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Abstract: Mosaic, Rust, Brown spot, and Alternaria leaf spot are the four common types of apple
leaf diseases. Early diagnosis and accurate identification of apple leaf diseases can control the
spread of infection and ensure the healthy development of the apple industry. The existing research
uses complex image preprocessing and cannot guarantee high recognition rates for apple leaf
diseases. This paper proposes an accurate identifying approach for apple leaf diseases based on deep
convolutional neural networks. It includes generating sufficient pathological images and designing
a novel architecture of a deep convolutional neural network based on AlexNet to detect apple leaf
diseases. Using a dataset of 13,689 images of diseased apple leaves, the proposed deep convolutional
neural network model is trained to identify the four common apple leaf diseases. Under the hold-out
test set, the experimental results show that the proposed disease identification approach based on
the convolutional neural network achieves an overall accuracy of 97.62%, the model parameters
are reduced by 51,206,928 compared with those in the standard AlexNet model, and the accuracy
of the proposed model with generated pathological images obtains an improvement of 10.83%.
This research indicates that the proposed deep learning model provides a better solution in disease
control for apple leaf diseases with high accuracy and a faster convergence rate, and that the image
generation technique proposed in this paper can enhance the robustness of the convolutional neural
network model.

Keywords: apple leaf diseases; deep learning; convolutional neural networks; image processing

1. Introduction

China is a modern agricultural country supplying fruit products, wherein the fruit planting area is
relatively large. Due to its rich nutritional and medicinal value, the apple has become one of China’s four
major fruits. However, diseases in apple leaves cause major production and economic losses, as well as
reductions in both the quality and quantity of the fruit industry output. Apple leaf disease detection has
received increasing attention for the monitoring of large apple orchards.

Traditionally, plant disease severity is scored with visual inspection of plant tissues by trained
experts [1], which leads to expensive cost and low efficiency. With the popularization of digital cameras
and the advance of information technology in agriculture, cultivation and management expert systems
have been widely used, greatly improving the production capacity of plants [2]. However, for the
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“expert system”, extraction and expression characteristics of pests and diseases mainly depend on
expert experience, which easily leads to a relative lack of standardization and low recognition rates.
With the popularity of machine learning algorithms in computer vision, in order to improve the
accuracy and rapidity of the diagnosis results, researchers have studied automated plant disease
diagnosis based on traditional machine learning algorithms, such as random forest, k-nearest neighbor,
and Support Vector Machine (SVM) [3–12]. However, because the classification features are selected
and adopted based on human experience, these approaches improved the recognition accuracy, but the
recognition rate is still not high enough and is vulnerable to artificial feature selection. Developed
in recent years, the deep convolutional neutral network approach is an end-to-end pipeline that can
automatically discover the discriminative features for image classification, whose advantages lie in the
use of shared weights to reduce the memory footprint and improve performance, and the direct input
of the image into the model. Until now, the convolutional neural network has been regarded as one of
the best classification approaches for pattern recognition tasks. Inspired by the breakthrough of the
convolutional neutral network in image-based recognition, the use of convolutional neural networks
to identify early disease images has become a new research hotspot in agricultural informatization.
In [13–20], convolutional neural networks (CNNs) are widely studied and used in the field of crop
disease recognition. These studies show that convolutional neural networks have not only reduced the
demand of image preprocessing, but also improved the recognition accuracy.

In this paper, we present a novel identifying approach for apple leaf diseases based on a deep
convolutional neural network. The CNN-based approach faces two difficulties. First of all, apple
pathological images are not sufficient for the training model. Second, determining the best structures
of the network model is fundamentally a more difficult task.

The main contributions of this paper are summarized as follows:

• In order to solve the problem of insufficient apple pathological images, this paper proposes
a training image generation technology based on image processing techniques, which can
enhance the robustness and prevent overfitting of the CNN-based model in the training process.
Natural apple pathological images are first acquired and are then processed in order to generate
sufficient pathological images using digital image processing technologies such as image rotation,
brightness adjustment, and PCA (Principal Component Analysis) jittering to disturb natural
images; these are able to simulate the real environment of image acquisition, and expanding the
pathological images gives an important guarantee of generalization capability of the convolutional
neural network model.

• A convolutional neural network is first employed to diagnose apple leaf diseases; the end-to-end
learning model can automatically discover the discriminative features of the apple pathological
images and identify the four common types of apple leaf diseases with high accuracy. By analyzing
the characteristics of apple leaf diseases, a novel deep convolutional neural network model based
on AlexNet is proposed; the convolution kernel size is adjusted, fully-connected layers are
replaced by a convolutional layer, and GoogLeNet’s Inception is applied to improve the feature
extraction ability.

