)

It becomes clear that this equation does not necessarily have a solution for N1, since its right hand
side can depend on both x and t, while the left hand side depends only on t. Furthermore, we do not
have any free parameters left except for N1. Let us rewrite our condition (57):

log(N1)
′ =

1

2
log

(
h

f

)

t

+ 2

√
f

h

[
Im

(ux

u

) √
f

h

]

x

=
1

2
log

(
h

f

)

t

+ 2

√
f

h

{
Im [log(u)x]

√
f

h

}

x

. (58)
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We will now express the imaginary part on the right hand side of the latter equation in a standard way:

Im [log(u)x] = − i

2

[
log(u)x − log(u∗)x

]
,

note that the asterisk denotes complex conjugation. We incorporate the latter change into our condition
(58) and continue its simplification:

log(N1)
′ =

1

2
log

(
h

f

)

t

− i

√
f

h

{
[log(u)x − log(u∗)x]

√
f

h

}

x

=
1

2
log

(
h

f

)

t

− i

√
f

h

[
log

( u

u∗

)
x

√
f

h

]

x

(59)

This is the condition for the potential (50) of the second TDSE (27) to be real-valued. It has a solution
for N1 if the right hand side does not depend on the spatial variable. If this is so, then we can solve (59)
for the function N1, giving

N1 =

√
h

f
exp

[
−i

∫ √
f

h

[
log

( u

u∗

)
x

√
f

h

]

x

dt

]
. (60)

Let us point out that this is in general not a solution, since the right hand side of (60) can depend on
x, while the left hand side cannot. Now let us assume the reality condition (59) to be fulfilled, we will
determine the corresponding form of the potential V2. Substitution of (59) or (60) into the potential as
given in (50), gives its real part:

V2 = V1 − h (N2)
′ − 2

√
f h

[
Re

(ux

u

) √
f

h

]

x

−
√

f h

[
1

h

(√
f h

)
x

]

x

= V1 − h (N2)
′ − 2

√
f h

{
Re [log (u)x]

√
f

h

}

x

−
√

f h

[
1

h

(√
f h

)
x

]

x

= V1 − h (N2)
′ −

√
f h

{
[log (u)x + log (u∗)x]

√
f

h

}

x

−
√

f h

[
1

h

(√
f h

)
x

]

x

= V1 − h (N2)
′ −

√
f h

[
log

(|u|2)
x

√
f

h

]

x

−
√

f h

[
1

h

(√
f h

)
x

]

x

. (61)

As desired, this expression contains only real-valued terms. Finally, let us verify how the reality
condition (59) and the potential of the second TDSE (27) reduce in the conventional case. There we
have f = h = 1, which we plug into our reality condition (59):

log(N1)
′ = −i log

( u

u∗

)
xx

.

This allows for a solution if the right hand side does not depend on x, that is, if

log
( u

u∗

)
xxx

= 0,

which coincides with well known results [13]. Next, we insert f = h = 1 into the potential V2, the
explicit form of which is given in (50):

V2 = V1 − h (N2)
′ − log

(|u|2)
xx

.

This is precisely the known reality condition for the conventional TDSE [13], if we set the arbitrary
phase N2 to zero.
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5. SUSY formalism for particular TDSEs

The generalized TDSE (26) does not have an immediate physical meaning. Its importance lies in
the fact that it contains many physical equations as special cases, such that for each of these cases
the particular SUSY formalism can be easily extracted from the general context. Let us now consider
several special cases of the generalized (26) and their corresponding SUSY formalisms, i.e., the explicit
form of the SUSY operators L and L+, the supersymmetric partner potentials and the reality condition.
Throughout this section we assume all functions to depend on x and t, unless said otherwise.

5.1. TDSE for position-dependent mass

Position-dependent masses occur in the context of transport phenomena in crystals (e.g. semicon-
ductors), where the electrons are not completely free, but interact with the potential of the lattice. The
quantum dynamics of such electrons can then be modeled by an effective mass, the behaviour of which
is determined by the band curvature, see [15] for details.

Equation:

i ψt +
1

2 m
ψxx − mx

2 m2
ψx − V1 ψ = 0. (62)

Relation to generalized TDSE:

f =
1

2 m
, h = 1.

