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Abstract: This paper proposes an image authentication scheme for mobile devices. The proposed
scheme generates an image watermark by using discrete cosine transform (DCT) and hides the
watermark in the spatial pixels for image authentication and tamper detection. The hiding operator
used in this paper is very simple in a mobile environment allowing high-speed authentication using a
low-power mobile device. The quality of the stego-image and the recovered image becomes excellent
as a result of the proposed scheme.
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1. Introduction

With an increasing number of people having mobile equipment and with the advanced
transmission capability of high-speed networks, more and more images are transmitted through
the Internet via mobile devices. However, the Internet is a non-secure channel; secure images, used by
the military or in the medical field, need to be protected against illegal attempts to manipulate them
before they are transmitted on the Internet. Many techniques for protecting images have been proposed,
such as cryptography, watermarking, digital signatures, and so on.

Cryptography is a technique that constructs a protocol to prevent third parties from reading
private messages. In this technique, the original medium will become the ciphertext after encryption,
which, however, attracts the attention of third parties. Watermarking techniques ensure image integrity
and authenticity, copyright, and ownership. These techniques prevent unauthorized users from
accessing the image and achieve image integrity, where the content is intact and authentic and the
image is original. The watermarking technique is better than cryptography in terms of protecting the
image content. The concept of a digital watermark was first created in 1992 by Andrew and Charles [1].
The watermark is a special technique of steganography, in which secret information is concealed in a
medium. Watermarks have been widely used in many applications such as image authentication and
ownership identification. When the watermarked image has been tampered with, the owner of the
image can easily detect the modification in the image.

According the concealed location, watermark schemes can be categorized into two groups,
spatial domain and frequency domain. Spatial domain watermarking techniques operate on
image pixel image directly. The simplest spatial domain method is Least Significant Bit (LSB)
replacement. The scheme conceals the secret message into the pixel by replacing the least significant
bits. Famous spatial watermarking schemes include difference expansion, quantization-based
hiding scheme, side-match hiding scheme, LSB matching, modulus function scheme, and so on.
Difference expansion-based schemes expand the difference between two original pixels (or the
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prediction value and the pixel) to embed the secret information. Quantization-based hiding scheme
quantize the value range of the pixel into several subsets. Each subset represents a different secret
message. The scheme modifies the pixel to let the pixel located in the correct subset fit with its
corresponding hidden message. Side-match techniques use neighboring pixels to measure the hiding
length and its corresponding embedding strategy. Modulus function uses the index of each pixel as
weight to compute a modulus value to map the hiding message.

Mielikainen proposed the LSB matching method in 2006 [2]. The scheme applies two functions,
an LSB function and a matching function, to embed two secret bits into two spatial pixels. Let (AL, AR)
be two neighboring pixels and s1 and s2 are two binary secret bits. First, the pixel AL is computed
using the LSB function to get the lowest bit of AL. Next, the scheme determines whether the lowest
bit is equal to the secret bit s1. If LSB(AL) = s1, then AL does not need modification and can be input
directly into the matching function F(AL, AR). Conversely, if LSB(AL) 6= s1, then AL = AL − 1, and it is
input into the matching function F(AL, AR). The matching function is as follows:

F(AL, AR) = LSB
(⌊

AL
2

⌋
+ AR

)
. (1)

The scheme determines whether the value of F(AL, AR) is equal to the secret bit s2 and uses four
modification rules to conceal data:

Rule 1: LSB(AL) = s1 and F(AL, AR) = s2, the pixels AL and AR do not need modification.
Rule 2: LSB(AL) = s1 and F(AL, AR) 6= s2, the pixel AL does not change, and A′R = AR + 1.
Rule 3: LSB(AL) 6= s1 and F(AL− 1, AR) = s2, the pixel A′L = AL − 1, and AR does not change.
Rule 4: LSB(AL) 6= s1 and F(AL − 1, AR) 6= s2, the pixel A′L = AL + 1, and AR does not change.