The experimental results show that the proposed CNN-based model achieves an accuracy of
97.62% on the hold-out test set, which is higher than the other traditional models. Compared with
the standard AlexNet model, the parameters of the proposed model are significantly decreased by
51,206,928, demonstrating the faster convergence rate. Using the dataset of 13,689 synthetic images
of diseased apple leaves, the identification rate increases by 10.83% over that of the original natural
images, proving the better generalization ability and robustness.

The remainder of this paper is organized as follows. In Section 2, related work is introduced and
summarized. In Section 3, based on apple leaf pathological image acquisition and image processing
technology, sufficient training images are generated. Section 4 describes the novel deep convolutional
neural network model. Section 5 analyzes the experimental results provided by the identification
approach to apple leaf diseases based on CNNs. Finally, this paper is concluded in Section 6.
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2. Related Work

Plant diseases are a major threat to production and quality, and many researchers have made
various efforts to control these diseases. In the last few years, traditional machine learning algorithms
have been widely used to realize disease detection. In [6], Qin et al. proposed a feasible solution
for lesion image segmentation and image recognition of alfalfa leaf disease. The ReliefF method
was first used to extract a total of 129 features, and then an SVM model was trained with the most
important features. The results indicated that image recognition of the four alfalfa leaf diseases can
be implemented and obtained an average accuracy of 94.74%. In [7], Rothe et al. presented a pattern
recognition system for identifying and classifying three cotton leaf diseases. Using the captured dataset
of natural images, an active contour model was used for image segmentation and Hu’s moments
were extracted as features for the training of an adaptive neuro-fuzzy inference system. The pattern
recognition system achieved an average accuracy of 85%. In [8], Islam et al. presented an approach that
integrated image processing and machine learning to allow the diagnosis of diseases from leaf images.
This automated method classifies diseases on potato plants from ‘Plant Village’, which is a publicly
available plant image database. The segmentation approach and utilization of an SVM demonstrated
disease classification in over 300 images, and obtained an average accuracy of 95%. In [9], Gupta
proposed an autonomously modified SVM-CS (Cuckoo Search) model to identify the healthy portion
and disease. Using a dataset of diseases containing plant leaves suffering from Alternaria Alternata,
Cercospora Leaf Spot, Anthracnose, and Bacterial Blight, along with healthy leaf images, the proposed
model was trained and optimized using the concept of a cuckoo search. However, identification and
classification approaches of these studies are semiautomatic and complex, and deal with a series of
image processing technologies. At the same time, it is very difficult to accurately detect the specific
disease images without extracting and designing the appropriate classification features depending
heavily on expert experience.

Recently, several researchers have studied plant disease identification based on deep learning
approaches. In [16], Lu et al. proposed a novel identification approach for rice diseases based on deep
convolutional neural networks. Using a dataset of 500 natural images of diseased and healthy rice
leaves and stems, CNNs were trained to identify 10 common rice diseases. The experimental results
showed that the proposed model achieved an average accuracy of 95.48%. In [17], Tan et al. presented
an approach based on CNN to recognize apple pathologic images, and employed a self-adaptive
momentum rule to update CNN parameters. The results demonstrated that the recognition accuracy
of the proposal was up to 96.08%, with a fairly quick convergence. In [18], a novel cucumber leaf
disease detection system was presented based on convolutional neural networks. Under the fourfold
cross-validation strategy, the proposed CNN-based system achieved an average accuracy of 94.9%
in classifying cucumbers into two typical disease classes and a healthy class. The experimental
results indicate that a CNN-based model can automatically extract the requisite classification features
and obtain the optimal performance. In [14], Sladojevic et al. proposed a novel approach based
on deep convolutional networks to detect plant disease. By discriminating the plant leaves from
their surroundings, 13 common different types of plant diseases were recognized by the proposed
CNN-based model. The experimental results showed that the proposed CNN-based model can reach
a good recognition performance, and obtained an average accuracy of 96.3%. In [19], Mohanty et al.
developed a CNN-based model to detect 26 diseases and 14 crop species. Using a public dataset of
54,306 images of diseased and healthy plant leaves, the proposed model was trained and achieved
an accuracy of 99.35%. These studies show that convolution neural networks have been widely applied
to the field of crop and plant disease recognition, and have obtained good results. However, on the
one hand, these studies only apply the CNN-based models to identify crop and plant diseases without
improving the model. On the other hand, so far, the CNN-based model has not been applied to the
identification of apple leaf diseases; a novel CNN-based model developed by our research group is
applied to detect apple leaf diseases in this paper.
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3. Generating Apple Pathological Training Images

3.1. Apple Leaf Pathological Image Acquisition

Appropriate datasets are required at all stages of object recognition research, from training the
CNN-based models to evaluating the performance of the recognition algorithms [14].

