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1. Introduction

The potentiality of the quark model for hadron physics in the low-energy regime became first manifest
when it was used to classify the known hadron states. Describing hadrons as qq̄ or qqq configurations,
their quantum numbers were correctly explained. This assignment was based on the comment by
Gell-Mann [1] introducing the notion of quark: “It is assuming that the lowest baryon configuration
(qqq) gives just the representations 1, 8 and 10, that have been observed, while the lowest meson
configuration (qq̄) similarly gives just 1 and 8”. Since then, it has been assumed that these are the
only two configurations involved in the description of physical hadrons. However, color confinement is
also compatible with other multiquark structures like the tetraquark qqq̄q̄ first introduced by Jaffe [2].
During the last two decades there appeared a number of experimental data that are hardly accommodated
in the traditional scheme defined by Gell-Mann.

One of the first scenarios where the existence of bound multiquarks was proposed was a system
composed of two light quarks and two heavy antiquarks (nnQ̄Q̄). These objects are called heavy-light
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tetraquarks due to the similarity of their structure with the heavy-light mesons (nQ̄). Although they may
be experimentally difficult to produce and also to detect [3] it has been argued that for sufficiently large
heavy quark mass the tetraquark should be bound [4, 5]. The stability of a heavy-light tetraquark relies
on the heavy quark mass. The heavier the quark the more effective the short-range Coulomb attraction
to generate binding, in such a way that it could play a decisive role to bind the system. Moreover the Q̄Q̄

pair brings a small kinetic energy into the system contributing to stabilize it.
Another interesting scenario where tetraquarks may be present corresponds to the scalar mesons,

JPC = 0++. To obtain a positive parity state from a qq̄ pair one needs at least one unit of orbital angular
momentum. Apparently this costs an energy around 0.5 GeV1, making the lightest theoretical scalar
states to be around 1.3 GeV, far from their experimental error bars. However, a qqq̄q̄ state can couple to
JPC = 0++ without orbital excitation and, as a consequence, they could coexist and mix with qq̄ states
in this energy region. Furthermore, the color and spin dependent interaction arising from the one-gluon
exchange, favors states where quarks and antiquarks are separately antisymmetric in flavor. Thus, the
energetically favored flavor configuration for qqq̄q̄ is [(qq)3̄(q̄q̄)3], a flavor nonet, having the lightest
multiplet spin 0. The most striking feature of a scalar qqq̄q̄ nonet in comparison with a qq̄ nonet is a
reversed mass spectrum (see Figure 1). One can see a degenerate isosinglet and isotriplet at the top of
the multiplet, an isosinglet at the bottom, and a strange isodoublet in between. The resemblance to the
experimental structure of the light scalar mesons is striking.

Figure 1. Quark content of a qq̄ nonet (left) and a qqq̄q̄ nonet (right).

Four-quark states could also play an important role in the charm sector. Since 2003 there have
been discovered several open-charm mesons: the D∗

sJ(2317), the DsJ(2460), and the D∗
0(2308). In

the subsequent years several new states joined this exclusive group either in the open-charm sector: the
DsJ(2860), or in the charmonium spectra: the X(3872), the X(3940), the Y (3940), the Z(3940), the
Y (4260), and the Z(4430) among others [6]. It seems nowadays unavoidable to resort to higher order
Fock space components to tame the bewildering landscape arising with these new findings. Four-quark
components, either pure or mixed with qq̄ states, constitute a natural explanation for the proliferation of
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new meson states [7, 8, 9]. They would also account for the possible existence of exotic mesons as could
be stable ccn̄n̄ states, the topic for discussion since the early 1980s [10, 11].

All these scenarios suggest the study of qqq̄q̄ structures and their possible mixing with the qq̄ systems
to understand the role played by multiquarks in the hadron spectra. The manuscript is organized as
follows. In Section 2. the variational formalism necessary to evaluate four-quark states is discussed
in detail with special emphasis on the symmetry properties. In Section 3. the way to exploit discrete
symmetries to determine the four-quark decay threshold is discussed. In Section 4. the formalism to
evaluate four-quark state probabilities is sketched. In Section 5. we discuss some examples of four-quark
states calculated using this formalism. Finally, we summarize in Section 6. our conclusions.

2. Four-Quark Spectra

2.1. Solving the four-body system

The four-quark (qqq̄q̄) problem will be addressed by means of the variational method, specially suited
for studying low-lying states. The nonrelativistic Hamiltonian will be given by

H =
4∑

i=1

(
mi +

~p 2
i

2mi

)
+

4∑
i<j=1

V (~rij) (1)

where the potential V (~rij) corresponds to an arbitrary two-body interaction. The extension of this
formalism to consider many-body interactions is discussed in [12, 13].

The variational wave function must include all possible flavor-spin-color channels contributing to a
given configuration. For each channel s, the wave function will be the tensor product of a color (|Cs1〉),
spin (|Ss2〉), flavor (|Fs3〉), and radial (|Rs4〉) component,

|φs〉 = |Cs1〉 ⊗ |Ss2〉 ⊗ |Fs3〉 ⊗ |Rs4〉 (2)

where s ≡ {s1, s2, s3, s4}. The procedure to construct the wave function will be detailed later on. Once
the spin, color and flavor parts are integrated out the coefficients of the radial wave function are obtained
by solving the system of linear equations∑

s′ s

∑
i

β(i)
s4

[〈R(j)

s′4
|H |R(i)

s4
〉 − E 〈R(j)

s′4
|R(i)

s4
〉δs,s′ ] = 0 ∀ j (3)

where the eigenvalues are obtained by a minimization procedure.

2.2. Four-body wave function

For the description of the q1q2q̄3q̄4 wave function we consider the four-body Jacobi coordinates
depicted in Figure 2:

~x = ~r1 − ~r2 (4)

~y = ~r3 − ~r4

~z =
m1~r1 + m2~r2

m1 + m2

− m3~r3 + m4~r4

m3 + m4

~R =

∑
mi~ri∑
mi
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where indices 1 and 2 will stand for quarks and 3 and 4 for antiquarks. Let us now describe each
component of the variational wave function (2) separately. The total wave function should have
well-defined permutation properties under the exchange of identical particles: quarks or antiquarks.
The Pauli principle must be satisfied for each subsystem of identical particles2. This imposes restrictions
on the quantum numbers of the basis states.

Figure 2. Tetraquark Jacobi coordinates, see Equations (4) for definitions.

