
Symmetry 2009, 1, 145-152; doi:10.3390/sym1020145 

 

symmetry
ISSN 2073-8994 

www.mdpi.com/journal/symmetry 

Article 

On the Symmetry of a Zig-Zag and an Armchair Polyhex 
Carbon Nanotorus  
Morteza Yavari 1 and Ali Reza Ashrafi 2,* 

1 Department of Physics & Young Researchers Club, Islamic Azad University, Kashan, I. R. Iran 
2 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, I. R. Iran 

* Author to whom correspondence should be addressed: E-mail: Ashrafi@kashanu.ac.ir 

Received: 17 July 2009; in revised form: 13 September 2009 / Accepted: 14 September 2009 / 

Published: 8 October 2009 

 

Abstract: A Euclidean graph associated with a molecule is defined by a weighted graph 

with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the 

nuclei i and j.  In this matrix dii can be taken as zero if all the nuclei are equivalent. 

Otherwise, one may introduce different weights for distinct nuclei. The aim of this paper is 

to compute the automorphism group of the Euclidean graph of a carbon nanotorus. We 

prove that this group is a semidirect product of a dihedral group by a group of order 2. 
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1. Introduction 

    An object is called symmetrical if some movement or operation leaves the object in a position 

indistinguishable from its original position. The symmetry of molecules and solids is a very powerful 

tool for developing and understanding of bonding and physical properties used to predict the nature of 

molecular orbitals. Chemists and physicists classify molecules in terms of their symmetry. It is of some 

value to recognize that all molecules that have the same basic ”shape” share a number of common 

properties.  

    A single-wall carbon nanotube is a quasi one-dimensional high symmetric cylindrical structure, 

which can be visualized as the structure obtained by rolling a honeycomb lattice such that the 

endpoints of a rolling-up vector are folded one onto the other. The symmetry group of nanotube 

depends on this vector and is one of the line groups Lqp22, L2nn/mcm. The line group notations are 

too technical to include here and we encourage the reader to consult [1,2] and references therein for the 
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main properties of the symmetry group of nanostructures. We only mention that the line groups are the 

full space groups of one-dimensional systems including translations in addition to the point-group 

symmetries like rotations or reflections. Many of the physical properties of carbon nanotube such as in 

generation nuclear spin species, NMR spectra, nuclear spin statistics in molecular spectroscopy, 

chirality and chemical isomerism are determined by this group.  

    Throughout this paper T = T[p,q] denotes an arbitrary polyhex nanotorus, Figure 1, in terms of its 

circumference (q) and its length (p). Our notation is standard and mainly taken from [1-4]. Our 

computational method, as described here, is appropriate for all nanotori, but our theoretical proof can 

be applied just for zig-zag or armchair polyhex nanotube. For properties of nanotori, we encourage the 

reader to consult papers by Diudea and co-authors [5-7]. 

Figure 1. A Polyhex Nanotorus. 

 

 
 

2. Main Results and Discussion 

The aim of this section is to prepare some software program for computing symmetry of nanotorus. 

We first solve a matrix equation by a MATLAB program [8] and then apply its output in a GAP 

program [9,10] to compute a generating set for the symmetry group of the nanotorus under 

consideration. 

    A Euclidean graph is an edge weighted graph related to a molecule with the adjacency matrix D = 

[dij], where for i ≠ j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be 

taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for 

different nuclei. Notice that a Euclidean graph is a complete edge weighted graph. By symmetry we 

mean the automorphism group symmetry of Euclidean graph of molecule under consideration. Here, 

an automorphism of a Euclidean graph G is a permutation g of the vertex set of G with the property 

that for any vertices u and v, d(g(u),g(v)) = d(u,v), where d(-,-) is usual Euclidean meter. The set of all 

automorphisms of a graph G, with the operation of composition of permutations, is a permutation 

group on V(G), denoted Aut(G). 
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    Randic [11-13] showed that a molecular graph can be depicted in different ways such that its point 

group symmetry or three-dimensional (3D) perception may differ, but the underlying connectivity 

symmetry is still the same as characterized by the automorphism group of the graph. 

    Balasubramanian [14-21] considered the Euclidean matrix of a chemical graph to find its symmetry. 

He proved that for computing the symmetry of a molecule, it is sufficient to solve the matrix equation 

PtEP = E, where E is the adjacency matrix of the molecule under consideration and P varies on the set 

of all permutation matrices with the same dimension as E. He computed the Euclidean graphs and 

automorphism group for benzene, eclipsed and staggered forms of ethane and eclipsed and staggered 

forms of ferrocene. One of the present authors (ARA), in some research papers [22-28] continued the 

leading works of Balasubramanian in computing symmetry of molecules.  