In this section, four common apple leaf diseases were chosen as the research objects, whose lesions
are more widespread than others and do great harm to apple quality and quantity. A total of 1053 images
with typical disease symptoms were acquired, consisting of 252 images of Mosaic (caused by Papaya
ringspot virus), 319 images of Brown spot (caused by Marssonina coronaria), 182 images of Rust (caused by
Pucciniaceae glue rust), and 300 images of Alternaria leaf spot (caused by Alternaria alternaria f.sp mali).
Images of apple leaf diseases were supplied by two apple experiment stations, which are in Qingyang county,
Gansu Province, China and Baishui county, Shanxi Province, China. A BM-500GE/BB-500GE digital color
camera was used to capture apple leaf disease images with resolutions of 2456× 2058 pixels. After processing
using digital image processing technology, the number of images was expanded in order to train the
proposed model.

Figure 1 shows that the difference among the four apple leaf diseases is obvious. Firstly, the lesions
caused by the same disease show a certain commonality under similar natural conditions. Secondly,
the yellow lesion of Mosaic diffuses throughout the leaf, which is different from the other disease
lesions. The aforementioned observations contribute to the diagnosis and recognition of the diseases.
However, the similarity between Rust and Alternaria leaf spot in terms of geometric features increases
the complexity of distinguishing the apple leaf diseases. Finally, the lesion of Brown Spot is brown
with an irregular edge of green, which is different from the others and relatively easy to detect.
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3.2. Image Processing and Generating Pathological Images

The overfitting problem of deep learning models appears when a statistical model describes
random noise or errors rather than the underlying relationship [21]. In order to reduce overfitting at
the training stage and enhance the anti-interference ability of complex conditions, a slight distortion is
introduced to the images at the experimental stage.

3.2.1. Direction Disturbance

In the apple orchard, the relative position of the image acquisition device to the research
object is determined by their current spatial relation, which depends on the shooting position [17].
Therefore, it is difficult to photograph apple leaf pathological images from every angle to meet all the
possibilities. In this section, for testing and constructing the adaptability of the CNN-based model,
an expanded image dataset is established from the natural images using rotation transformation and
mirror symmetry.

Image rotation occurs when all pixels rotate a certain angle around the center of the image. Assume
that P0(x0, y0) is an arbitrary point of the image; after rotating θ◦ counterclockwise, the point’s coordinate is
P(x, y). The coordinates of the calculation of two points are shown in Equations (1) and (2).{

x0 = r cos α

y0 = r sin α
(1)
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{
x = r cos(α− θ) = x0 cos θ + y0 sin θ

y = r sin(α− θ) = −x0 sin θ + y0 cos θ
(2)

The horizontal mirror symmetry takes a vertical line in an image as the axis, and all pixels of the
image are exchanged. Assume that w represents the width, and that an arbitrary point’s coordinate is
(x0, y0); after mirror symmetry, the point’s coordinate is (w− x0, y0).

As shown in Figure 2, a pathological image is rotated and mirrored to generate four pathological
images, in which the angle of rotation consists of 90 ◦, 180 ◦and 270 ◦, and mirror symmetry includes
horizontal symmetry.
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3.2.2. Light Disturbance

The light condition often becomes complex during image collection, owing to the interference of
many factors, especially weather factors [17]—variable sunlight orientation, the random occurrence
of cloud, the disturbance of sand and dust, hazy weather, etc. These factors probably influence the
brightness and balance of acquired images. To improve the generalization ability of the learning model,
it must be trained with expanded leaf disease images that imitate different light backgrounds. Based on
an original image, six apple leaf pathological images are generated by adjusting the sharpness value,
brightness value, and contrast value.

