Supplementary Materials for

The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components

-Syntheses and Properties of Optically Pure [2]Rotaxanes with Mechanical Chirality-

Keiji Hirose,* Masaya Ukimi, Shota Ueda, Chie Onoda, Ryohei Kano, Kyosuke Tsuda, Yuko Hinohara and Yoshito Tobe

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

1. Procedures for the determination of binding constants of rotaxane 52nd with PGO

2. Table S1 Tabulated ¹H NMR titration data of Rotaxane 5_{2nd} with (*R*)-PGO

3. Figure S1 ¹H NMR titration curve for the complexation of Rotaxane 5_{2nd} with (*R*)-PGO

4. Table S2 Tabulated ¹H NMR titration data of Rotaxane 5_{2nd} with (S)-PGO

5. Figure S2 ¹H NMR titration curve for the complexation of Rotaxane 5_{2nd} with (S)-PGO

6. References

1. Procedures for the determination of binding constants of rotaxane 52nd with PGO

1-1 Rotaxane 52nd with (R)-PGO

A solution of $\mathbf{5}_{2nd}$ (0.57 mM) and a solution of (*R*)-PGO (46.2 mM) each in C₆D₆ were prepared. An initial ¹H NMR spectrum of $\mathbf{5}_{2nd}$ was recorded. Samples were made by adding the guest solutions to a 650 μ L of the host solution. Namely, 20, 40, 60, 80, 100, 120, 140, 190, 240, 340, and 440 μ L portions of the guest solution were added. Then, spectra of these samples were recorded. The association constant was calculated by the non-liner least-squares method[1-3] following the chemical shifts of one of the aromatic protons of $\mathbf{5}_{2nd}$ shown in Scheme 1 as H^e.

1-2 Rotaxane 52nd with (S)-PGO

A solution of $\mathbf{5}_{2nd}$ (0.57 mM) and a solution of (*S*)-PGO (56.8 mM) each in C₆D₆ were prepared. An initial ¹H NMR spectrum of $\mathbf{5}_{2nd}$ was recorded. Samples were made by adding the guest solutions to a 650 μ L of the host solution. Namely, 15, 30, 50, 70, 100, 130, 170, 210, 250, 290, and 330 μ L portions of the guest solution were added. Then, spectra of these samples were recorded. The association constant was calculated by the non-liner least-squares method[1-3] following the chemical shifts of one of the aromatic protons of $\mathbf{5}_{2nd}$ shown in Scheme 1 as H^e.

2. Table S1 Tabulated ¹H NMR titration data of Rotaxane 5_{2nd} with (R)-PGO

	$[H]_t (mM)^a$	$[G]_t (mM)^b$	$[G]_t / [H]_t^c$	δ (ppm) ^d
1	0.570	0.00	0.0	8.522
2	0.553	1.38	2.5	8.504
3	0.537	2.68	5.0	8.492
4	0.522	3.91	7.5	8.481
5	0.507	5.07	10.0	8.475
6	0.494	6.17	12.5	8.468
7	0.481	7.21	15.0	8.462
8	0.469	8.20	17.5	8.458
9	0.441	10.5	23.7	8.450
10	0.416	12.5	30.0	8.445
11	0.374	15.9	42.5	8.438
12	0.340	18.7	54.9	8.433
				δ _{comp} =8.394
				K=125±3

Table S1. Tabulated ¹H NMR titration data of Rotaxane 5_{2nd} with (*R*)-PGO in CDCl₃ at 30 °C, calculated binding constant, and calculated chemical shift of the complex.

^a Total concentration of Rotaxane **5**_{2nd.}

^b Total concentration of (*R*)-PGO.

^c The ratio of Rotaxane 5_{2nd} over (*R*) -PGO.

^d Observed chemical shifts of one of the phenyl proton H^d of Rotaxane $\mathbf{5}_{2nd}$.

3. Figure S1 ¹H NMR titration curve for the complexation of Rotaxane 5_{2nd} with (*R*)-PGO

Figure S1. ¹H NMR titration curve for the complexation of Rotaxane 5_{2nd} with (*R*)-PGO at 30 °C.

4. Table S2 Tabulated ¹H NMR titration data of Rotaxane 5_{2nd} with (S)-PGO

calculated binding constant, and calculated chemical shift of the complex.						
	$[H]_t (mM)^a$	$[G]_t (mM)^{b}$	$[G]_t / [H]_t^c$	δ (ppm) ^d		
1	0.570	0.00	0.0	8.522		
2	0.557	1.28	2.3	8.510		
3	0.545	2.51	4.6	8.499		
4	0.529	4.06	7.7	8.488		
5	0.514	5.52	10.7	8.481		
6	0.494	7.57	15.3	8.471		
7	0.475	9.47	19.9	8.465		
8	0.452	11.8	26.1	8.457		
9	0.431	13.9	32.2	8.450		
10	0.411	15.8	38.3	8.447		
11	0.394	17.5	44.5	8.444		
12	0.378	19.1	50.6	8.440		
				δ _{comp} =8.390		
				K=84.7±4.0		

Table S2. Tabulated ¹ H NMR titration data of Rotaxane 5_{2nd} with (S)-PGO in CDCl ₃ at 30 °C,
calculated binding constant, and calculated chemical shift of the complex

^a Total concentration of Rotaxane 5_{2nd.}

^b Total concentration of (*S*)-PGO.

^c The ratio of Rotaxane $\mathbf{5}_{2nd}$ over (S) -PGO.

 $^{\rm d}$ Observed chemical shifts of one of the phenyl proton $H^{\rm d}$ of Rotaxane ${\bf 5}_{\rm 2nd}.$

5. Figure S2 ¹H NMF

1xane 52nd with (S)-PGO

Figure S2. ¹H NMR titration curve for the complexation of Rotaxane **5**_{2nd} with (S)-PGO at 30 °C.

6. References

- Hirose, K. (2001) A practical guide for the determination of binding constants, *J. Incl. Phenom.*, 39, 3-4, 193-209 Doi 10.1023/A:1011117412693.
- 2. Hirose, K., Determination of binding constants. in *Analytical methods in supramolecular chemistry*, Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 17-54,
- Hirose, K., Quantitative analysis of binding properties. in *Analytical methods in supramolecular chemistry*, ed. Schalley, C.A., Wiley-VCH Verlag GmbH & Co. KGaA, 2012, pp. 27-66, 9783527644131.