2.1. Computational Details 

The computations of the symmetry properties of molecules we carried out by the aid of GAP [9]. 

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim of the 

system, which is a group theoretical software for solving computational problems in computational 

group theory. This software was constructed by GAP’s team in Aachen. GAP is a free and extendable 

software package. The term extendable means that you can write your own programs in the GAP 

language, and use them in just the same way as the programs which form part of the system (the 

“library”). More information on the motivation and development of GAP to date can be found on GAP 

web page on http://www.gap-system.org. GAP contains a large library of functions, which are 

important for the calculations of this paper.  In this paper the GAP functions for computing 

permutation matrices from permutations and vice versa were crucial for our calculations. 

    For a permutation σ on n objects, the corresponding permutation matrix is an n × n matrix Pσ given 

by Pσ = [xij], xij = 1 if i = σ(j) and 0 otherwise.  It is easy to see that PσPτ = Pστ, for any two 

permutations σ and τ on n objects, and so the set of all n × n permutation matrices is a group 

isomorphic to the symmetric group Sn on n symbols. It is a well-known fact that a permutation σ of the 

vertices of a graph G belongs to its automorphism group if and only if it satisfies Pσ
tAPσ = A, where A 

is the adjacency matrix of G. 

    Consider the equation (Pσ)
tDPσ = D, where D is the adjacency matrix of the Euclidean graph G of 

the nanotorus under consideration. Suppose Aut(G) = {σ1, σ2,…, σm}. The matrix SG = [sij], where sij = 

σi(j) is called a solution matrix for G. Clearly, for computing the automorphism group of G, it is 

enough to calculate a solution matrix for G.   

    In mathematics, groups are often used to describe symmetries of objects. This is formalized by the 

notion of a group action: every element of the group "acts" like a bijective map (or "symmetry") on 

some set. To clarify this notion, we assume that G is a group and X is a set. G is said to act on X when 

there is a map φ : G � X →X such that all elements x ∈ X, (i) φ(e,x) = x where e is the identity 

element of G, and, (ii) φ(g, φ(h,x)) = φ(gh,x) for all g,h ∈ G. In this case, G is called a transformation 

group, X is called a G-set, and φ is called the group action. For simplicity we define gx = φ(g,x). In a 

group action, a group permutes the elements of X. The identity does nothing, while a composition of 

actions corresponds to the action of the composition. For a given X, the set {gx | g ∈ G}, where the 
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group action moves x, is called the group orbit of x. The subgroup which fixes is the isotropy group of 

x.  

    Now we discuss techniques that are useful in finding symmetry of molecules. The following 

theorem is crucial in establishing symmetry of molecules, see [22] for details.  
 

Theorem 1. Suppose A = [aij] and B = [bij] are two matrices and Pσ is a permutation matrix. If B =  

PσA(Pσ)
t, σ(i) = r and σ(j) = s, then ars = bij. In particular, if B = A and σ maps i1 → j1, i2 → j2,…, it → 

jt. Then we have: 
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    Let G be the symmetry group of a molecule and X be the set of atoms. One can see that G acts on X. 

If O1, O2, …, Ot  are orbits of the action of G on X then for every α ∈ G and every positive integer i, 1 

≤ i ≤ t, α(Oi) ∈ { O1, O2, …, Ot  O1, O2, …, Ot}. We apply this fact and our theorem to prepare the 

following MATLAB program:   

A MATLAB Program for Computing Solution Matrix 
 

  function y=permute2(a) 
  m=length(a); 
  1:m; 
  sort(a); 
  r i=1:m 
    x=[]; 
    for j=1:m 
        if min(b(:,i)==b(:,j))==1 
            x=[x,j]; 
        end 
    end 
    p(i,1:length(x))=x; 
  end 
  for i=1:m-2 
      for j=i+1:m 
          if max(p(i,:)==j)==1 
              tt=0; 
              s=[1:i-1 j]; 
              for r=i+1:m 
                  n=size(s); 
                  w=[]; 
                  for t=1:n(1) 
                      v=p(r,:); 
                      v(v==0)=[]; 
                      k1=1:m;k1(v)=[]; 
                      k=1:m; 
                      k([s(t,:) k1])=[]; 
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                      for f=k 
                          if min(a([s(t,:) f],[s(t,:) f])==a(1:r,1:r))==1 
                              w=[w;s(t,:) f]; 
                              if r==m 
                                  tt=1; 
                                  break 
                              end 
                          end 
                          if tt==1 
                              break 
                          end 
                      end 
                      if tt==1 
                          break 
                      end 
                  end 
                  s=w;    
              end 
              if length(s)>1 
                  y=[y; s(1,:)]; 
              end 
          end 
      end 
  end 

  
    Suppose A is a solution matrix computed by our program. To compute the automorphism group of 

Euclidean graph of the molecule under consideration, we need a GAP program as follows: 
 

B:=[]; 

N:=Size(A); 

for i in [1,2..N] do 

d:=PermListList(A[1],A[i]); 

Add(B,d); 

od; 

G:=AsGroup(B); 

GeneratorsOfGroup(G); 
 

Using these programs it is possible to calculate symmetry of every molecules. Using these programs 

it is possible to compute the symmetry group of nanotorus with at most 2000 carbon atoms. For more 

than 2000 carbon atoms, our MATLAB program needs a lot of time.     