Image sharpening can enhance image edges and borders to make the object emerge from the
picture. Assuming an RGB image pixel c(x, y) = [R(x, y), G(x, y), B(x, y)]T , the Laplacian template is
applied into the image using Equation (3):

∇2[c(x, y)] =

 ∇2R(x, y)
∇2G(x, y)
∇2B(x, y)

. (3)

For the alteration of image brightness, the RGB value of pixels needs to be increased or decreased
randomly. Assume that V0 represents the original RGB value, V is the adjusted value, and d represents
the brightness transformation factor. The formula is as follows:

V = V0 × (1 + d). (4)

For the contrast of the image, the larger RGB value is increased and the smaller RGB value is
reduced, based on the median value of the brightness. The formula is as follows:

V = i + (V0 − i)× (1 + d) (5)

where i represents the median value of the brightness, and the other parameters have the same meaning
as in Equation (4).

In addition to the direction disturbance and light disturbance, Gaussian noise and PCA jittering
are also employed on the original apple leaf pathological images.

The original images are disturbed by Gaussian noise, which can simulate the possible noise
caused by equipment in the image acquisition process. First, random numbers are generated consistent
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with a Gaussian distribution. Then, the random numbers are added to the original pixel values of the
image, which finally compresses the sums to the [0, 255] interval.

PCA jittering was proposed by Alex et al. [22], and is used to reduce overfitting. In this paper, it is
applied to expand the dataset. To each RGB image pixel Ixy = [IR

xy, IG
xy, IB

xy]
T , the following quantity is

added:
[P1,P2,P3][a1λ1, a2λ2, a3λ3]

T (6)

where Pi and λi are the ith feature vector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the random variable.

The light disturbance is illustrated in Figure 3, with the six pathological images generated by
adjusting the brightness, contrast, and sharpness. Figure 4 visualizes the Gaussian noise and PCA
jittering against the pathological image.
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For this stage, 12 pathological natural images can be derived from an original apple image. Finally,
an image database containing 10,888 images for training and 2801 images for testing was created.
Chosen from experience, the size of the images was compressed from 2456 × 2058 to 256 × 256,
which is able to be divided by 2 and reduces the training time [16].

4. Building the Deep Convolutional Neural Network

Inspired by the classical AlexNet [22], GoogLeNet [23], and their performance improvements,
a deep convolutional neural network model is proposed to identify apple leaf diseases. The proposed
CNN-based model and related parameters are shown in Figure 5 and Table 1. First of all, a structure
named AlexNet Precursor is designed, which is based on the standard AlexNet model. For the perception
of the convolution kernel, a larger sized the convolution kernel has a stronger ability to extract the
macro information of the image, and vice versa. A lesion is smaller than the whole image, and other
information on the image can be understood as “noise” which needs to be filtered. As a consequence,
the first convolutional layer is designed to be 96 kernels of size 9 × 9 × 3, which is different from the
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first convolutional layer’s kernel size of 11 × 11 × 3 in the standard AlexNet. The second convolutional
layer filters the noise with 256 kernels of size 5 × 5 × 48; response-normalization layers follow the first
two convolutional layers, which are themselves followed by max-pooling layers. The third convolutional
layer has 384 kernels with a size of 3 × 3 × 256 connected to the (normalized, pooled) outputs of the
second convolutional layer. The fourth layer is filtered with 384 kernels of size 3 × 3 × 192, and the fifth
layer has 256 kernels with a size of 2× 2× 192 to improve the ability to extract small features, which is
also different from the standard AlexNet, and is then followed by a max-pooling layer.

After AlexNet Precursor, an architecture named Cascade Inception is designed including two
max-pooling layers and two Inception structures. The first max-pooling layer is applied to filter the
noise of feature maps generated by AlexNet Precursor, and the two Inceptions then extract the optimal
discrimination features from multidimension analysis. Feature maps before the first Inception are
input into the second Inception’s concatenation layer, which prevents some of the features being
filtered by these two Inceptions. Meanwhile, the sixth convolutional layer followed by the Cascade
Inception has 4096 kernels with a size of 1 × 1 × 736, which replaces the first two fully connected
layers of the standard AlexNet. The fully connected layer is adjusted to predict four classes of apple
leaf diseases, and the final layer is a four-way Softmax layer.

Table 1. Related parameters of the convolutional neural network (CNN)-based model.