2.3. Color space

There are three different ways of coupling two quarks and two antiquarks into a colorless state:

[(q1q2)(q̄3q̄4)] ≡ {|3̄12334〉, |6126̄34〉} ≡ {|3̄3〉12c , |66̄〉12c } (5a)

[(q1q̄3)(q2q̄4)] ≡ {|113124〉, |813824〉} ≡ {|11〉c, |88〉c} (5b)

[(q1q̄4)(q2q̄3)] ≡ {|114123〉, |814823〉} ≡ {|1′1′〉c, |8′8′〉c} (5c)

being the three of them orthonormal basis. Each coupling scheme allows to define a color basis
where the four-quark problem can be solved. Only two of these states have well defined permutation
properties: |3̄3〉12c , is antisymmetric under the exchange of both quarks and antiquarks, (AA), and |66̄〉12c

is symmetric, (SS). Therefore, the basis Equation 5a is the most suitable one to deal with the Pauli
principle. The other two, Equations 5b, 5c are hybrid bases containing singlet-singlet (physical) and
octet-octet (hidden-color) vectors. The three basis are related through [15, 16]:

|11〉c =

√
1

3
|3̄3〉12

c +

√
2

3
|66̄〉12c (6)

|88〉c = −
√

2

3
|3̄3〉12c +

√
1

3
|66̄〉12c ,
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and

|1′1′〉c = −
√

1

3
|3̄3〉12

c +

√
2

3
|66̄〉12c (7)

|8′8′〉c =

√
2

3
|3̄3〉12c +

√
1

3
|66̄〉12c

Table 1. Color matrix elements.

Ô (~λ1 · ~λ2) (~λ3 · ~λ4) (~λ1 · ~λ3) (~λ2 · ~λ4) (~λ1 · ~λ4) (~λ2 · ~λ3)
12
c 〈3̄3|Ô|3̄3〉12

c −8/3 −8/3 −4/3 −4/3 −4/3 −4/3
12
c 〈66̄|Ô|66̄〉12

c 4/3 4/3 −10/3 −10/3 −10/3 −10/3
12
c 〈3̄3|Ô|66̄〉12

c 0 0 −2
√

2 −2
√

2 2
√

2 2
√

2

To evaluate color matrix elements the two-body color operators are introduced in the same manner as
in angular momentum theory,

~λi · ~λj =
1

2

(
~λ2

ij − ~λ2
i − ~λ2

j

)
(8)

where ~λi are the SU(3)c Gell-Mann matrices acting on quark i, and ~λ2
ij is the Casimir operator. For an

irreducible representation ψ(λµ), the eigenvalue of the Casimir operator is given by:

~λ2
ijψ(λµ) =

4

3

(
λ2 + µ2 + λµ + 3λ + 3µ

)
ψ(λµ) (9)

In the color space a quark is described by 3c = (10) and an antiquark by 3̄c = (01), so

~λ2
i ψ(10) = ~λ2

i [3c] =
16

3
[3c] =

16

3
ψ(10) (10)

~λ2
i ψ(01) = ~λ2

i [3̄c] =
16

3
[3̄c] =

16

3
ψ(01)

Two quarks in a symmetric state, 6 or 6̄, have (λµ) = (20) and therefore

~λ2
i ψ(20) = ~λ2

i [6c] = ~λ2
i [6̄c] =

40

3
ψ(20) (11)

while two quarks in an antisymmetric state, 3 or 3̄, have (λµ) = (01), being the same value as
Equation (10). Using these expressions, the color matrix elements summarized in Table 1, may be
easily evaluated.

2.4. Spin space

The spin part of the wave function can be written as

[(s1s2)S12(s3s4)S34 ]S ≡ |S12S34〉12s (12)
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where the spin of the two quarks (antiquarks) is coupled to S12 (S34). Two identical spin-1/2 fermions
in a S = 0 state are antisymmetric (A) under permutations while those coupled to S = 1 are symmetric
(S). In Table 2 we have included the corresponding vectors for each total spin together with their
symmetry properties.

Table 2. Spin basis vectors for all possible total spin states (S). The “Symmetry” column
stands for the symmetry properties of the pair of quarks and antiquarks.

S Vector Symmetry
0 |00〉12s AA

|11〉12s SS
|01〉12s AS

1 |10〉12s SA
|11〉12s SS

2 |11〉12s SS

Using this notation is straightforward to evaluate the four-body spin matrix elements,

12
s 〈S12S34|~σi · ~σj|S ′

12S
′
34〉12s =

[
2Sij(Sij + 1) − 3

]
δS12,S′

12
δS34,S′

34
δS,S′ (13)

for (ij) = (12) or (34) and where ~σi is the spin operator acting over particle i. To calculate the other
spin operators we should reorder the spin wave function [14][

(s1s2)S12(s3s4)S34

]
S

=
∑
k,l

(−1)2S12+s2+2s3+s4+l+S
√

2k + 1
√

2l + 1
√

2S12 + 1
√

2S34 + 1{
S12 s3 k

s4 S S34

}{
s2 s1 S12

s3 k l

}[[
(s1s3)ls2

]
k
s4

]
S

(14)

Now one can calculate the matrix element for the case s1 = s2 = s3 = s4 = 1
2
,

12
s 〈S12S34|~σ1 · ~σ3|S ′

12S
′
34〉12

s = (15)

=
√

2S12 + 1
√

2S ′
12 + 1

√
2S34 + 1

√
2S ′

34 + 1
∑
k, l

(2k + 1)(2l + 1)
[
2l(l + 1) − 3

]
×

×

{
S12 1/2 k

1/2 S S34

}{
S ′

12 1/2 k

1/2 S S ′
34

}{
1/2 1/2 S12

1/2 k l

}{
1/2 1/2 S ′

12

1/2 k l

}
The same can be done for the other spin operators, (~σ1 ·~σ4), (~σ2 ·~σ4) and (~σ2 ·~σ3), using the expressions
given above. The results are resumed in Table 3.

2.5. Flavor space

Before discussing the flavor part of the wave function one must specify the required flavor symmetry,
SU(2) or SU(3). In the former case, u and d quarks are identical whether in the latter, u, d, and s are



Symmetry 2009, 1 161

indistinguishable. In the following, n will stand for light u and d quarks and Q for heavy ones, c or b. s

quarks will be considered heavy if flavor SU(2) is assumed and light otherwise.

Table 3. Spin matrix elements.

S (~σ1 · ~σ2) (~σ3 · ~σ4) (~σ1 · ~σ3) (~σ2 · ~σ4) (~σ1 · ~σ4) (~σ2 · ~σ3)
12
s 〈00|Ô|00〉12

s −3 −3 0 0 0 0
0 12

s 〈11|Ô|11〉12
s 1 1 −2 −2 −2 −2

12
s 〈00|Ô|11〉12

s 0 0 −
√

3 −
√

3
√

3
√

3
12
s 〈01|Ô|01〉12

s −3 1 0 0 0 0
12
s 〈10|Ô|10〉12

s 1 −3 0 0 0 0
1 12

s 〈11|Ô|11〉12
s 1 1 −1 −1 −1 −1

12
s 〈01|Ô|10〉12

s 0 0 1 1 −1 −1
12
s 〈10|Ô|11〉12

s 0 0
√

2 −
√

2 −
√

2
√

2
12
s 〈01|Ô|11〉12

s 0 0 −
√

2
√

2 −
√

2
√

2

2 12
s 〈11|Ô|11〉12

s 1 1 1 1 1 1

Table 4. Pauli-based classification of four-quark states. X indicates that the quark/antiquark
pair requires the application of the Pauli principle, being the notation (pair of quarks, pair of
antiquarks). The third and fourth columns contain the recoupling corresponding to bases 5b
and 5c.