SUSY operators:

L = N

√
1

2 m

[
∂x − log(u)x

]

L+ = N

√
1

2 m

[
− ∂x − ux

u
+

mx

4 m

]
.

Supersymmetric partner potential:

V2 = V1 + i
N ′

N
− i

mt

2 m
+

mxx

4 m2
− 3 m2

x

8 m3
− 1

m
log(u)xx +

mx ux

2 m2 u
. (63)

Reality condition:

log(N1)
′ =

1

4
log (2 m)t −

i√
2

(
1

m

) 1
4

[
log

( u

u∗

)
x

(
1

m

) 1
4

]

x

.

Supersymmetric partner potential under reality condition:

V2 = V1 +
mxx

4 m2
− 3 m2

x

8 m3
− 1

2 m
log

(|u|2)
xx

+
mx u∗x
4 m2 u∗

+
mx ux

4 m2 u
.
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5.2. TDSE with weighted energy

The following equation carries a nonconstant factor in front of the time derivative. In the stationary
case, where the time-derivative is substituted by a multiplication with the energy, the nonconstant factor
can be seen as weighting the energy [16], or as generating an energy-dependent potential [17]. For the
sake of generality, we consider here the fully time-dependent case.

Equation:

i h ψt + ψxx − V1 ψ = 0. (64)

Relation to generalized TDSE:

f = 1.

SUSY operators:

L = N

√
1

h

[
∂x − log(u)x

]
. (65)

L+ = N

√
1

h

(
− ∂x − ux

u
− hx

4 h

)
.

Supersymmetric partner potential:

V2 = V1 + i h
N ′

N
− i

ht

2
− hxx

2 h
+

3 h2
x

4 h2
− 2 log(u)xx +

hx ux

h u
. (66)

Reality condition:

log(N1)
′ =

ht

2 h
− i

√
1

h

[
log

( u

u∗

)
x

√
1

h

]

x

.

Supersymmetric partner potential under reality condition:

V2 = V1 − hxx

2 h
+

3 h2
x

4 h2
− log(|u|2)xx +

hx u∗x
2 h u∗

+
hx ux

2 h u
.

5.3. TDSE with minimal coupling

This TDSE resembles a system that is minimally coupled to a vector potential [18]. The form of
the coefficients in the TDSE (26) will be a bit more involved than in the other cases. Note that in the
following m is a constant.

Equation:

i ψt +
1

2 m
ψxx + 2 i R ψx − (−i Rx + V ) ψ = 0.
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Relation to generalized TDSE:

f =
1

2 m
exp

(
4 i m

∫
R dx

)

h = exp

(
4 i m

∫
R dx

)

V1 = (−i Rx + V ) exp

(
4 i m

∫
R dx

)
. (67)

SUSY operators:

L = N

√
1

2 m

[
∂x − log(u)x

]

L+ = N

√
1

2 m

(
− ∂x − ux

u
− 2 i m R

)
.

Supersymmetric partner potential:

V2 = exp

(
4 i m

∫
R dx

) (
V + i

N ′

N
− 3 i Rx − 1

m
log(u)xx

)
.

Reality condition: This condition does not apply here, since the potential V1 as given in (67) is in
general not real-valued.

Supersymmetric partner potential under reality condition: This condition does not apply here ei-
ther.

5.4. Conventional TDSE

Finally, for the sake of completeness let us summarize the SUSY formalism of the conventional
TDSE.

Equation:

i ψt + ψxx − V1 ψ = 0.

Relation to generalized TDSE:

f = 1, h = 1.

SUSY operators:

L = N

[
∂x − log(u)x

]
.

L+ = N

(
− ∂x − ux

u

)
.
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Supersymmetric partner potential:

V2 = V1 + i h
N ′

N
− 2 log(u)xx.

Reality condition:

log(N1)
′ = −i log

( u

u∗

)
xx

.

Supersymmetric partner potential under reality condition:

V2 = V1 − log(|u|2)xx.