In 2015, Lyu et al. used a rehashing model to propose an image authentication scheme [3]. In this
scheme, a cover image is divided into several 1 × 2-sized pixel pairs. They let (AL, AR) be a pixel pair
and i be the location of the pair, where AL is used to conceal the hash code of the pixel pair, and AR
is used to embed the recovery information. Lyu et al. supposed that the hash value of the location i
is k. The hash value is then concealed in the three least significant bits (LSBs) of AL. The recovered
information is the three most significant bits (MSBs) of the mean value of the pixel pair, which will be
embedded into the three LSBs of AR. In the extraction and recovery process, the stego-image is also
divided into several 1 × 2-sized pixel pairs. The authentication code and the recovery information are
extracted from the first and the second pixels, respectively. The location i of the pixel pair is used to
map the hash table to generate the hash value k. If the hash value is equal to the LSBs of the first pixel
A′L, then the pixel has not been tampered with. On the other hand, if the value is unequal to the LSBs
of A′L, then the pixel has been tampered with. In this case, the recovery information is extracted from
the three LSBs of A′R and is used to recover the original pixel.

The watermark, concealed in the spatial domain, can be very easily removed using image
processing. Hence, researchers conceal the watermark in the frequency domain to maintain the
robustness. Frequency domain watermarking schemes first transform the pixel values into coefficients.
Then, the secret message is concealed in the transformed coefficients. The popular transformation
methods are discrete cosine transform (DCT), Fourier, and discrete wavelet transform (DWT). Yu et al.
proposed a watermarking scheme for image authenticity in 2015 [4]. The authors divided a host
image into several 8 × 8-sized blocks and used the DCT compression method to decompose each
block. They used block content and variances to generate a watermark and concealed it in the first
ten coefficients of a low-frequency band. Qi et al. applied singular value decomposition (SVD)
to form a watermarking scheme for preserving the image content authentication and localizing
the tampered location [5]. They used a single value to generate a watermark and concealed it in
the wavelet coefficients of the image. The scheme includes SVD and Wavelet operations. In 2014,
Al-Otum proposed a watermarking technique to verify the authenticity and localize the tampered



Symmetry 2018, 10, 13 3 of 16

area [6]. He used DWT to decompose a cover image and conceal a secret message in the low-frequency
second-level DWT coefficients.

In 2016, Huang et al. proposed a reversible hiding scheme in JPEG images [7]. In their scheme,
a cover image is divided into several 8 × 8-sized blocks. Each block is compressed by the DCT
compression process to generate coefficients. The coefficients are quantized with a quantization table
to get the quantized coefficients. The secret message is then concealed in alternating-current (AC)
quantized coefficients with values 1 and −1. The zero AC coefficients remain unchanged. Other AC
coefficients are shifted to prevent collision. Furthermore, in their scheme, a threshold Tz is used to
determine whether the block is embeddable or not. If the number of AC coefficients with a magnitude
of 1 is less than the threshold, then the block is non-embeddable. For the non-embeddable block,
the scheme does not change the coefficients to maintain the image quality. For the embeddable block,
the coefficients are modified by

C′i =

{
Ci + sign(Ci)× b, i f |Ci| = 1,

Ci + sign(Ci), i f |Ci| > 1.
(2)

sign(x) =


1, i f x > 0,

0, i f x = 0,

−1, i f x < 0,

(3)

where Ci is the ith coefficient, C′i is the stego-coefficient, and b is the secret bit. The function sign(x)
returns the sign of the input value. If the coefficient is equal to 1 or −1, then the secret message is
concealed in the coefficient by Ci + sign(Ci)× b. On the contrary, if the coefficient is not equal to 1 or
−1, it is shifted by Ci + sign(Ci).

Most of the authentication schemes described above were designed for general computers,
not mobile devices. For those who want to transmit images through the Internet using mobile devices,
a transitional authentication scheme is not suitable because mobile devices have limited power and
battery lives that cannot handle time-consuming hiding operations.