(12)(34) Pauli (13)(24) (14)(23)
(nn)(n̄n̄) (X, X) (nn̄)(nn̄) (nn̄)(nn̄)

(nn)(n̄Q̄) (X, X) (nn̄)(nQ̄) (nQ̄)(nn̄)

(nn)(Q̄1Q̄2) (X, X if Q̄1 = Q̄2) (nQ̄1)(nQ̄2) (nQ̄2)(nQ̄1)

(nQ1)(n̄Q̄2) (X,X) (nn̄)(Q1Q̄2) (nQ̄2)(Q1n̄)

(nQ1)(Q̄2Q̄3) (X, X if Q̄2 = Q̄3) (nQ̄2)(Q1Q̄3) (nQ̄3)(Q1Q̄2)

(Q1Q2)(Q̄3Q̄4) (X if Q1 = Q2, X if Q̄3 = Q̄4) (Q1Q̄3)(Q2Q̄4) (Q1Q̄4)(Q2Q̄3)

For the flavor part one finds several different possible four-quark states depending on the number of
light quarks. They can be classified depending on whether they are made of undistinguishable quarks in
one of the pairs (and therefore the Pauli principle must be imposed) or not. In following subsections we
will discuss the important role played by the Pauli principle in the description of the four-quark states
properties. This classification is illustrated in Table 4. Symmetry properties of the flavor wave function
are summarized in Table 5.
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Table 5. Symmetry properties of the flavor wave function under the exchange of quarks
(the same holds for antiquarks). † If flavor SU(3) is assumed, symmetric and antisymmetric
flavor wave functions with I = 1/2 can be constructed, i.e., (us ± su)/

√
2).

Flavor Symmetry
nn I = 0 A
nn I = 1 S

nn I = 1/2† S/A
QQ I = 0 S

The flavor SU(2) matrix elements can be evaluated by means of the same relations shown in
Section 2.4.. For those corresponding to flavor SU(3) the procedure will require the explicit construction
of the flavor wave function by means of the SU(3) isoscalar factors given in [15, 16]3. As an example
we evaluate some of the flavor matrix elements needed for the description of heavy-light tetraquarks.
They can be obtained using the matrix expression of λa,

λ1 =

 0 1 0

1 0 0

0 0 0

 λ2 =

 0 −i 0

i 0 0

0 0 0

 λ3 =

 1 0 0

0 −1 0

0 0 0

 (16)

λ4 =

 0 0 1

0 0 0

1 0 0

 λ5 =

 0 0 −i

0 0 0

i 0 0

 λ6 =

 0 0 0

0 0 1

0 1 0



λ7 =

 0 0 0

0 0 −i

0 i 0

 λ8 =


1√
3

0 0

0 1√
3

0

0 0 −2√
3


where, following the same convention, quarks and antiquarks are given by,

u = ū = (1, 0, 0) (17)

d = d̄ = (0, 1, 0)

s = s̄ = (0, 0, 1)

The tetraquark flavor wave function corresponding to two light quarks coupled to total isospin I with
Iz = 0 and two heavy antiquarks can be written as

|ψ〉 =
1√
2
[ud + (−1)I+1du][s̄s̄] (18)

A typical flavor operator is

~τi · ~τj =
3∑

a=1

λa
i λ

a
j (19)
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where λa
i are the SU(3) flavor matrices defined above and τi are the isospin Pauli matrices, both acting

on quark i. So the same expression obtained for the spin operators holds here:〈
ψ

∣∣∣ 3∑
a=1

λa
1λ

a
2

∣∣∣ψ〉
=

{
I = 0 → −3

I = 1 → 1
(20)

Alternatively one can write the flavor matrix element as〈
ψ|

3∑
a=1

λa
1λ

a
2|ψ

〉
=

〈
ud + (−1)I+1du√

2

∣∣∣ 3∑
a=1

λa
1λ

a
2

∣∣∣ud + (−1)I+1du√
2

〉
= (21)

=
1

2

3∑
a=1

{〈
ud

∣∣∣λa
1λ

a
2

∣∣∣ud
〉

+
〈
du

∣∣∣λa
1λ

a
2

∣∣∣du
〉

+

+ (−1)I+1
〈
du

∣∣∣λa
1λ

a
2

∣∣∣ud
〉

+ (−1)I+1
〈
ud

∣∣∣λa
1λ

a
2

∣∣∣du
〉 }

=

=
3∑

a=1

{
〈u|λa|u〉 〈d|λa|d〉 + (−1)I+1| 〈u|λa|d〉 |2

}
=

= −1 + 2(−1)I+1 =

{
I = 0 −3

I = 1 1

Other matrix elements of interest are,〈
ψ|λ8

1λ
8
2|ψ

〉
=

1

3
(22)〈

ψ|λ8
3λ

8
4|ψ

〉
=

4

3〈
ψ|λ8

1λ
8
3|ψ

〉
=

〈
ψ|λ8

2λ
8
3|ψ

〉
=

〈
ψ|λ8

1λ
8
4|ψ

〉
=

〈
ψ|λ8

2λ
8
4|ψ

〉
= −2

3

2.6. Radial space

The most general radial wave function with orbital angular momentum L = 0 may depend on the
six scalar quantities that can be constructed with the Jacobi coordinates of the system, they are: ~x 2, ~y 2,
~z 2, ~x · ~y, ~x · ~z and ~y · ~z. We define the variational spatial wave function as a linear combination of
generalized Gaussians,

|Rs4〉 =
n∑

i=1

β(i)
s4

Ri
s4

(~x, ~y, ~z) =
n∑

i=1

β(i)
s4

Ri
s4

(23)

where n is the number of Gaussians we use for each color-spin-flavor component. Ri
s4

depends on six
variational parameters, ai

s, bi
s, ci

s, di
s, ei

s, and f i
s, one for each scalar quantity. Therefore, any tetraquark

will depend on 6×n×ns variational parameters (where ns is the number of different channels allowed by
the Pauli Principle). Equation (23) should have well defined permutation symmetry under the exchange
of both quarks and antiquarks,

P12(~x → −~x)Ri
s4

= PxR
i
s4

(24)