6. Example: TDSE with weighted energy

Before we turn to extensions of the SUSY formalism to equations different from the TDSE, let us
now give an example of how our SUSY formalism can be applied. We consider the special case (64),
that is, the TDSE for weighted energy:

i h ψt + ψxx − V1 ψ = 0, (68)

In this particular application we choose the following weight function h potential V1:

h =
p

λ x
(69)

V1 =
p

x
− q2, (70)

where q, p > 0 and λ = λ(t) is an arbitrary function that is purely time-dependent. We want to find
the supersymmetric partner of the Hamiltonian corresponding to equation (68), or, equivalently, to the
potential V1. To this end, we must apply the operator L, as given in (65), to a solution ψ of the TDSE
(68). Furthermore, we need an auxiliary solution u of the same equation, such that ψ and u are linearly
independent. These two solutions are chosen as follows:

ψ = sin(q x) exp

(
−i

∫
λ dt

)
(71)

u1 = cos(q x) exp

(
−i

∫
λ dt

)
. (72)

Clearly, the two solutions (71) and (72) are linearly independent. After substitution of our settings (69)
and (70) into the SUSY operator L and the potential difference, as given in (65) and (66), respectively,
we get

φ = N

√
λ

p
x

q

cos(q x)
exp

(
−i

∫
λ dt

)
(73)

V2 =
p

x
− q2 +

i p

λ x

(
N ′

N
− ht

2 h

)
+ 2

√
h

(
K√
h

)

x

−
√

h




(√
h
)

x

h




x

=
p

x
− q2 − 1

4 x2
+

i p

λ x

(
N ′

N
+

λ′

2 λ

)
+ 2

q2

cos2(q x)
+

q

x
tan(q x).
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If we take N = 1/
√

λ then imaginary part of the potential V2 becomes zero:

V2 =
p

x
− q2 − 1

4 x2
+ 2

q2

cos2(q x)
+

q

x
tan(q x). (74)

This potential is stationary, as its initial counterpart V1 in (70). If we wanted the potential V2 to be
time-dependent, then we would have to satisfy N 6= 1/

√
λ, since the time-dependent terms are in the

potential’s imaginary part. Finally, if we wanted the potential V2, as given in (74), to be time-dependent
and real-valued, then we would have to write the arbitrary function N as follows:

N = exp

[
i

∫ (
M − λ′

2 λ

)
dt

]
,

introducing a function M = M(t), which renders the potential (74) in the form

V2 =
p

x
− q2 − 1

4 x2
+ 2

q2

cos2(q x)
+

q

x
tan(q x)− p M

λ x
.

The fact that N has now turned complex does not matter, since it appears only in the solution φ, as
displayed in (73).

7. SUSY formalism beyond the TDSE

The quantum-mechanical SUSY formalism that we developed in sections 2 and 3, is only valid for
the conventional and the generalized TDSE, respectively. This concerns especially the construction of
the superalgebra by means of the supercharges Q,Q+ and the symmetry operator S. However, the
computational core of the SUSY formalism can be carried over to different, even nonlinear equations.
This is possible, since from a purely mathematical point of view the operator L is nothing else than a
transformation between differential equations. This transformation can be used without knowledge of
the actual SUSY formalism, such as the supercharges or the superalgebra: it simply maps a solution
of a TDSE onto a solution of another TDSE. The principal idea behind extending the transformation
operator L to equations different from the TDSE, can be explained by means of the following diagram.
In the upper left corner of the diagram, EQ stands for an equation that is related to the TDSE (lower left

EQ EQ’

TDSE TDSE’

-

-
?

6

L

L

P P−1

Figure 1. Extension of the SUSY transformation scheme.

corner) by means of an invertible transformation P . The TDSE allows application of the operator L,
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which generates a solution of a different TDSE, called TDSE’ (lower right corner). The latter TDSE can
then be mapped back by means of P−1 onto an equation called EQ’ (upper right corner). This way, one
defines a mapping L between the equation EQ and its counterpart EQ’ via

L = P−1 ◦ L ◦ P. (75)

Thus, if for a given equation EQ there is an invertible transformation P that relates the TDSE with
EQ, then the operator L can be constructed as outlined in figure 1, and it will map solutions of EQ onto
solutions of EQ’. We repeat that there is no further restriction on the transformation P , it just needs to
be invertible. In the following we will see two applications of the scheme displayed in figure 1.