To solve this problem, this paper proposes an authentication scheme for mobile devices.
The proposed scheme extracts image features from a cover image and conceals the features in the
image for image authentication and tamper detection. The hiding operators are “add” and “subtract”.
The featured extraction operation used in the proposed scheme is DCT which is a common compression
method used to generate JPEG images. The applied operations are lightweight operators suitable for
mobile devices.

DCT represents a sequence of numbers in terms of a sum of cosine functions in different
coefficients. It uses cosine function rather than sine function because fewer cosine functions are
needed to approximate the same signal. DCT has been widely used in many applications, such as lossy
compression, image and audio processing, feature extraction, pattern recognition, and so on. In general,
DCT is cognate to the Discrete Fourier transform (DFT). The DCT numbers are concerned with Fourier
coefficients of a periodically and symmetrically extended array. The length of DCT number is twice of
that of DFT coefficients and DCT operates on real data with even symmetry. The DCT transformation
is a symmetric transformation that allows the transformation array to be precomputed offline and
applied in a mobile environment thereby increasing computational efficiency [8].

2. Related Works

2.1. Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is a kind of transformation technique that separates the
image into several spectral sub-bands of different importance [9]. The process of DCT is to transform
an image from spatial pixels to frequency coefficients. The DCT is a reversible process. After the
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inverse DCT process, the frequency coefficients can be transformed to their original spatial pixels.
A diagram of the DCT processes is shown in Figure 1.Symmetry 2018, 10, 13  4 of 17 
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The general DCT equation for a 2D image is defined by:

F(u, v) =
2√
NM

C(u)C(v)
N−1

∑
x=0

M−1

∑
y=0

p(x, y) cos
[
(2x + 1)uπ

2N

]
cos
[
(2y + 1)vπ

2M

]
(4)

C(u), C(v) =

{ √
1
2 , u = 0 | v = 0,

1 , otherwise.
(5)

In the equation, p(x, y) is a pixel value in the coordinate (x, y) of the block, and F(u, v) is the
corresponding coefficient in the coordinate (u, v) of the block. N and M are the width and height of
the block, respectively. The top-left corner coefficient is the most important coefficient, called the DC
coefficient or the constant components. The other coefficients are the alternating-current quantized
coefficients called AC. For example, Figure 2 is a block with a size N ×M = 8× 8, and Figure 3 is the
coefficient table of Figure 2. The DC value of the figure is 57.2756, which defines the basic hue for the
entire block.

The coefficient can be recovered to its original pixel by using the inverse DCT (IDCT) process.
The IDCT equation is shown below:

p(x, y) = NM× 2√
NM

u−1

∑
u=0

v−1

∑
v=0

C(u)C(v)F(u, v) cos
[
(2x + 1)uπ

2N

]
cos
[
(2y + 1)vπ

2M

]
(6)
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The coefficients in Figure 3 will be transformed to their original value, as shown in Figure 2,
after the IDCT process.Symmetry 2018, 10, 13  5 of 17 
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2.2. Lu et al.’s Diagonal Watermarking Scheme

In 2012, Lu proposed a diagonal watermarking scheme to detect image manipulation [10]. In the
scheme, an image is separated into four parts, and each part is divided into several 2× 2 blocks.
Every block has a corresponding block in another part. Two blocks form a block pair. The average
values of the two blocks are the authentication code. For example, Figure 4a,b are two example blocks.
The average values of block A and B are

Avg_A =
⌊
(32+121+210+57)

4

⌋
= (105)10 = (01101001)2 and

Avg_B =
⌊
(41+42+22+24)

4

⌋
= (32)10 = (00100000)2.

Then, the four most significant bits of Avg_A and Avg_B are extracted to form an authentication
code. The extracted MSB are MSB_A = 0110 and MSB_B = 0010. The combined code is MSB_A||MSB_B
= 01100010. The combined code is then encrypted by a Keyed-hash message authentication code
(HMAC) function to generate the authentication code HAC = 1010. The watermark of the blocks A and
B is MSB_A||MSB_B||HAC = 011000101010 . The watermark is then embedded in the corresponding
blocks in the three least significant bits of each pixel.