P34(~y → −~y)Ri
s4

= PyR
i
s4
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where Px and Py are −1 for antisymmetric states, (A), and +1 for symmetric ones, (S). One can build
the following radial combinations, (PxPy) = (SS), (SA), (AS) and (AA):

(SS) ⇒ Ri
1 = Exp

(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y − ei
s~x~z − f i

s~y~z
)

(25)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y − ei
s~x~z + f i

s~y~z
)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y + ei
s~x~z − f i

s~y~z
)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y + ei
s~x~z + f i

s~y~z
)

(SA) ⇒ Ri
2 = Exp

(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y − ei
s~x~z − f i

s~y~z
)

(26)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y − ei
s~x~z + f i

s~y~z
)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y + ei
s~x~z − f i

s~y~z
)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y + ei
s~x~z + f i

s~y~z
)

(AS) ⇒ Ri
3 = Exp

(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y − ei
s~x~z − f i

s~y~z
)

(27)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y − ei
s~x~z + f i

s~y~z
)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y + ei
s~x~z − f i

s~y~z
)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y + ei
s~x~z + f i

s~y~z
)

(AA) ⇒ Ri
4 = Exp

(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y − ei
s~x~z − f i

s~y~z
)

(28)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y − ei
s~x~z + f i

s~y~z
)

− Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x~y + ei
s~x~z − f i

s~y~z
)

+ Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x~y + ei
s~x~z + f i

s~y~z
)

By defining the function

g(s1, s2, s3) = Exp
(
−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − s1d

i
s~x~y − s2e

i
s~x~z − s3f

i
s~y~z

)
(29)

we can build the vectors

~Gi
s =


g(+, +, +)

g(−, +,−)

g(−,−, +)

g(+,−,−)

 (30)

and

~αSS = (+, +, +, +) (31)

~αSA = (+,−, +,−)

~αAS = (+, +,−,−)

~αAA = (+,−,−, +)
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what allows to write in a compact way Equations 25–28,

(SS) ⇒ Ri
1 = ~αSS · ~Gi

s (32)

(SA) ⇒ Ri
2 = ~αSA · ~Gi

s

(AS) ⇒ Ri
3 = ~αAS · ~Gi

s

(AA) ⇒ Ri
4 = ~αAA · ~Gi

s

Such a radial wave function includes all possible relative orbital angular momenta coupled to L = 0.
This can be seen through the relation:

Exp
(
−di

s~x~y − ei
s~x~z − f i

s~y~z
)

=
1√
4π

∞∑
`x=0

∞∑
`y=0

∞∑
`z=0

[
[Y`x(x̂)Y`y(ŷ)]`zY`z(ẑ)

]
0

(33)

∑
`1,`2,`3

(2`1 + 1)(2`2 + 1)(2`3 + 1) 〈`10`20|`x〉 〈`10`30|`y〉 〈`20`30|`z〉

{
`x `y `z

`3 `2 `1

}
(√

π

2 di
sxy

I`1+1/2(d
i
sxy)

)(√
π

2 ei
sxz

I`2+1/2(e
i
sxz)

)(√
π

2 f i
syz

I`3+1/2(f
i
syz)

)
where `x, `y and `z are the orbital angular momenta associated to coordinates ~x, ~y and ~z, and Ia(x) are
the modified Bessel functions.

The radial wave functions defined above have also well-defined symmetry properties on the ~z

coordinate. Being P(12)(34)(~z → −~z)Ri
s4

= PzR
i
s4

one obtains,

P(12)(34)R
i
1 = +Ri

1 (34)

P(12)(34)R
i
2 = −Ri

2

P(12)(34)R
i
3 = −Ri

3

P(12)(34)R
i
4 = +Ri

4

To evaluate radial matrix elements we will use the notation introduced in Equation 32:〈
Ri

γ|f(x, y, z)|Rj
β

〉
=

∫
V

(~αSγ · ~Gi
s)f(x, y, z)(~αSβ

· ~Gj
s′)dV = ~αSγ · F ij · ~αSβ

(35)

where γ and β stand for the symmetry of the radial wave function and F ij is a matrix whose element
(a, b) is defined through,

F ij
ab =

∫
V

(~Gi
s)a(~Gj

s′)bf(x, y, z)dV (36)

being (~Gi
s)a the component a of the vector ~Gi

s. From Equation 29 one obtains,

g(s1, s2, s3)g(s′1, s
′
2, s

′
3) = Exp

(
−aij~x

2 − bij~y
2 − cij~z

2 − s̄ij~x~y − ēij~x~z − f̄ij~y~z
)

(37)

where we have shortened the previous notation according to ai
s → ai, aij = ai + aj and d̄ij = (s1di +

s′1dj). Therefore, all four-body radial matrix elements will contain integrals of the form

I =

∫
V

Exp
(
−aij~x

2 − bij~y
2 − cij~z

2 − s̄ij~x~y − ēij~x~z − f̄ij~y~z
)
f(x, y, z)d~xd~yd~z (38)
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where the functions f(x, y, z) are the potentials. Being all of them radial functions (not depending on
angular variables) one can solve the previous integral by noting:

∫
Exp

[
−

n∑
i,j=1

Aij~xi~xj

]
f
(
|
∑

αk~xk|
)
d~x1...d~xn =

(
πn

detA

) 3
2

4π

(
Ωij

π

) 3
2

F (Ωij, f) (39)

where

1

Ωij

= ᾱ · A−1 · α (40)

F (A, f) =

∫
e−Au2

f(u)u2du

detA > 0
1

Ωij

> 0

One can extract some useful relations for the radial matrix elements using simple symmetry properties.
Let us rewrite Equation 35〈

Ri
γ|f(x, y, z)|Rj

β

〉
=

〈
Ri

PxPyPz
|f(x, y, z)|Rj

P ′
xP ′

yP ′
z

〉
(41)

=

∫
x

∫
y

∫
z

Ri
PxPyPz

f(x, y, z)Rj
P ′

xP ′
yP ′

z
d~xd~yd~z

If f(x, y, x) depends only in one coordinate, for example ~x, the integrals over the other coordinates will
be zero if one of them has different symmetry properties, Py 6= P ′

y or Pz 6= P ′
z in our example. Therefore〈

Ri
γ|f(x)|Rj

β

〉
∝ δγβ (42)〈

Ri
γ|f(y)|Rj

β

〉
∝ δγβ〈

Ri
γ|f(z)|Rj

β

〉
∝ δγβ〈

Ri
γ|Constant|Rj

β

〉
∝ δγβ

The radial wave function described in this section is adequate to describe not only bound states, but also
it is flexible enough to describe states of the two-meson continuum within a reasonable accuracy. We
will came back to this point in Sect. 5.