2.2 Theoretical Results 

Suppose G is a group and N is a subgroup of G. N is called a normal subgroup, if it is invariant 

under conjugation; that is, for each element n in N and each g in G, the element gng−1 is still in N. 

Normal subgroups are important because they can be used to construct quotient groups from a given 

group. A semidirect product describes a particular way in which a group can be put together from two 
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subgroups, one of which is normal. Let G be a group, N a normal subgroup of G and H a subgroup of 

G. We say that G is a semidirect product of N and H, or that G splits over N, if every element of G can 

be written in one and only one way as a product of an element of N and an element of H.  

    The dihedral group of degree n (denoted by Dn) is the subgroup of Sn generated by the permutations 

a = (1,2,…,n) and b =(2,n)(3,n-1)(4,n-2)…(n/2,n/2+2) or (2,n)(3,n-1)(4,n-2)…((n+1)/2,(n+3)/2), when 

n is even or odd, respectively. It is easy to see that Dn is non-abelian, for n ≥ 3, and <a> is a normal 

subgroup of Dn. It is possible to prove that Dn is actually isomorphic to the group of symmetries of a 

regular polygon with n-sides. To explain, we consider a regular n-sided polygon P and label it 

clockwise by numbers 1, 2, …, n. Define the product operation of composition, as follows: for two 

symmetries f and g, the product fg means “first do f, then do g”. P has exactly n rotational symmetries: 

these are a, a2(= aa), …, an-1 and e = an, which leaves the polygon fixed. Here a is a function such that 

a(1) = 2, a(2) = 3, …, a(n-1) = n and a(n) = 1. On the other hand, ak is rotation about the center of A 

through an angle 2πk/n. There are also n reflection symmetries: these are reflections in the n lines 

passing through the center of P and a corner or the midpoint of a side of the polygon. Suppose b is the 

reflection in the line through 1 and the center of P. Then b =(2,n)(3,n-1)(4,n-2)…(n/2,n/2+2) or 

(2,n)(3,n-1)(4,n-2)…((n+1)/2,(n+3)/2), when n is even or odd, respectively. Clearly, n reflections of  P 

are b, ab, a2b, …, an-1b. Thus all elements of the symmetry group of a polygon P constitute the same 

group as dihedral group Dn. 

    Suppose L is the 2-dimensional lattice of a polyhex nanotorus containing p vertical crenels and q 

rows, Figure 2. It is clear that p is even. Put a = (1,2,…,p/2) and b = (2,p/2)(3,p/2-1)(4,p/2-

2)…(p/4,p/4+2) or (2,p/2)(3,p/2-1)(4,p/2-2)…((p/2+1)/2,(p/2+3)/2), when p/2 is even or odd, 

respectively. Then the group H generated by permutations a and b is a subgroup of the symmetry 

group of a polyhex carbon nanotorus V. But a vertical plane determines a symmetry element c of V 

such that c ∉ H. Consider V = <H,c> then V is the symmetry group of the carbon polyhex nanotorus. 

Since |H| = (1/2)|V| and |H ∩ <c>| = 1, H is a normal subgroup of V and V is a semidirect product of H 

by a cyclic group of order 2. Therefore, we proved the following theorem: 
 

Theorem 2. The symmetry group V of armchair and zig-zag polyhex nanotorus is constructed from a 

dihedral group Dp/2 and a plane symmetry group isomorphic to Z2, the cyclic group of order 2. 

Figure 2. 2-Dimensional Lattice of a Polyhex Nanotorus with p = 10 and q = 14. 
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3. Conclusion 

The computational methods presented in Section 2.1 are general and can be applied for molecules 

with the large number of atoms. If the number of atoms are greater than 2000 then our MATLAB 

program needs a lot of time but our GAP program is efficient. On the other hand, our theoretical 

method for describing symmetry group of an armchair and zig-zag nanotorus can be applied in a 

similar way to describe the corresponding nanotubes. Of course, the symmetry of nanotubes is 

different from nanotorus, but some of the symmetry elements will be the same. Finally, computing a 

permutation representation for the symmetry group of an arbitrary nanotube or nanotorus is remaining 

as an open question.  
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