Lu’s scheme is simple and effective. However, the image quality of the scheme is not as good as
that of other techniques. Hence, the proposed scheme improves the image quality and hiding capacity
of Lu’s scheme.
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3. Proposed Scheme mark

The diagram of the embedding process of the proposed scheme is shown in Figure 5. A cover
image is divided into several blocks performed by DCT transformation. A watermark is constructed to
be embedded in the block pair to generate the stego-image.

After receiving the stego-image, the extraction and recovery process is used to determine whether
the image has been tampered with or not. This is shown in Figure 6.
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The stego-image is divided into several blocks, and the watermark is extracted from the
stego-pixels to determine if the block is valid or not. If the block is invalid, the extracted information is
used to recover it.

The embedding and extraction process includes four major phases: authentication watermark
generation, data embedding, tamper detection, and image recovery.

3.1. Authentication Watermark Generation Phase

The proposed scheme divides a cover image into several 4× 4-sized blocks. Each block randomly
chooses another block as a block pair. Let (BA, BB) be the block pair. Figure 7 shows the diagram of the
image blocks of the proposed scheme. The proposed scheme generates an authentication watermark
for the block pair (BA, BB) and embeds the code into the block pair.



Symmetry 2018, 10, 13 7 of 16

Symmetry 2018, 10, 13  7 of 17 

 


−

=

−

=




 +





 +=

1

0

1

0 2
)12(cos

2
)12(cos),()()(2),(

N

x

M

y M
vy

N
uxyxpvCuC

NM
vuF ππ

 (7) 





 ===

.,1
,0 | 0,2

1
)(),(

otherwise
vuvCuC  (8) 

For example, Figure 8a,b are two example blocks. The corresponding coefficients of the blocks 
are shown in Figure 8c,d. 

● Quantize the coefficients using a quantization table with a quality factor (QF) [6]. 

For example, a quantization table with QF = 50 is shown in Figure 9. The coefficients in Figure 
6c,d after quantization using Figure 7 are shown in Figure 8a,b. 

● Generate an authentication watermark using the DC values of BA and BB. 

DC value is the most important value of the coefficients. The proposed scheme uses two DC 
values to generate the authentication watermark. The seven most significant bits of the two DC values 
of BA and BB are extracted to form MSB_DCA and MSB_DCB , respectively. Concatenate MSB_DCA 
and MSB_DCB to generate the first fourteen authentication watermark bits. Then, use XOR operator 
bitwise on the fourteen bits to generate a debugging bit ߚ. Perform NOT operator on the debugging 
bit ߚ to generate the final testing bit ݐ. 

For example, in Figure 10a, the DC values of BA and BB are 11 and 32, respectively. The seven 
MSBs of 11 are (0000101)2, where (11)10 = (00001011)2. Hence, MSB_DCA = 0000101, and MSB_DCB = 
0010000. The debugging bit is 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 =ߚ 
⊕ 0 = 1, and the testing bit is ~ = ݐ	0=ߚ. 

● Concatenate MSB_DCA, MSB_DCB, the debugging bit, and the testing bit to generate an 
authentication watermark (w), where w = MSB_DCA || MSB_DCB || ݐ || ߚ. 
Following the same example, the authentication watermark is w = MSB_DCA || MSB_DCB 

 .0000101001000010 = 0||1||0010000||0000101 = ݐ	||ߚ	||

AB      

     

     

     

     

    BB  

     

     

     

Figure 7. The image blocks of the proposed scheme. 

  

Figure 7. The image blocks of the proposed scheme.

The authentication watermark generation algorithm is shown below:

• Transform the blocks by DCT to obtain the coefficients DC and AC.