2.7. Parity and C−parity

The parity of a tetraquark can be calculated as

P
[
Ri

s4
(~x, ~y, ~z)

]
= Ri

s4

 ~x → −~x

~y → −~y

~z → −~z

 = (−1)`x+`y+`zRi
s4

(~x, ~y, ~z) (43)

or using Equations 24 and 34,

P
[
Ri

s4
(~x, ~y, ~z)

]
= P12P34P(12)(34)R

i
s4

(~x, ~y, ~z) = PxPyPz Ri
s4

(~x, ~y, ~z) (44)
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what in our case implies

P
[
Ri

s4
(~x, ~y, ~z)

]
=


(+)(+)(+)Ri

1

(+)(−)(−)Ri
2

(−)(+)(−)Ri
3

(−)(−)(+)Ri
4

 =


+Ri

1

+Ri
2

+Ri
3

+Ri
4

 = +Ri
s4

(~x, ~y, ~z) (45)

Hence, this formalism describes positive parity states, being thus adequate to study tetraquark
ground states.

Table 6. The action of C over the spin part or the wave function.

S = 0 C|00〉12
s = +|00〉12s

C|11〉12s = +|11〉12s

C|01〉12
s = −|10〉12s

S = 1 C|10〉12
s = −|01〉12s

C|11〉12s = +|11〉12s

S = 2 C|11〉12
s = +|11〉12s

From Equation 45 one can see that, not only the total wave function will be an eigenstate of the
parity operator, but also each component will be. This is not the case for C-parity, where only the
total wave function will be an eigenstate and therefore it must be obtained numerically for each state.
The tetraquark C−parity will depend on the variational parameters and on the β

(i)
s coefficients. This

dependence is contained in the action of the C−parity operator over the different parts of the wave
function which will give us the following relations:

C
∣∣Ri

s4
(~x, ~y, ~z)

〉
= Ri

s4
(~y, ~x,−~z) (46)

and if ai
s = bi

s and ei
s = f i

s (what is a very common result),

C
∣∣Ri

s4
(~x, ~y, ~z)

〉
=


s4 = 1 → +Ri

1

s4 = 2 → −Ri
3

s4 = 3 → −Ri
2

s4 = 4 → +Ri
4

(47)

The action of C over the spin part or the wave function is summarized in Table 6. The action of C over
the flavor part of the wave function has to be evaluated individually once the wave functions have been
constructed.

2.8. qq̄ ↔ qqq̄q̄ mixing

Many of the possible four-quark systems may present JPC quantum numbers that can be reached not
only by means of qqq̄q̄ configurations but also by qq̄ ones and with similar energies. In these cases the
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possibility of a mixing between them cannot be discarded a priori and therefore, their most general wave
function will read

|B = 0〉 =
∑

n

Ωn |(qq̄)n〉 = Ω1 |qq̄〉 + Ω2 |qq̄qq̄〉 + .... (48)

These particular systems may be described by a hamiltonian

H = H0 + H1 being H0 =

(
Hqq̄ 0

0 Hqqq̄q̄

)
H1 =

(
0 Vqq̄↔qqq̄q̄

Vqq̄↔qqq̄q̄ 0

)
(49)

where the nondiagonal terms can be treated perturbatively, therefore allowing to solve the two- and
four-body sectors separately.

Figure 3. Coupling between qqq̄q̄ and qq̄ configurations.
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The Hamiltonian H1 describes the mixing between two- and four-body configurations. Its explicit
expression would require the knowledge of the operator annihilating a quark-antiquark pair into the
vacuum. This could be done, for example, using a 3P0 model, but the result will introduce an additional
degree of uncertainty on the parametrization used to describe the vertex. Such a parametrization is
determined by the energy scale at which the transition qqq̄q̄ ↔ qq̄ takes place. For the sake of simplicity
this can be parametrized by looking to the quark pair that it is annihilated, and not to the spectator quarks
that will form the final qq̄ state:

Vqq̄↔qqq̄q̄ ⇒

{
〈nnn̄n̄|V |nn̄〉 = 〈nsn̄s̄|V |ss̄〉 = 〈nnn̄s̄|V |ns̄〉 = Cn

〈sss̄s̄|V |ss̄〉 = 〈nsn̄s̄|V |nn̄〉 = 〈nss̄s̄|V |ns̄〉 = Cs

(50)

A sketch of these mixing interactions is drawn in Figure 3. Such approach has been used in a
series of papers to describe the light-scalar mesons and the open-charm and open-bottom meson
sectors [17, 18, 19, 20].
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Table 7. Lowest two-meson thresholds in the uncoupled (UN) and coupled (CO) schemes
for two particular cnc̄n̄ (upper) and ccn̄n̄ (lower) states, see text for details. They have been
calculated using the CQC model, see Section 5. for details. M1 M2|L indicates the lowest
threshold and L its relative orbital angular momentum. Energies are in MeV.

UN CO
S 0 1 2 0 1 2
I 0 1 0 1

JPC = 1++ − J/ψ ω|S − − J/ψ ρ|S − J/ψ ω|S,D J/ψ ρ|S,D

(L = 0) − 3745 − − 3838 − 3745 3838
JPC = 1−− D D̄|P ηc ω|P D∗ D̄∗|P D D̄|P J/ψ π|P D∗ D̄∗|P ηc ω|P J/ψ π|P

(L = 1) 3872 3683 4002 3872 3590 4002 3683 3590

JP = 1+ − D D∗|S − − D D∗|S − D D∗|S,D D D∗|S,D

(L = 0) 3937 3937 3937 3937
JP = 1− D D|P D D∗|P D∗ D∗|P D D1|S D D∗|P D∗ D∗

J |S,D D D|P D D∗|P
(L = 1) 3872 3937 4002 4426 3937 4499 3872 3937

3. Four-Quark Stability and Threshold Determination

The color degree of freedom makes an important difference between four-quark systems and ordinary
baryons or mesons. For baryons and mesons it is not possible to construct a color singlet using a subset
of the constituents, thus only qq̄ or qqq states are proper solutions of the two- or three-quark interacting
hamiltonian and therefore, all solutions correspond to bound states. However, this is not the case for
four-quark systems. The color rearrangement of Equations 6, 7 makes that two isolated mesons are also
a solution of the four-quark hamiltonian. In order to distinguish between four-quark bound states and
simple pieces of the meson-meson continuum, one has to analyze the two-meson states that constitute
the threshold for each set of quantum numbers.

These thresholds must be determined assuming quantum number conservation within exactly the same
model scheme (same parameters and interactions) used in the four-quark calculation. When dealing with
strongly interacting particles, the two-meson states should have well defined total angular momentum (J)
and parity (P ), the coupled scheme. If two identical mesons are considered, the spin-statistics theorem
imposes a properly symmetrized wave function. Moreover, C−parity should be conserved in the final
two-meson state for those four-quark states with well-defined C−parity. If noncentral forces are not
considered, orbital angular momentum (L) and total spin (S) are also good quantum numbers, being this
the uncoupled scheme.