Type Patch Size/Stride Output Size

Convolution 9 × 9/4 96 × 55 × 55
Pool/Max 3 × 3/2 96 × 27 × 27

Convolution 5 × 5/1 256 × 27 × 27
Pool/Max 3 × 3/2 256 × 13 × 13

Convolution 3 × 3/1 384 × 13 × 13
Convolution 3 × 3/1 384 × 13 × 13
Convolution 2 × 2/1 256 × 14 × 14

Pool/Max 3 × 3/2 256 × 7 × 7
Pool/Max 3 × 3/2 256 × 3 × 3
Inception - 256 × 3 × 3
Inception - 736 × 3 × 3
Pool/Max 3 × 3/2 736 × 1 × 1

Convolution 1 × 1/1 4096 × 1 × 1
Fully Connection - 4

Softmax - 4

More specifically, the convolution layer, pooling layer, activation function, and Softmax layer in
the novel CNN-based model are described below.
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4.1. Convolution Layer

The output feature map of each convolution layer is determined by a convolution operation
between the upper feature maps of the current layer and convolution kernels. Generally, the output
feature map could be indicated by Equation (7):

xλ
j = ∑

i∈M j

xλ−1
i × kλ

ij + bλ
j (7)

where λ means the λth layer, kij represents the convolutional kernel, bj is the bias, and M j is a set of
input feature maps [16].

4.2. Max-Pooling Layer

The max-pooling layer, which is a form of nonlinear down-sampling, could reduce the size of the
feature maps gained from the convolutional layers to achieve spatial invariance, which leads to faster
convergence and improves the generalization performance [24].

When the feature map a is passed to the max-pooling layer, the max operation is applied to
the feature map a, which produces a pooled feature map s as the output. As shown in Equation (8),
the max operation selects the largest element:

sj = max
i∈Rj

αi (8)

where Rj represents pooling region j in feature map a, and i is the index of each element within it;
s denotes the pooled feature maps [25].

4.3. Softmax Regression

Softmax regression is used for multiclassification problems. The hypothesis function is shown
in Equation (9):

hθ(x) =
1

1 + exp(−θTx)
. (9)

The model parameters θ are trained to minimize the cost function J(θ). In the equation below, 1{.}
is the indicator function, so that 1{a true statement} = 1, and 1{a false statement} = 0. The cost function
J(θ) is shown in Equation (10):

J(θ) = − 1
m
[

m

∑
i=1

k

∑
j=1

1{y(i) = j} log p(y(i) = j|x(i); θ)]. (10)

The training database is denoted
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
, yi ∈ {1, 2 . . . , k}.

In Softmax regression, the possibility of classifying x into category j is

p(y(i) = j|x(i); θ) =
eθT

j x(i)

∑k
l=1 eθT

l x(i)
. (11)

4.4. ReLU Activation Function

The activation function determines the neural network data processing method, and influences
the learning ability of the neural network model. The ReLU activation function has a fast convergence
speed and alleviates the problem of overfitting. As a result, this method is used for the output of every
convolutional layer. The ReLU activation function formula is shown in Equation (12).

f (x) = max(0, x) (12)
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4.5. GoogLeNet’s Inception

A special structure named Inception is the main feature of GoogLeNet; it keeps the sparse
network structure, and utilizes an intensive matrix of high-performance computing. As shown in
Figure 6, the Inception consists of parallel 1 × 1, 3 × 3, and 5 × 5 convolutional layers as well as
a max-pooling layer to extract a variety of features in parallel. Then, 1 × 1 convolution layers are
added for dimensionality reduction. Finally, a filter concatenation layer concatenates simply the output
of all these parallel layers [23].
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4.6. Nesterov’s Accelerated Gradient (NAG)

The training process of convolutional neural networks includes two stages of a feedforward pass
and a backpropagation pass. In the backpropagation pass stage, the error is passed from higher layers
to lower layers.

Stochastic Gradient Descent (SGD) is used to update the weight for convolutional neural networks.
However, SGD may lead to the “local optimum” problem. To solve this problem, Nesterov’s
Accelerated Gradient (NAG) is applied to train the proposed CNN-based model. As a convex
optimization algorithm, NAG has a higher rate of convergence. The updated weights are calculated
based on the last iteration, as shown in the Equations (13) and (14):

di = βdi−1 + αg(θ− βdi−1) (13)

θi = θi−1 − di (14)

where di represents the current update vector, di−1 represents the last update vector, θi is the current
updated parameter, g(θ) represents θ’s gradient in the objective function, β is the momentum term,
and α represents the learning rate [26].

5. Experimental Evaluation

In this section, the experimental setup is first introduced, and details of the experimental platform
and benchmarks are provided. Finally, experimental results are analyzed and discussed.