7.1. The Fokker-Planck equation

In the first application we extend the SUSY formalism to the Fokker-Planck equation (FPE) with
constant diffusion and stationary drift potential. For more details the reader may consult the underlying
work [12]. We first define an appropriate mapping P (see figure 1), and afterwards construct the mapping
L according to (75).

Statement of the problem. The Fokker-Planck equation (FPE) with constant diffusion and stationary
drift U1 = U1(x) has the following form [19]

(f1)t − 1

2
(f1)xx − (U ′

1 f1)x = 0, (76)

where f1 = f1(x, t) denotes its solution and the prime stands for the derivative, note that U1 does depend
on x only. We will connect equation (76) with an FPE for a different drift potential U2 = U2(x, t) by
means of the scheme displayed in figure 1. The FPE (76) will be related to the equation

(f2)t − 1

2
(f2)xx + (U ′

2 f2)x = 0, (77)

where f2 = f2(x, t) stands for the solution. We will now show that the first and the second FPE, as given
in (76) and (77), can be related by means of an operator L as displayed in figure 1, if we identify EQ and
EQ’ with the FPEs as given in (76) and (77), respectively.

Mapping the FPE onto the TDSE. Following (75), we first need to find an invertible transformation
P that takes solutions of the FPE into solutions of the TDSE. Such a transformation is well known [12]:
let f be a solution of the FPE (76), then we define the transformation P as

P (f1) = exp

(
U1 − E

2
t

)
f1, (78)

where E is a constant. The key property of the latter transformation P lies in the fact that the function
ψ = P (f1) is a solution of the following ordinary differential equation

ψ′′ +
(
E + U ′′

1 − (U ′
1)

2
)

ψ = 0, (79)
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and as such does only depend on the spatial variable. Equation (79) is a stationary Schrödinger equation
with energy E and potential V1 given by

V1 = −U ′′
1 + (U ′

1)
2.

Equation (79) can be seen as a special case of the conventional TDSE (1), where the derivative with
respect to t is left out, simply because the solution does not depend on t. Speaking in terms of our
diagram in figure1, equation (79) corresponds to the TDSE in the lower left corner. In the next step we
observe that the SUSY operator L in (11) is applicable to equation (79), since it is a special case of (1).

Application of the SUSY formalism. Take the solution ψ and an auxiliary solution u of (79), such
that ψ and u are linearly independent. Furthermore, we require the function ψ to solve the Schrödinger
equation (79) at energy E = 0, note that ψ and u are allowed to be solutions at different energies E.
This is due to the fact that the auxiliary function solves (46), where an arbitrary time-dependent function
C = C(t) can be included. In the time-dependent case this function cancels out, while in the present
stationary case it becomes constant and adds to the energy E in equation (79). This is the reason why the
solution and its auxiliary counterpart can be taken at different energies. Now we fix an auxiliary function
u at energy, say, λ 6= 0, and apply the operator L to the solution ψ of (79) at E = 0:

L(ψ) = −u′

u
ψ + ψ′. (80)

The resulting function φ = L(ψ), given by (12), is then a solution of the Schrödinger equation (2), in
the present case without derivative in t:

φxx +
(
U ′′

1 − (U ′
1)

2 + 2 log(u)xx

)
φ = 0, (81)

where the (here) irrelevant constant L1 has been set to one and the potential has been taken from the
general case (13). The Schrödinger equation (81) corresponds to equation TDSE’ of figure 1 in the
lower right corner. In the last step we need to apply the inverse P−1 of P in order to convert (81) back
into an FPE, which then is denoted EQ’ in our diagram. Note that in the present form we cannot go back
to the FPE, because the potential in (81) does not have an appropriate form. We will rewrite the potential
by means of a function U2 that we introduce by means of the following relation:

U ′
2 =

φ′

φ
. (82)

Let us solve this equation with respect to φ:

φ = exp (U2) ,

where a constant of integration has been set to zero. Now we find out which Schrödinger equation is
solved by φ. Evaluation of φ′′/φ yields