An important property of four-quark states containing identical quarks, like for instance the QQn̄n̄

system, that is crucial for the possible existence of bound states, is that only one physical threshold
is allowed, (Qn̄)(Qn̄) for the case of heavy-light tetraquarks. Consequently, particular modifications
of the four-quark interaction, for instance a strong color-dependent attraction in the QQ pair, would
not be translated into the asymptotically free two-meson state. As discussed in [21], this is not a
general property of four-quark spectroscopy, since the QQ̄nn̄ four-quark state has two allowed physical



Symmetry 2009, 1 170

thresholds: (QQ̄)(nn̄) and (Qn̄)(nQ̄). The lowest thresholds for nnQ̄Q̄ states are given in [21], for
nQn̄Q̄ states in [22], and those for QQQ̄Q̄ in [23]. We give in Table 7 the lowest threshold for same
particular cases to illustrate their differences. We show both the coupled (CO) and the uncoupled (UN)
schemes together with the final state relative orbital angular momentum of the decay products. We would
like to emphasize that even when only central forces are considered the coupled scheme is the relevant
one for experimental observations.

The relevant quantity for analyzing the stability of any four-quark state is ∆E , the energy difference
between the mass of the four-quark system and that of the lowest two-meson threshold,

∆E = E4q − E(M1,M2) (51)

where E4q stands for the four-quark energy and E(M1,M2) for the energy of the two-meson threshold.
Thus, ∆E < 0 indicates that all fall-apart decays are forbidden, and therefore one has a proper bound
state. ∆E ≥ 0 will indicate that the four-quark solution corresponds to an unbound threshold (two
free mesons).

4. Probabilities in Four-Quark Systems

As discussed in the previous sections four-quark systems present a richer color structure than ordinary
baryons or mesons. While the color wave function for standard mesons and baryons leads to a single
vector, working with four-quark states there are different vectors driving to a singlet color state out of
colorless or colored quark-antiquark two-body components. Thus, dealing with four-quark states an
important question is whether we are in front of a colorless meson-meson molecule or a compact state,
i.e., a system with two-body colored components. While the first structure would be natural in the naive
quark model, the second one would open a new area on the hadron spectroscopy.

To evaluate the probability of physical channels (singlet-singlet color states) one needs to expand any
hidden-color vector of the four-quark state color basis in terms of singlet-singlet color vectors. Given
a general four-quark state this requires to mix terms from two different couplings, Equations 5b, 5c.
If (q1, q2) or (q̄3, q̄4) are identical quarks/antiquarks then, a general four-quark wave function can be
expanded in terms of color singlet-singlet nonorthogonal vectors and therefore the determination of the
probability of physical channels becomes cumbersome.

In [24] the two Hermitian operators that are well-defined projectors on the two physical singlet-singlet
color states were derived,

P |11〉c =
(
PQ̂ + Q̂P

) 1

2(1 − | c 〈11 | 1′1′〉c |2)

P |1′1′〉c =
(
P̂Q + QP̂

) 1

2(1 − | c 〈11 | 1′1′〉c |2)
(52)

where P , Q, P̂ , and Q̂ are the projectors over the basis vectors 5b, 5c,

P = | 11〉c c 〈11 |
Q = | 88〉c c 〈88 | (53)
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and

P̂ = | 1′1′〉c c 〈1′1′ |
Q̂ = | 8′8′〉c c 〈8′8′ | (54)

Using them and the formalism of [24], the four-quark nature (unbound, molecular or compact) can be
explored. Such a formalism can be applied to any four-quark state, however, it becomes much simpler
when distinguishable quarks are present. This would be, for example, the case of the nQn̄Q̄ system,
where the Pauli principle does not apply. In this system the bases 5b, 5c are distinguishable due to the
flavor part, they correspond to [(nc̄)(cn̄)] and [(nn̄)(cc̄)] as indicated in Table 4, and therefore they are
orthogonal. This makes that the probability of a physical channel can be evaluated in the usual way for
orthogonal basis [19]. The non-orthogonal bases formalism is required for those cases where the Pauli
Principle applies either for the quarks or the antiquarks pairs, see Table 4. Relevant expressions can be
found in [24].

Table 8. Mass, in MeV, and flavor dominant component of the light scalar-isoscalar mesons.

State PDG Mass Flavor
f0(600) 400−1200 568 (nn̄1P )

f0(980) 980±10 999 (nnn̄n̄)

f0(1200 − 1600) 1400±200 1299 (ss̄1P )

f0(1370) 1200−1500 1406 (nn̄2P )

f0(1500) 1507±5 1611 (nsn̄s̄)

f0(1710) 1714±5 1704 (glueball)
f0(1790) 1790+40

−30 1782 (nn̄3P )

f0(2020) 1992±16 1902 (sss̄s̄)

f0(2100) 2103±17 1946 (ss̄2P )

f0(2200) 2197±17 2224 (ss̄3P )

5. Some Selected Results

To illustrate the formalism we have introduced, we discuss some illustrative results. We make use
of a standard quark potential model, the constituent quark cluster (CQC) model. It was proposed in the
early 90’s in an attempt to obtain a simultaneous description of the nucleon-nucleon interaction and the
baryon spectra [25]. Later on it was generalized to all flavor sectors giving a reasonable description of
the meson [26] and baryon spectra [27, 28, 29]. Explicit expressions of the interacting potentials and a
detailed discussion of the model can be found in [26].

The performance of the numerical procedure we have presented described can be checked by
comparing with other methods in the literature to understand its capability and advantages. Ref. [21]
makes use of a hyperspherical harmonic (HH) expansion to study heavy-light tetraquarks, obtaining a
mass of 3860.7 MeV (Kmax = 24) for the (L, S, I) = (0, 1, 0) ccn̄n̄ state using the CQC model. The
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variational formalism described here gives a value of 3861.4 MeV (with 6 Gaussians), in very good
agreement. Concerning the unbound states, belonging to the two-meson continuum, the variational
is able to describe reasonably their energies and root mean square radii. For the unbound (L, S, I) =

(0, 0, 1) ccn̄n̄ state the variational method gives a value of ∆E = +5 MeV to be compared with the value
obtained with the HH formalism (K = 28), ∆E = +33. This is due to the flexibility of the expansion in
terms of generalized Gaussians and its ability to mimic the oscillatory behavior of the continuum wave
functions, something that is more difficult using an expansion in terms of Laguerre functions [21].

Figure 4. Regge trajectories for the scalar-isoscalar mesons. The squares represent the
results of Table 8. The lower solid line corresponds to nn̄ systems and the upper line to
ss̄ systems. The dashed lines correspond to the mass of those states with a large non−qq̄

component.

