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Abstract: We provide a completely new perspective for the analysis of Casimir forces in very general
piston configurations. To this end, in order to be self-contained, we prove a “gluing formula” well
known in mathematics and relate it with Casimir forces in piston configurations. At the center of
our description is the Dirichlet-to-Neumann operator, which encodes all the information about those
forces. As an application, the results for previously considered piston configurations are reproduced
in a streamlined fashion.
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1. Introduction

Casimir energy and force computations are often plagued by divergences. In order to control these
divergencies, different regularization techniques have been applied [1–9]. However, these typically
lead to different divergencies, which raises the question of their interpretation. In order to avoid
this type of problem, configurations for which there are unambiguous finite answers have received
considerable interest. Among these are the “piston configurations” introduced by Cavalcanti [10].

A piston configuration consists of two chambers M1 and M2 divided by a movable partition N
into two compartments; see Figure 1.
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Figure 1. Piston configuration.

Interesting questions then are how the geometry and topology of the chambers influence the force
on the piston, and how that force depends on the boundary condition imposed. Many configurations,
such as flat pistons at zero temperature [11–20] or finite temperatures [21–24], as well as curved
pistons [25–29], have been analyzed on the basis of the spectrum of a Laplace-type operator associated
with M1 and M2. It is the aim of this article to introduce a completely new perspective on this type
of analysis.

The starting point for developing this new perspective is the gluing formula on a compact
oriented Riemannian manifold. Although this formula was proven much more generally in [30] (see
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also [31,32]), in our context, using it for Laplacians is all we need, and in Section 2, we provide an
independent proof and an elementary example. In Section 3, we use the gluing formula to derive a
gluing formula for Casimir energies. This can be used to reformulate the Casimir force on a piston
in terms of the Dirichlet-to-Neumann map, which is done in Section 4. Examples are considered to
indicate how streamlined this new perspective is. The conclusions summarize the most important
results and the plan of where we go from here.

2. Proof of the BFK-Gluing Formula for Zeta-Determinants of Laplacians

In this section, we introduce the Burghelea–Friedlander–Kappeler gluing formula, which we call
the BFK-gluing formula from now on. We give an independent proof for the case of relevance for our
paper.

Let (M, g) be an (m+ 1)-dimensional compact oriented Riemannian manifold. Furthermore, let N
be a compact hypersurface of M, so that the closure of M − N has two components, M1 and M2.
The manifold M therefore consists of the manifolds M1 and M2 glued together; see Figure 1. It is
a natural question to ask if there are relationships between spectral quantities on M1, M2, and the
manifold M = M1 ∪N M2 obtained when gluing them together. For a particular spectral quantity,
the BFK-gluing formula sheds some light on this question.

Remark 1. The assumption for the gluing formula to hold is that ∂N = ∅. In Figure 1, this means M is a
two-dimensional surface and N is a circle. We come back to this assumption in the conclusions, providing an
example in which the BFK-gluing formula holds despite that ∂N 6= ∅.

In order to formulate the BFK-gluing formula, let ∆M denote the Laplacian acting on smooth
functions, and denote by ∆M1,D and ∆M2,D the restriction of ∆M to M1, M2 with Dirichlet boundary
conditions imposed on N. In the case that ∂M 6= ∅, we also impose Dirichlet boundary conditions on
∂M. Let αj, α1,j and α2,j be the eigenvalues of (0 ≤ λ ∈ R):

(∆M + λ)uj(x) = αjuj(x),
(∆M1,D + λ)vj(x) = α1,jvj(x), vj(x)

∣∣
N = 0

(∆M2,D + λ)wj(x) = α2,jwj(x), wj(x)
∣∣

N = 0

We denote the associated zeta functions by ζM(s), ζM1,D(s) and ζM2,D(s) and have the
standard definitions:

ζM(s) =
∞

∑
j=1

α−s
j , ζM1,D(s) =

∞

∑
j=1

α−s
1,j , ζM2,D(s) =

∞

∑
j=1

α−s
2,j

In case there is a zero mode on M, for example α0 = 0, it is excluded in the summation. These
zeta functions are meromorphic functions in the complex plane, and in particular they are analytic
about s = 0; ζ ′M(0), ζ ′M1,D(0), ζ ′M2,D(0) are well-defined quantities [33] that one defines the associated
determinants through:

ln Det P = −ζ ′P(0)