The transformation equation is:

F(u, v) =
2√
NM

C(u)C(v)
N−1

∑
x=0

M−1

∑
y=0

p(x, y) cos
[
(2x + 1)uπ

2N

]
cos
[
(2y + 1)vπ

2M

]
(7)

C(u), C(v) =

{ √
1
2 , u = 0 | v = 0,

1 , otherwise.
(8)

For example, Figure 8a,b are two example blocks. The corresponding coefficients of the blocks are
shown in Figure 8c,d.

• Quantize the coefficients using a quantization table with a quality factor (QF) [6].

For example, a quantization table with QF = 50 is shown in Figure 9. The coefficients in Figure 6c,d
after quantization using Figure 7 are shown in Figure 8a,b.

• Generate an authentication watermark using the DC values of BA and BB.

DC value is the most important value of the coefficients. The proposed scheme uses two DC
values to generate the authentication watermark. The seven most significant bits of the two DC values
of BA and BB are extracted to form MSB_DCA and MSB_DCB , respectively. Concatenate MSB_DCA
and MSB_DCB to generate the first fourteen authentication watermark bits. Then, use XOR operator
bitwise on the fourteen bits to generate a debugging bit β. Perform NOT operator on the debugging
bit β to generate the final testing bit t.

For example, in Figure 10a, the DC values of BA and BB are 11 and 32, respectively. The seven MSBs
of 11 are (0000101)2, where (11)10 = (00001011)2. Hence, MSB_DCA = 0000101, and MSB_DCB = 0010000.
The debugging bit is β = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1, and the testing
bit is t = ~β = 0.

• Concatenate MSB_DCA, MSB_DCB, the debugging bit, and the testing bit to generate an
authentication watermark (w), where w = MSB_DCA || MSB_DCB || β || t.

Following the same example, the authentication watermark is w = MSB_DCA || MSB_DCB
|| β|| t = 0000101||0010000||1||0 = 0000101001000010.
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3.2. Authentication Watermark Embedding Phase

The authentication watermark is then concealed in each block of the block pair (BA, BB).
The watermark is concealed twice in each block using Least Significant Bit Replacement (LSB).
The proposed scheme separates each 4× 4-sized block into two sub-blocks. Each 2× 4-sized sub-block
conceals one authentication watermark. Every pixel in the sub-block owns two secret bits.

For example, Figure 11a shows the binary string of each pixel of BA. The block BA is divided
into two sub-blocks. The first sub-block is colored gray. The second sub-block is colored white.
The watermark w = 0000101001000010 is then concealed in each binary string using LSB. Each pixel
conceals two secret message bits to generate the stego-binary string. The watermark is concealed in
both sub-blocks. Each sub-block owns one watermark. The results are shown in Figure 11c. Finally,



Symmetry 2018, 10, 13 9 of 16

the proposed scheme transforms the binary string into a decimal number to get the stego-pixels, such
as in Figure 11e. The watermark is also concealed in BB to get the stego-block B’B, such as in Figure 11f.Symmetry 2018, 10, 13  9 of 17 
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3.3. Tamper Detection Phase

After receiving the stego-image, the receiver divides the stego-image into several 4× 4-sized
blocks. Then, the receiver follows the next four steps to extract the watermark and detect the tampering.

Step 1: Watermark extraction and block detection

a. Divide the block into two 2× 4-sized sub-blocks.
b. Extract two embedded bits from each stego-pixel to generate a watermark with sixteen

bits for each sub-block. The watermark is w′ = MSB_DCA || MSB_DCB || β′ || t′.
c. Compare two extracted watermarks. If the watermark of the first sub-block is different

from that of the second sub-block, then the block is suspicious.

Step 2: Sub-block detection for suspicious blocks

a. Use XOR operator bitwise on the fourteen bits of each watermark to generate a debugging
bit β∗.

b. Compare β∗ with the 15th bit of the watermark β′. If β∗ does not equal to β′, then the
block is invalid.

c. Compare ∼β∗ with the 16th bit of the watermark t′. If ∼β∗ does not equal to t′, then the
block is invalid.