Let us now discussed some particular examples where four-quark structures could be present. First
of all we center our attention on the light scalar-isoscalar mesons. In [18] scalar mesons below 2
GeV were studied in terms of the mixing of a chiral nonet of tetraquarks with conventional qq̄ states
using the scheme described in Section 2.8.. We show in Table 8 results for the energies and dominant
flavor component of the scalar-isoscalar mesons when considering also the mixing with a scalar glueball
based on intuition from lattice QCD [30, 31, 32, 33]. The results show a nice correspondence between
theoretical predictions and experiment. This assignment suggests that there are four isoscalar mesons that
are not dominantly qq̄ states, they are the f0(980) (dominantly a nnn̄n̄ state), the f0(1500) (dominantly
a nsn̄s̄ state), the f0(1710) (dominantly a glueball) and the f0(2020) (dominantly a sss̄s̄ state). This
is clearly seen in Figure 4 where we have constructed the two Regge trajectories associated to the
isoscalar mesons. As it is observed the masses of the f0(600), f0(1200 − 1600), f0(1370), f0(1790),
f0(2100), f0(2200) fit nicely in one of the two Regge trajectories, while those corresponding to the
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f0(980), f0(1500), f0(1710), f0(2020) do not fit for any integer value. The exception would be the
f0(2020) that it is the orthogonal state to the f0(2100) having almost 50% of four-quark component.
The glueball component is shared between the three neighboring states: 20 % for the f0(1370), 2 % for
the f0(1500) and 76 % for the f0(1710). These results assigning the larger glueball component to the
f0(1710) are on the line with [31, 32] and differ from those of [34, 35, 36] concluding that the f0(1710)

is dominantly ss̄ and [37] supporting a low-lying glueball camouflaged within the f0(600) peak.

Table 9. Probabilities (P), in %, of the wave function components and masses (QM), in
MeV, of the open-charm and open-bottom mesons with I = 0 (left) and I = 1/2 (right) once
the mixing between qq̄ and qqq̄q̄ configurations is considered. Experimental data (Exp.) are
taken from [6].

I = 0 I = 1/2

JP = 0+ JP = 1+ JP = 0+

QM 2339 2847 QM 2421 2555 QM 2241 2713
Exp. 2317.8±0.6 − Exp. 2459.6±0.6 2535.4 ± 0.6 Exp. 2352±50 −

P(cns̄n̄) 28 55 P(cns̄n̄) 25 ∼ 1 P(cnn̄n̄) 46 49
P(cs̄13P ) 71 25 P(cs̄11P ) 74 ∼ 1 P(cn̄1P ) 53 46
P(cs̄23P ) ∼ 1 20 P(cs̄13P ) ∼ 1 98 P(cn̄2P ) ∼ 1 5

QM 5679 6174 QM 5713 5857 QM 5615 6086
P(bns̄n̄) 0.30 0.51 P(bns̄n̄) 0.24 ∼ 0.01 P(bnn̄n̄) 0.48 0.46
P(bs̄13P ) 0.69 0.26 P(bs̄11P ) 0.74 ∼ 0.01 P(bn̄1P ) 0.51 0.47
P(bs̄23P ) ∼ 0.01 0.23 P(bs̄13P ) ∼ 0.01 0.99 P(bn̄2P ) ∼ 0.01 0.07

Another interesting scenario where four-quark states may help in the understanding of the
experimental data is the open-charm meson sector [17, 19, 20]. The positive parity open-charm
mesons present unexpected properties quite different from those predicted by quark potential models
if a pure cq̄ configuration is considered. We include in Table 9 some results considering the mixing
between cq̄ configurations and four-quark states. Let us first analyze the nonstrange sector. The 3P0

cn̄ pair and the cnn̄n̄ have a mass of 2465 MeV and 2505 MeV, respectively. Once the mixing is
considered one obtains a state at 2241 MeV with 46% of four-quark component and 53% of cn̄ pair.
The lowest state, representing the D∗

0(2308), is above the isospin preserving threshold Dπ, being broad
as observed experimentally. The mixed configuration compares much better with the experimental data
than the pure cn̄ state. The orthogonal state appears higher in energy, at 2713 MeV, with and important
four-quark component.

Concerning the strange sector, the D∗
sJ(2317) and the DsJ(2460) are dominantly cs̄ J = 0+ and

J = 1+ states, respectively, with almost 30% of four-quark component. Without being dominant, it is
fundamental to shift the mass of the unmixed states to the experimental values below the DK and D∗K

thresholds. Being both states below their isospin-preserving two-meson threshold, the only allowed
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strong decays to D∗
sπ would violate isospin and are expected to have small widths. This width has been

estimated assuming either a qq̄ structure [38, 39], a four-quark state [40] or vector meson dominance [41]
obtaining in all cases a width of the order of 10 keV. The second isoscalar JP = 1+ state, with an energy
of 2555 MeV and 98% of cs̄ component, corresponds to the Ds1(2536). Regarding the D∗

sJ(2317), it has
been argued that a possible DK molecule would be preferred with respect to an I = 0 cns̄n̄ tetraquark,
what would anticipate an I = 1 cns̄n̄ partner nearby in mass [42]. The present results support the
last argument, namely, the vicinity of the isoscalar and isovector tetraquarks. However, the coupling
between the four-quark state and the cs̄ system, only allowed for the I = 0 four-quark states due to
isospin conservation, opens the possibility of a mixed nature for the D∗

sJ(2317), the remaining I = 1

pure tetraquark partner appearing much higher in energy. The I = 1 J = 0+ and J = 1+ four-quark
states appear above 2700 MeV and cannot be shifted to lower energies.

Table 10. Heavy-light four-quark state properties for selected quantum numbers. All states
have positive parity and total orbital angular momentum L = 0. Energies are given in
MeV. The notation M1M2 |` stands for mesons M1 and M2 with a relative orbital angular
momentum `. P [|3̄3〉12

c (|66̄〉12
c )] stands for the probability of the 33̄(6̄6) components given

in Equation (5a) and P [ | 11〉c ( | 88〉c)] for the 11(88) components given in Equation (5b).
PMM , PMM∗ , and PM∗M∗ have been calculated following the formalism of [24], and they
represent the probability of finding two-pseudoscalar (PMM ), a pseudoscalar and a vector
(PMM∗) or two vector (PM∗M∗) mesons.