φ′′ − (
U ′′

2 + (U ′
2)

2
)

φ = 0. (83)

Thus, by means of the solution φ we have rewritten our Schrödinger equation (81) in the form (83),
which we can now convert into an FPE.
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Mapping the TDSE onto the FPE. We introduce the inverse transformation P−1 of P as

P−1(φ) = exp(U2) φ. (84)

Note that P−1 is not the inverse of P from a mathematical viewpoint, we use this notation here to
express that P−1 reverses the action of P in a certain sense. Now, substitution of f2 = P−1(φ) into the
Schrödinger equation (83) shows that f2 is a solution of the following FPE for the new drift potential U2:

(f2)t − 1

2
(f2)xx + (U ′

2 f2)x = 0, (85)

which in figure 1 is denoted as EQ’ in the upper right corner. Hence, by means of the scheme displayed in
our diagram we have constructed a mapping L between two FPEs. This mapping is related to the SUSY
operator L as shown in figure 1 and it is given explicitly by (75). We now use this relation to obtain the
explicit form of the operator L and to express the drift potential U2 through its initial counterpart U1 that
appeared in the FPE (76).

Explicit form of the extended SUSY transformation. We start with the drift potential U2, which we
are able to write down after combining our previous findings (80) and (82):

U ′
2 =

φ′

φ

=

[
d

dx

(
−u′

u
ψ + ψ′

)](
−u′

u
ψ + ψ′

)−1

.

Let us now integrate this expression and substitute the function ψ as given in (78), we get

U2 = log

(
−u′

u
ψ + ψ′

)

= log

{
−u′

u
exp

(
U1 +

E

2
t

)
f1 +

d

dx

[
exp

(
U1 +

E

2
t

)
f1

]}

= log

[
−u′

u
exp

(
U1 +

E

2
t

)
f1 + exp

(
U1 +

E

2
t

)
U ′

1 f1 + exp

(
U1 +

E

2
t

)
(f1)x

]

= log

[
exp

(
U1 +

E

2
t

)(
−u′

u
f1 + U ′

1 f1 + (f1)x

)]

= U1 +
E

2
t + log

[(
−u′

u
+ U ′

1

)
f1 + (f1)x

]
. (86)

In the final step we observe that the function u is a solution of the Schrödinger equation (79), whereas
we would like it to be expressed through a solution of the FPE (76). To this end, we relate u to a solution
v of the NBE by means of the transformation P , as given in (78):

u = exp

(
U1 − E

2
t

)
v, (87)

which we now plug into our expression for the solution U2, as given in (86):

U2 = U1 +
E

2
t + log

[
−v′

v
f1 + (f1)x

]
.
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Since U2 appears in the FPE (85) only as a derivative with respect to the spatial variable, the second
term on the right hand side of (86) becomes irrelevant. We therefore can write

U2 = U1 + log

[
−v′

v
f1 + (f1)x

]
. (88)

This is the final form of the drift potential U2 as it enters in the FPE (85), the solution f2 of which we
will now construct. To this end, we need to collect our intermediate results on the solutions f2, φ and ψ.
The corresponding information is contained in (78), (80) and (84). We have

f2 = exp

(
U2 +

E

2
t

)
φ

= exp

(
U2 +

E

2
t

) (
−u′

u
ψ + ψ′

)

= exp

(
U2 +

E

2
t

) {
−u′

u
exp

(
U1 +

E

2
t

)
f1 +

[
exp

(
U1 +

E

2
t

)
f1

]′}

= −u′

u
exp (U1 + U2 + E t) f1 + exp (U1 + U2 + E t) U ′

1 f1 + exp (U1 + U2 + E t) (f1)x

= exp (U1 + U2 + E t)

[(
−u′

u
+ U ′

1

)
f1 + (f1)x

]
. (89)

Now we make use of the relation between the drift potentials U1 and U2 that we obtained in (88).
Insertion of the latter relation into (89) leads to the following expression:

f2 = exp (2 U1 + E t)

[(
−u′

u
+ U ′

1

)
f1 + (f1)x

]2

. (90)

As before we use (87) to express the auxiliary solution u of the TDSE (79) by an auxiliary solution
of the FPE (76). Substitution into (90) gives

f2 = exp (2 U1 + E t)
[
−vx

v
f1 + (f1)x

]2

(91)

= L(f1).