5.1. Experimental Setup

The experiment was performed on an Ubuntu workstation equipped with an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20 GHz, accelerated by two NVIDIA Tesla P100 GPUs. The NVIDIA Tesla P100
has 3584 CUDA cores, and 16 GB of HBM2 memory. The core frequency is up to 1328 MHz and the
floating-point performance is 10.6 TFLOPS. The CNN-based model was implemented in the Caffe
deep learning framework [27]. More detailed configuration parameters are presented in Table 2.
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Table 2. Software and hardware environment.

Configuration Item Value

Type and specification Lenovo System X 3650 M5
CPU Intel® Xeon(R) CPU E5-2650 v4 @ 2.20 GHz × 48

Graphics processor units NVIDIA Tesla P100-PCIE-16GB × 2
Operating system Ubuntu 16.04.2 LTS (64-bit)

Memory 512 GB
Hard disk 16 TB

Solid state disk 1.2 TB

This paper uses the four common types of apple leaf diseases to evaluate the novel CNN-based
model. These apple pathological images were collected in Qingyang County, Gansu Province, China
and Baishui County, Shanxi Province, China. After application of image processing techniques,
the generated pathological images constituted a dataset of 13,689 images of diseased apple leaves;
the numbers of various pathological images in the training and test sets are presented in Table 3.

Table 3. Dataset for image classification of diseased apple leaves.

Class Number of Training Images Number of Testing Images

Alternaria leaf spot 3150 750
Mosaic 2513 763

Rust 1926 440
Brown Spot 3299 848

Total 10,888 2801

5.2. Accuracy and Learning Convergence Comparison

In this section, other learning models such as SVM and BP neural networks, standard AlexNet,
GoogLeNet, ResNet-20, VGGNet-16, and the proposed model are trained on the expanded dataset.
ResNet-20, AlexNet, and GoogLeNet were trained over 40 epochs with a learning rate of 0.01,
and SGD was chosen as the optimization algorithm. The proposed model was trained using the
NAG optimization algorithm with a learning rate of 0.001. In addition, VGGNet-16 was conducted
by transfer learning, with a learning rate of 0.0001. As shown in Table 4, because the adjustment
of the convolutional layers is based on the features of apple leaf disease images, the experimental
results show that the proposed model achieved an accuracy of 97.62% on the testing set, which is
higher than that of other models. In addition, the AlexNet model has a good recognition ability and
obtains an average accuracy of 91.19%. GoogLeNet has multiple Inceptions and possesses the ability
for multidimensional feature extraction; however, its network is not adjusted by features of apple
pathological images, and a final recognition rate of 95.69% is realized. ResNet-20, as a residual neural
network, obtains an accuracy of 92.76%. VGGNet-16 realized a recognition rate of 96.32% with transfer
learning. In addition, the SVM model with the SGD optimizer and BP neural networks obtained
an accuracy of 68.73% and 54.63%, respectively. The experimental results show that the traditional
approaches rely heavily on classification features designed by experts to enhance recognition accuracy,
while the level of expert experience has a significant influence on the selection of classification features.
Compared with the traditional approaches, the CNN-based approaches could not only automatically
extract the best classification features from multiple dimensions, but also learn layered features,
from low-level features, such as edge, corner, and color, to high-level semantic features, such as shape
and object, to improve the recognition performance on apple leaf diseases.

Table 5 shows the confusion matrix of our model, and the fraction of accurately predicted images
for each of the four apple leaf diseases is presented in detail. As the analysis of the four diseases in the
above section showed, the characteristics of Mosaic and Brown spot are very different from the others,
and recognition rates of 100.00% and 99.29 were achieved for Mosaic and Brown spot, respectively.



Symmetry 2018, 10, 11 11 of 16

However, Alternaria leaf spot is extremely similar to Rust in geometric features, which leads to their
lower recognition rates. As shown in Figure 7, pathological features in the original image are extracted
by the proposed model with GoogLeNet Inception, which improves the automatic feature extraction
in a multidimensional space. Hence, the proposed CNN-based model has a better identification ability
with regards to apple leaf diseases.
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Table 4. Recognition performance.

Method SVM BP AlexNet GoogLeNet ResNet-20 VggNet-16 Our Work

Accuracy (%) 68.73% 54.63% 91.19% 95.69% 92.76% 96.32% 97.62%

Table 5. Confusion matrix for our work.