(S, I) (0,1) (1,1) (1,0) (1,0) (0,0)
Flavor ccn̄n̄ ccn̄n̄ ccn̄n̄ bbn̄n̄ bbn̄n̄

Energy 3877 3952 3861 10395 10948
Threshold DD |S DD∗ |S DD∗ |S BB∗ |S B1B |P

∆E +5 +15 −76 −217 −153

P [|3̄3〉12
c ] 0.333 0.333 0.881 0.974 0.981

P [|66̄〉12
c ] 0.667 0.667 0.119 0.026 0.019

P [ | 11〉c] 0.556 0.556 0.374 0.342 0.340
P [ | 88〉c] 0.444 0.444 0.626 0.658 0.660

PMM 1.000 − − − 0.254
PMM∗ − 1.000 0.505 0.531 −
PM∗M∗ 0.000 0.000 0.495 0.469 0.746

We finally tackled an interesting problem in tetraquark spectroscopy, the molecular or compact nature
of four-quark bound states. This problem requires the determination of probabilities in non-orthogonal
bases mathematically addressed in [24]. We show in Table 10 some examples of results obtained for
heavy-light tetraquarks. One can see how independently of their binding energy, all of them present a
sizable octet-octet component when the wave function is expressed in the 5b coupling. Let us first of all
concentrate on the two unbound states, ∆E > 0, one with S = 0 and one with S = 1, given in Table 10.
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The octet-octet component of basis 5b can be expanded in terms of the vectors of basis 5c as explained
in the previous section. Then, the probabilities are concentrated into a single physical channel, MM

or MM∗ [MM stands for two identical pseudoscalar D (B) mesons and MM∗ for a pseudoscalar D

(B) meson together with its corresponding vector excitation, D∗ (B∗)]. In other words, the octet-octet
component of the basis 5b or 5c is a consequence of having identical quarks and antiquarks. Thus,
four-quark unbound states are represented by two isolated mesons. This conclusion is strengthened when
studying the root mean square radii, leading to a picture where the two quarks and the two antiquarks are
far away, 〈x2〉1/2 À 1 fm and 〈y2〉1/2 À 1 fm, whereas the quark-antiquark pairs are located at a typical
distance for a meson, 〈z2〉1/2 ≤ 1 fm. Let us now turn to the bound states shown in Table 10, ∆E < 0,
one in the charm sector and two in the bottom one. In contrast to the results obtained for unbound states,
when the octet-octet component of basis 5b is expanded in terms of the vectors of basis 5c, one obtains
a picture where the probabilities in all allowed physical channels are relevant. It is clear that the bound
state must be generated by an interaction that it is not present in the asymptotic channel, sequestering
probability from a single singlet-singlet color vector from the interaction between color octets. Such
systems are clear examples of compact four-quark states, in other words, they cannot be expressed in
terms of a single physical channel.

Figure 5. PMM as a function of ∆E .
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We have studied the dependence of the probability of a physical channel on the binding energy. For
this purpose we have considered the simplest system from the numerical point of view, the (S, I) = (0, 1)

ccn̄n̄ state. Unfortunately, this state is unbound for any reasonable set of parameters. Therefore, we bind
it by multiplying the interaction between the light quarks by a fudge factor. Such a modification does
not affect the two-meson threshold while it decreases the mass of the four-quark state. The results are
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illustrated in Figure 5., showing how in the ∆E → 0 limit, the four-quark wave function is almost a
pure single physical channel. Close to this limit one would find what could be defined as molecular
states. When the probability concentrates into a single physical channel (PM1M2 → 1) the system gets
larger than two isolated mesons [20]. One can identify the subsystems responsible for increasing the size
of the four-quark state. Quark-quark (〈x2〉1/2) and antiquark-antiquark (〈y2〉1/2) distances grow rapidly
while the quark-antiquark distance (〈z2〉1/2) remains almost constant. This reinforces our previous result,
pointing to the appearance of two-meson-like structures whenever the binding energy goes to zero.

6. Summary

We have presented a detailed analysis of the symmetry properties of a four-quark wave function
and its solution by means of a variational approach for simple Hamiltonians. The numerical capability
of the method has been analyzed. We have also emphasized the relevance of a correct analysis of
the two-meson thresholds when dealing with the stability of four-quark systems. We have discussed
the potential importance of four-quark structures in several different systems: the light scalar-isoscalar
mesons and the open-charm mesons. We have also introduced the necessary ingredients to study the
nature of four-quark bound states, distinguishing between molecular and compact four-quark states.

Although the present analysis has been performed by means of a particular quark interacting potential,
the CQC model, the conclusions derived are independent of the quark-quark interaction used. They
mainly rely on using the same hamiltonian to describe tensors of different order, two and four-quark
components in the present case. When dealing with a complete basis, any four-quark deeply bound state
has to be compact. Only slightly bound systems could be considered as molecular. Unbound states
correspond to a two-meson system. A similar situation would be found in the two baryon system, the
deuteron could be considered as a molecular-like state with a small percentage of its wave function
on the ∆∆ channel, whereas the H−dibaryon would be a compact six-quark state. When working
with central forces, the only way of getting a bound system is to have a strong interaction between the
constituents that are far apart in the asymptotic limit (quarks or antiquarks in the present case). In this
case the short-range interaction will capture part of the probability of a two-meson threshold to form a
bound state. This can be reinterpreted as an infinite sum over physical states. This is why the analysis
performed here is so important before any conclusion can be made concerning the existence of compact
four-quark states beyond simple molecular structures.

If the prescription of using the same hamiltonian to describe all tensors in the Fock space is relaxed,
new scenarios may appear. Among them, the inclusion of many-body forces is particularly relevant. In
[12, 13] the stability of QQn̄n̄ and QQ̄nn̄ systems was analyzed in a simple string model considering
only a multiquark confining interaction given by the minimum of a flip-flop or a butterfly potential in an
attempt to discern whether confining interactions not factorizable as two-body potentials would influence
the stability of four-quark states. The ground state of systems made of two quarks and two antiquarks
of equal masses was found to be below the dissociation threshold. While for the cryptoexotic QQ̄nn̄

the binding decreases when increasing the mass ratio mQ/mn, for the flavor exotic QQn̄n̄ the effect
of mass symmetry breaking is opposite. Others scenarios may emerge if different many-body forces,
like many-body color interactions [43, 44] or ’t Hooft instanton-based three-body interactions [45],
are considered.
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Notes

1. This effect can be estimated from the experimental M(L = 1) − M(L = 0) energy differences:
a1(1260) − ρ(776) = 484 MeV, f1(1282) − ω(782) = 500 MeV, h1(1170) − η(548) = 622 MeV,
hc(3526)−ηc(2980) = 546 MeV, χc1(3511)−J/Ψ(3097) = 414 MeV, χb1(9893)−Υ(9460) = 433

MeV, being the average M(L = 1) − M(L = 0) ≈ 500 MeV.
2. One should have in mind that if flavor SU(3) symmetry is assumed, u, d, and s quarks are

identical particles.
3. Note there is no universal agreement in the phase convention regarding the isoscalar factor, so mixing

different tables from different authors should be done with care.
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