This is the solution of the FPE (85) for drift potential U2 as given in (88). Thus, we just finished
constructing the mapping that is called L in figure 1, and that is given by (75). Suppose a solution f1

for the FPE (76) with drift potential U1 is given, then the relations (91) and (88) state the corresponding
solution f2 and drift potential U2 of the FPE (85). In summary, we have extended the SUSY formalism
for the TDSE to the FPE. Let us conclude this section with an example.

Example: quadratic drift potential. Let us consider the FPE (76) for the following quadratic drift
potential:

U(x) =
1

2
x2, (92)

where we do not include free parameters, since we want to keep calculations simple. The associated
Schrödinger equation (79), that we obtain by means of our mapping P , as defined in (103), transforms
the FPE (76) with drift potential (92) into a Schrödinger equation (79), which reads in the present case: :

ψ′′ +
(
λ + 1− x2

)
ψ = 0. (93)
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This equation admits the following set of solutions ψk at energy E = Ek, respectively:

Ek = 2 k (94)

ψk = exp

(
−1

2
x2

)
Hk(x), (95)

where Hk stands for the Hermite polynomial of order k. Therefore, by means of our transformation P , as
given in (103), we can map the solution set (95) of the Schrödinger equation (79) onto a corresponding
solution set gk of the FPE (76):

gk(x, t) = exp
(−x2 − k t

)
Hk(x).

Let us now obtain solutions of the FPE (85) with drift potential U2. To this end, we need to evaluate
(91), supplying a solution f1 and an auxiliary solution v of the FPE (76) for drift potential (92). Let us
choose

f1 = gk, (96)

u1 = f0. (97)

Note that technically the function f1 in (96) should carry an index k, but for the sake of simplicity we
omit to set that index. Now, on plugging (96), (97) and E = 2 k from (94) into the explicit form of (91),
we obtain

f2 = exp
(
x2 + 2 k t

) [
2 k exp

(−x2 − k t
)

Hk−1(x)

]2

(98)

= 4 k2 exp
(−x2

)
H2

k−1(x), (99)

where k is a natural number. The function (99) is a solution of the transformed FPE (85) for the drift
potential U2, which we now determine from its general form (88). Insertion of the drift potential U1, the
auxiliary solution v, and the solution f2, as given in (92), (97) and (96), respectively, gives

U2 = −1

2
x2 + log (2 k Hk−1(x)) . (100)

As before, k is allowed to take positive integer values except zero. In summary, the extended SUSY
formalism takes the initial FPE (76) with drift potential U1(x) = x2/2 into the FPE (85) with solution f2

and drift potential U2, as given in (99) and (100), respectively.

7.2. The Burgers equation

In this section we present a second example of an equation that permits an extension of the SUSY for-
malism. Note that the only difference between the present and the previous example lies in the mapping
P that connects the TDSE with the equation under consideration.

Statement of the problem. We consider the nonhomogeneous Burgers equation (NBE) in the follow-
ing form [20]

(f1)t + f1 (f1)x − ν (f1)xx − U1 = 0, (101)
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where f1 = f1(x, t) stands for the solution, U1 = U1(x, t) denotes the nonhomogeneity and ν > 0 is
called viscosity coefficient. We will connect equation (101) with an NBE for a different nonhomogeneity
U2 = U2(x, t) by means of the scheme displayed in figure 1. The NBE (101) will be related to another
NBE of the form

(f2)t + f2 (f2)x − ν (f2)xx − U2 = 0, (102)

where f2 = f2(x, t) stands for the solution. We will now show that the first and the second NPE, as given
in (101) and (102), can be related by means of an operator L as displayed in figure 1, if we identify EQ
and EQ’ with the NBEs as given in (101) and (102), respectively.