Step 3: Corresponding block detection

a. Transform the block using DCT to obtain the coefficient DC values DCA and DCB from
the block pair

(
B′A, B′B

)
.
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b. Extract the seven most significant bits from DCA and DCB, called MSB_DC*A
and MSB_DC*B.

c. If MSB_DC*A 6= MSB_DCA or MSB_DC*B 6= MSB_DCB, then the block is valid. Otherwise,
the block is invalid.

Step 4: Closed neighboring detection for the valid block.

a. If more than five close neighboring blocks are marked invalid, then the block is invalid.

3.4. Image Recovery Phase

The invalid blocks are recovered using two sequential steps:

Step 1: Corresponding block recovery

a. If both B′A and B′B are invalid, then the block cannot be recovered. The block is ignored,
and the scheme continues to recover other blocks.

b. Retrieve sixteen bits w′ from the valid block.
c. If the block is valid, extract seven bits string from w′, which starts from the 1st bit to the

7th bit as MSB_DCA, and the bit string starts from the 8th bit to 14th bit as MSB_DCB.
d. Randomly pad one 0 or 1 to the end of MSB_DCA and MSB_DCB to form new DC values.
e. Replace the DC value of the invalid block with the new DC value and transform the

coefficients into pixels using inverse DCT.
f. Mark the block as valid.

Step 2: Neighboring blocks recovery

a. Recover the remaining invalid blocks using the neighboring blocks. The pixel values of
the surrounding blocks are used to replace the pixel value of the invalid block.

4. Experimental Results

In this section, we shall demonstrate the effectiveness of the proposed scheme with several
experimental results. Six 512 × 512-sized grayscale images were used to test the performance of the
proposed scheme. The images were “Boat”, “Barbara”, “Mandrill”, “Pepper”, “Man”, and “Lena”,
shown in Figure 12a–f, respectively. The scheme was implemented by MATLAB R2014b in Windows
10 64-bit operating system, Intel® Core(TM) i7-6700 CPU @ 3.40 GHz 3.40 GHz, 16GB RAM.

In order to measure the visual quality of the stego-image, the similarity between the cover image
and the stego-image was calculated using the peak signal-to-noise ratio (PSNR) given by:

PSNR = 10× log10

[
2552

MSE

]
(dB), (9)

where dB refers to the decibels, and MSE represents the mean squared error between the cover image
and the stego-image, and is given by:

MSE =
1

NM

N

∑
i=1

M

∑
j=1

(
p(i, j)− p′(i, j)

)2. (10)

The watermarked images are shown in Figure 13a–f, respectively, for each test image. The PSNR
values of the test images are higher than 46 dB. The image quality of the stego-image is excellent.
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In the first experiment, we cropped the central area of each watermarked image to generate the
tampered image. The tampered images are shown in Figure 14a–f. The most important features of each
watermarked image were cropped. Figure 15 displays the recovered images of Figure 14. The image
quality of the recovered image is good since the PSNR value of each image is higher than 37.5 dB.
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With the second experiment, we blacked out 50% of each test image at various locations.
Six different types of tampering distributions are shown in Figure 16a–c,g–i. The recovered images are
shown in Figure 16d–f,j–l, respectively. The image quality is higher than 36.2 dB.
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In the third experiment, two kinds of malicious manipulations were applied to the test images
Boat and Mandrill. The manipulated images are shown in Figure 17a,c and their recovered images are
shown in Figure 17b,d, respectively. The PSNR values of the recovered images are higher than 35 dB.
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Table 1 shows the execution time of each phase by using the proposed scheme. The average time
of embedding processing is 4.77 s which contains 1.31 s for DCT, 2.47 s for XOR, 1 s for embedding
operator. The average times of extraction processing and recovering processing are 1.25 and 1.4 s,
respectively. The execution time of the proposed scheme is very short. Hence, the proposed scheme is
very suitable for mobile device.

Table 1. The execution time of each phase (unit: second).