Class
Predicted

Alternaria Leaf Spot Mosaic Rust Brown Spot Accuracy (%)

Ground
Truth

Alternaria
Leaf Spot 689 3 58 0 91.87%

Mosaic 0 763 0 0 100%
Rust 3 0 437 0 99.32%

Brown Spot 5 1 0 842 99.29%

In addition, in this experiment, the five CNN-based models were selected to research the
variation of accuracy with the training epochs. As shown in Figure 8, the four classical convolutional
neural networks and the proposed model begin to converge after a certain number of epochs and
finally achieve their optimal recognition performance. On the whole, the training processes of
GoogLeNet, VGGNet-16, and AlexNet are basically stable after 10 epochs, and other models have
a satisfactory convergence after 15 epochs. Because of the use of transfer learning, VGGNet-16 has
a faster convergence speed than other CNN-based models, and achieves an accuracy of 96.32%.
Because GoogLeNet uses Inception structures—which have a strong ability for feature learning—to
extract the features of apple leaf diseases, the convergence point of GoogLeNet occurs at 10 epochs.
Compared to other neutral networks, AlexNet uses a traditional network structures, which results
in slower convergence—the starting point of convergence is at about 16 epochs. As for ResNet-20,
the strategy of batch normalization improves its convergence rate, and the model reaches convergence
at 20 epochs. In our work, Inception structures, removing the partial fully connected layers, and the
NAG optimization algorithm are used for the proposed model; compared with the standard AlexNet,
the proposed model improves the convergence speed of the network model, begins to converge at
about 14 epochs, and provides higher recognition accuracy for apple leaf diseases.
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In addition, to prevent overfitting in this paper, various methods were performed. First, various
digital image processing technologies such as image rotation, mirror symmetry, brightness adjustment,
and PCA jittering, were applied to the natural training images to simulate the real acquisition
environment and increase the diversity and quantity of the apple pathological training images,
which can prevent the overfitting problem and make the proposed model generalize better during
the training process. Second, the response-normalization layers were used in the proposed model to
achieve local normalization, which is thought of as an effective way to prevent the overfitting problem.
Third, by replacing some of the fully connected layers with convolution layers, the proposed model has
fewer training parameters than the standard CNN-based model, and this scheme aids the generation
of the model.

5.3. Computational Resources

In computational theory, the simplest computational resources are computation time, the number
of parameters necessary to solve a problem, and memory space [28]. In this section, the computational
resource comparisons of four classic neural network models and the proposed model are analyzed in
Table 6. Compared with other learning models, although the proposed model is trained with batch
size 128, it takes the least video memory space for training. The standard AlexNet has the minimum
training time among all the CNN-based models. Compared with AlexNet, the proposed model not
only has a similar training time, but also achieves a higher accuracy of recognition. As for ResNet-20,
it has the least learned weights, but takes up a great deal of memory space and takes the longest time
to train parameters. Overall, the proposed model uses less computational resources to build the model
and acquires the best accuracy in identifying apple leaf diseases, which allows it to meet the needs of
real production.

Table 6. Computational Resource Comparison.

Model Batch Size Memory Space Training Time # Parameters

AlexNet 128 3.29 GB 33.03 m 56,884,612
GoogLeNet 32 4.33 GB 34.77 m 5,977,652
VGGNet-16 32 8.7 GB 146.00 m 165,734,212
ResNet-20 18 12.0 GB 163.00 m 274,436
Our Work 128 2.83 GB 34.72 m 5,677,684
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5.4. The Effect of Pooling Layers for Identifying Leaf Diseases

In order to verify the influence of the inserted max-pooling layers—that is, the first layer in
the structure of the Cascade Inception—on the identification accuracy, a contrast experiment was
performed under the same experimental conditions.

The experiment showed that the novel CNN-based model with inserted max-pooling layers
achieves an accuracy of 97.62%, and the proposed model without inserted max-pooling layers only
obtains an accuracy of 93.29%. The experimental result shows that the recognition accuracy is improved
by about 4%, which is because pooling layers can filter the noise in feature maps, which can cause the
Inception structures to better extract features and thus improve the recognition accuracy.

5.5. The Effect of Optimization Algorithms for Identification Accuracy

The optimization algorithm is also important for the performance of the recognition rate. In this
section, the SGD optimization algorithm with a learning rate of 0.01 and the NAG optimization
algorithm with a learning rate of 0.001 are used to train the CNN-based model; the learning rate of the
NAG algorithm is stepped down by 80% every 10 epochs, whose learning rates are parameters of their
own best performance.