Mapping the NPE onto the TDSE. We must find an invertible mapping P that connects the TDSE
with the NBE, as represented by the vertical arrows in figure 1. Such a mapping P is given by the
Cole-Hopf transformation:

P (f1) = exp

(
− 1

2 ν

∫
f1 dx

)
. (103)

This transformation linearizes the NBE (101) to a TDSE, corresponding to the equation in the lower
left corner of our diagram in figure 1. Consequently, the function P (f1) = ψ is then a solution of the
following equation:

i ψt +
1

2 µ
ψxx − V1 ψ = 0. (104)

where the following abbreviations have been used:

µ =
i

2 ν
(105)

V1 = − i

2 ν

∫
U1 dx. (106)

Equation (104) is a TDSE and we can therefore apply the SUSY formalism.

Application of the SUSY formalism. We can transform the solution ψ by means of the operator L, as
given in (11):

L(ψ) = L1

(
−ux

u
ψ + ψ′

)
. (107)

Recall that the function L = L(t) is arbitrary and that u is an auxiliary solutions of the TDSE (104),
such that ψ and u are linearly independent. Now, the function φ = L(ψ) solves the TDSE

i φt +
1

2 µ
φxx − V2 φ = 0, (108)

where the potential V2 = V2(x, t) reads

V2 = V1 + i
L′1
L1

− 1

µ
log (u)xx . (109)
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At this point the factor 1/µ in front of the logarithmic derivative in (109) should be explained, as
this factor is not present in the general form of the potential difference (13). However, there is no
contradiction if we see the TDSE (104) as a generalized TDSE for position-dependent mass (62). The
potential difference generated by the SUSY transformation is then given by (63) and includes precisely
the factor 1/m that we have in (109), where m must be replaced by µ. The TDSE (108) corresponds
to the TDSE in the lower right corner of our diagram in figure 1. Now, in order to transform the TDSE
back into a NBE, we need to apply the inverse Cole-Hopf transformation P−1.

Mapping the TDSE onto an NBE. Inversion of the Cole-Hopf transformation (103) for the solution
φ of (108) yields

P−1(φ) = −2 ν
φx

φ
(110)

We combine this transformation with the settings (105) and

V2 = − i

2 ν

∫
U2 dx, (111)

where U2 = U2(x, t), and obtain that the function f2 = P−1(φ) solves the NBE

(f2)t + f2 (f2)x − ν (f2)xx − U2 = 0, (112)

where the nonhomogeneity U2 is related to the transformed potential V2 by (111). Let us now express
the solution f2 of the transformed NBE (112) and its nonhomogeneity U2 through the solution f1 of the
initial NBE (101).

Explicit form of the extended SUSY transformation. Let us first take into account that the auxiliary
solution u of the TDSE (104) is related to a solution v of the initial NBE (101) via

v = −2 ν
ux

u
(113)

Ã u = exp

(
− 1

2 ν

∫
v dx

)
. (114)

Now let us first find the explicit relation between the solutions f1 and f2 of the first and the second
NBE, as given in (101) and (112), respectively. To this end, we combine our results (107) and (110),
which gives

f2 = −2 ν
φx

φ

= −2 ν
(
−ux

u
ψ + ψx

)
x

(
−ux

u
ψ + ψx

)−1

= −2 ν log
(
−ux

u
ψ + ψx

)
x
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This expression will take its final form, once we substitute the solutions ψ and u of the TDSE (104)
by the solutions f1 and v, as given by (103) and (114), respectively:

f2 = −2 ν log

(
1

2 ν
v ψ + ψx

)

x

=
f 2

1 − f1 v − 2 ν f ′1 + 2 ν v′

f1 − v

= f1 − 2 ν log (f1 − v)x (115)

= L(f1).

This is the final form of the relation between the two solutions f1 and f2 of the NBE (101) and (112),
respectively. It remains to determine the nonhomogeneity U2 in the NBE (112), which can be extracted
from (111):

U2 = 2 i ν (V2)x.