Time(s)
Embedding Processing

Extraction Processing Recovering Processing
DCT XOR Embedding Total

Boat 1.30 2.49 1.01 4.80 1.24 1.40
Barbara 1.30 2.45 0.99 4.74 1.24 1.40
Mandrill 1.31 2.46 0.99 4.76 1.25 1.41
Pepper 1.30 2.46 0.99 4.76 1.25 1.41

Man 1.30 2.46 0.99 4.75 1.24 1.40
Lena 1.31 2.48 1.01 4.80 1.25 1.40

Average 1.31 2.47 1.00 4.77 1.25 1.40

The next experiment compared the performance of the proposed scheme and Lu’s scheme. Table 2
shows the image qualities of the stego-image and the recovered image using the proposed scheme and
Lu’s scheme. In Table 2, the stego-image quality of the proposed scheme is 46.3 dB, which is higher
than Lu’s scheme of 38.43 dB. Other images have similar situations. For the stego-image, the image
quality of the proposed scheme is, on average, higher than Lu’s scheme of 7.8 dB. For the recovered
image, the image quality of the proposed scheme is, on average, higher than Lu’s scheme of 6 dB.

The proposed scheme was not only developed in a personal computer (PC) environment but also
implemented in the mobile device iPad Pro 256GB with iOS11 system. The system was developed
by Mathworks. Three test images with large sizes were used to test the performance of the proposed
scheme: Lena (1252 × 1252), Jerry (2016 × 1512), and Shirly (4032 × 3024). Figure 18 shows the test
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images with large sizes. The experimental results of these test images are shown in Table 3. For the
test image Lena, sized 1252×1252, the execution time of the PC is about 10 s and that of the iPad is
about 11 s. For the test image Jerry, sized 2016 × 1512, the execution time of the PC is 19 s and that of
the iPad is 27 s. For the largest test image, Shirly, sized 4032 × 3024, the execution time of the PC is
78 s and that of the iPad is 91 s. The PSNR values are the same in different devices. From the results,
we can see that the proposed scheme can perform very well on the mobile device.

Table 2. Comparisons between the proposed scheme and Lu’s scheme.

Image Method Boat Barbara Mandrill Pepper Lena

Stego-Image Proposed 46.30 dB 45.95 dB 46.36 dB 46.24 dB 46.18 dB
Lu’s 38.43 dB 38.23 dB 38.20 dB 38.31 dB 38.26 dB

Recovered Image Proposed 37.50 dB 37.15 dB 37.69 dB 39.33 dB 37.77 dB
Lu’s 31.50 dB 31.98 dB 32.70 dB 33.52 dB 33.10 dB
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Table 3. The experimental results of the large size images.

Device File Name Size Time (s) PSNR

PC
Lena 1252 × 1252 10.4393 46.16
Jerry 2016 × 1512 19.7033 45.32
Shirly 4032 × 3024 78.2458 46.08

iPad
Lena 1252 × 1252 11.5551 46.16
Jerry 2016 × 1512 27.7589 45.32
Shirly 4032 × 3024 91.1173 46.08
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5. Conclusions

This paper proposes an effective authentication scheme for image tampering detection and
recovery. The proposed scheme applies very simple hiding operators to conceal authentication
information in the cover image. The image quality of the stego-image is higher than 46 dB. Furthermore,
the tampered image can be recovered effectively. The image quality of the recovered image is higher
than 37.5 dB. According to the experimental results, the stego-image quality of the proposed scheme is
more than that of Lu’s scheme of 7.8 dB. The recovered image quality of the proposed scheme is higher
than that of Lu’s scheme of 6 dB. Furthermore, the proposed scheme can handle large image sizes in a
short execution time. The execution time in a mobile device is only a few seconds longer than that in a
PC device. The execution time of the proposed scheme is short, which is suitable for application in a
mobile environment. The increasing time is also acceptable. Moreover, Lu concealed the watermark
in the spatial domain that is non-robust. The watermark is easily removed. The proposed scheme
embeds the watermark in the frequency domain, which can ensure the robustness.
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