As shown in Figure 9, the CNN-based model with SGD achieves an accuracy of 93.32%, while
an accuracy of 97.62% is obtained by the model with the NAG optimizer. The phenomenon indicates
that the model based on the SGD optimizer has a “local optimum” problem. The SGD optimizer
updates the parameters based on the current batch and the current position, which causes the update
direction to be very unstable. In general, the negative gradient direction is used as the forward direction.
This is because this direction is the fastest descent direction from the current position. However, if the
target function is a nonconvex optimization, the SGD optimizer tends to fall into the “local optimum”.
While the NAG optimizer updates the parameters, it is not only influenced by the previous update,
but also uses the current batch gradient to fine-tune the final direction, which improves the stability of
the training process and has the ability to overcome the “local optimum” problem.
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At the same time, as shown in Figure 9, the result shows that the training process of the proposed
model almost converged after 25 epochs, and finally achieved an accuracy of 97.62%. The reason for
this phenomenon is that the learning rate decreases gradually to almost the invariant, which greatly
reduces the updated amplitude of parameters. Furthermore, the learned weights of the CNN-based
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model were updated to almost the state of convergence. After this, the learned weights only had
a minor update. As a result, the training process was basically stable after 25 epochs.

5.6. The Generalization and Robustness of the CNN-Based Model

The size of the dataset has an impact on the identification accuracy of apple leaf diseases, and this
paper performed two sets of experiments to estimate the effectiveness of the dataset for the proposed
model, which is trained separately before and after the expansion of the dataset. From the results
shown in Figure 10, without an expanded image dataset, the proposed model has an extremely unstable
training process and finally reaches a recognition rate of 86.79%. However, the proposed model with
the expanded dataset achieves an accuracy of 97.62%, which improves the recognition rate by about
10.83% over that of the nonexpanded dataset.
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From the known results, as shown in Figure 10, this phenomenon is mainly due to the following
reasons: (1) the expanded dataset generated by various digital image processing technologies gives
the proposed CNN-based model more chances to learn appropriate layered features; (2) the diversity
of images in the expanded image dataset helps to fully train the learned weights in the CNN-based
model, while the smaller image dataset lacks diversity and is going to cause the overfitting problem;
and (3) the preprocessing of the images simulates the real acquisition environment of the apple
pathological images and, as a consequence, the CNN-based model has better identification ability for
natural apple pathological images obtained from the apple orchard. The experimental result shows
that the expanding dataset contributes to enhancing the generalization ability of the proposed model.

6. Conclusions

This paper has proposed a novel deep convolutional neural network model to accurately identify
apple leaf diseases, which can automatically discover the discriminative features of leaf diseases
and enable an end-to-end learning pipeline with high accuracy. In order to provide adequate apple
pathological images, firstly, a total of 13,689 images were generated by image processing technologies,
such as direction disturbance, light disturbance, and PCA jittering. Furthermore, a novel structure of
a deep convolutional neural network based on the AlexNet model was designed by removing partial
full connected layers, adding pooling layers, introducing the GoogLeNet Inception structure into
the proposed network model, and applying the NAG algorithm to optimize network parameters to
accurately identify the apple leaf diseases.

The novel deep convolutional network model was implemented in the Caffe framework on the
GPU platform. Using a dataset of 13,689 images of diseased leaves, the proposed model was trained
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to detect apple leaf diseases. The results demonstrated are satisfactory, and the proposed model can
obtain a recognition accuracy of 97.62%, which is higher than the recognition abilities of other models.
Compared with the standard AlexNet model, the proposed model reduces the number of parameters
greatly, has a faster convergence rate, and the accuracy of the proposed model with supplemented
images is increased by 10.83% compared with the original set of diseased leaf images. The results
indicated that the proposed CNN-based model can accurately identify the four common types of apple
leaf diseases with high accuracy, and provides a feasible solution for identification and recognition of
apple leaf diseases.

In addition, due to the restriction of biological growth laws and the current season in which
the apple leaves have fallen, other diseases of apple leaves are difficult to collect. In future work,
for the sake of detecting apple leaf diseases in real time, other deep neural network models, such as
Faster RCNN (Regions with Convolutional Neural Network), YOLO (You Only Look Once), and SSD
(Single Shot MultiBox Detector), are planned to be applied. Furthermore, more types of apple leaf
diseases and thousands of high-quality natural images of apple leaf diseases still need to be gathered
in the plantation in order to identify more diseases in a timely and accurate manner.
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