On employing (105), (106) and (109), we obtain the following explicit form of U2:

U2 = 2 i ν

{
(V1)x − 1

µ
[log (u)xx]x

}

= 2 i ν

{
− i

2 ν
U1 − 1

µ
[log (u)xx]x

}

= U1 − 4 ν2 log (u)xxx , (116)

In the final step we replace the auxiliary solution u of the TDSE (104) by an auxiliary solution v of
the NBE (101). The relation between the solutions u and v is given in (114) and will now be substituted
into (116):

U2 = U1 + 2 ν vxx, (117)

This is the nonhomogeneity U2 of the FPE (85) in its explicit form. Thus, we have successfully con-
structed the mapping L, as defined in (75), for the NBE: suppose a solution f1 for the NPE (101) with
nonhomogeneity U1 is given, then the relations (115) and (117) state the corresponding solution f2 and
nonhomogeneity U2 of the BNE (112). In summary, we have extended the SUSY formalism for the
TDSE to the NBE. Let us conclude this section by giving an example.

Example: linear nonhomogeneity. We consider the NBE (101) for the following linear nonhomo-
geneity:

U1 = k x, (118)

where k = k(t) is an arbitrary, purely time-dependent function. The nonhomogeneity (118) models
an external elastic force, where the function k resembles a time-varying string constant [24]. It is
well-known that the NBE with nonhomogeneity (118) admits closed-form solutions for many partic-
ular choices of k, see for example [21–24]. We will now take such a solution and apply the extended
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SUSY formalism to it, given by (115) and (117), respectively. This way we obtain a solution for the
NBE (112) for a nonhomogeneity U2, which will be different from U1. As for the solution f1 of the NBE
(101) with nonhomogeneity (118), we adopt a solution introduced in [23]. Before we state this solution
explicitly, let us redefine k in terms of a function c as follows:

k = 2
(c′)2

c2
− c′′

c
. (119)

Then the solution u of the NBE (101) with nonhomogeneity (118) is given in the following form:

f1 = −c′

c
x + c w, (120)

where w = w(c x) is a solution of the homogeneous Burgers equation, that is, the NBE (101) for U1 = 0.
We choose w to be the regular single-shock solution

w = −A tanh

(
A

2 ν
x

)
, (121)

where A is a positive constant. This renders the solution (120) in the following explicit form:

f1 = −c′

c
x− A c tanh

(
A c

2 ν
x

)
. (122)

Now let us return to the solution f1 and the auxiliary solution v of (101) that we will need for our
generalized SUSY formalism. We choose both the auxiliary solution and the solution to be transformed
from the general form (122) for A = 1 and A = 0, respectively:

v = −c′

c
x− c tanh

( c

2 ν
x
)

(123)

f1 = −c′

c
x. (124)

Let us now determine the solution f2 and the corresponding nonhomogeneity U2 of the NBE (112)
explicitly. The solution f2 takes the form (115), which in the present case is

f2 = −c′

c
x− 2 c

1

sinh
(

c
ν

x
) . (125)

It remains to determine the nonhomogeneity U2, which can be extracted from (117) and reads

U2 = k x +
c3

ν

sinh
(

c
2 ν

x
)

cosh3
(

c
2 ν

x
) , (126)

where k is defined in (119). In summary, the extended SUSY formalism takes the initial NBE (101) with
drift potential U1 as given in (118), into the NBE (112) with solution f2 and drift potential U2, as given
in (115) and (117), respectively.

8. Concluding remarks

In the present work we have reviewed the conventional SUSY formalism for the TDSE and how
it extends to the generalized case: the SUSY theory stays essentially the same, while the differences
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between the standard and the generalized case lie in the computational aspects only (the operators L and
L+). Furthermore, we have shown how the computational aspect of the SUSY formalism can be applied
to equations different from the TDSE and from its generalized counterpart. It should be stressed that
that the equations we gave as examples (the Fokker-Planck and the nonhomogeneous Burgers equation)
are by far not the only equations that allow a generalized SUSY transformation. The only ingredient for
constructing such a transformation is the existence of an invertible mapping P , as displayed in figure
1, that connects the TDSE with another equation, which the generalized SUSY transformation will then
be applied to by means of (75). Our diagram in figure 1 even allows replacing the equations denoted
TDSE and TDSE’ by generalized equations of the form (26) and (27), such that all equations that can be
connected to the generalized TDSEs by means of an invertible mapping P , admit a generalized SUSY
transformation. Identification of such equations, the application of our extended SUSY formalism and
the classification of physically interesting cases will be subject to future research.
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