These quantities make up the left-hand side (LHS) of the BFK-gluing formula. A relation to
quantum field theory is established by choosing the manifolds M, M1, and M2 to have the product
structures M = M× S1, M1 = M1 × S1, and M2 = M2 × S1, where S1 is a circle of perimeter
β. In this case, these quantities are the partition sums for a finite-temperature quantum field
theory at temperature 1/β of a non-interacting massive scalar field living on M, M1, and M2;
see Section 3. The remaining ingredient for the BFK-gluing formula is the Dirichlet-to-Neumann
operator. Let ∂N be a unit normal vector field to N such that it points outward on M1 and inward
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on M2. The Dirichlet-to-Neumann operator R(λ) : C∞(N) → C∞(N) is then defined as follows.
For h ∈ C∞(N), let φ1 ∈ C∞(M1) and φ2 ∈ C∞(M2) be such that

(∆M1 + λ)φ1 = 0, (∆M2 + λ)φ2 = 0, φ1 |N = φ2|N = h (1)

We then define

R(λ)h := (∂Nφ1) |N − (∂Nφ2)|N (2)

This specifies an elliptic pseudodifferential operator of order 1; the associated zeta function ζDN(s)
is regular at s = 0, and ζ ′DN(0) is again well defined [31,33].

The BFK-gluing formula relates these quantities through a polynomial:

P(λ) =
[m

2 ]

∑
j=0

pjλ
j

which is determined as an integral of some local density on N and which is completely determined by
data on a collared neighborhood of N. In detail, we have

ln Det (∆M + λ)− ln Det (∆M1,D + λ)− ln Det (∆M2,D + λ) = P(λ) + ln Det R(λ) (3)

or using zeta functions instead,

−ζ ′M(0) + ζ ′M1,D(0) + ζ ′M2,D(0) = P(λ)− ζ ′DN(0) (4)

If zero modes are present, slight modifications to Equation (3) occur [30], which will, however, be
irrelevant for our application.

Given this is the basis of everything that follows, for a self-contained presentation, we include
the proof of this statement for zeta-determinants of Laplacians on a compact or complete Riemannian
manifold given in [30].

The underlying idea to prove Equation (3) is that by taking [m/2] + 1 derivatives on both sides,
equality of both sides is obtained. For the formulation of the proof, we introduce some notation.
As before, let (M, g) be a complete oriented (m + 1)-dimensional Riemannian manifold with a compact
hypersurface N. We denote by M0 the closure of M− N so that (M0, g0) is a Riemannian manifold
with boundary N+ ∪ N−, where g0 is a metric induced from g and N+ = N− = N. We here note that
M0 may or may not be connected. Furthermore, as before, we denote by ∆M a Laplacian acting on
C∞(M), and by ∆M0,D, the extension of ∆M to M0 with the Dirichlet boundary condition on N+ ∪ N−.
By a Laplacian, we mean a symmetric non-negative differential operator of order 2 with the principal
symbol σL(∆M)(x, ξ) = ‖ ξ ‖2 satisfying the property of the finite propagation speed (FPS). It is
shown in [34] that ∆M is essentially self-adjoint. Furthermore, we assume that ∆M0,D is a non-negative
invertible operator. These assumptions show that for λ ∈ R+ ∪ {0}, (∆M + λ)−1 and (∆M0,D + λ)−1

are bounded operators defined on L2(M). In many cases, operators arising from geometry satisfy
these assumptions [35–37].

It is known (p 327 of [31]; see also [38]) that e−t∆M − e−t∆M0,D is a trace-class operator and that for
t→ 0+,

Tr
(

e−t∆M − e−t∆M0,D
)
∼

∞

∑
j=0

ajt−
m−j

2 (5)
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where aj ∈ R. Because Tr
(

e−t∆M − e−t∆M0,D
)

is a trace-class operator and ∆M0,D is an invertible
operator, the dimension of the kernel of ∆M is finite. Hence Theorem 2.2 of [39] tells that for some
c > 0 as t→ ∞, we have

Tr
(

e−t∆M − e−t∆M0,D
)

= dim ker ∆M + O(e−ct) (6)

This shows that for λ ∈ R+,

Tr
(

e−t(∆M+λ) − e−t(∆M0,D+λ)
)

(7)

is exponentially decreasing for t→ ∞. We note that∫ ∞
t

(
e−u(∆M+λ) − e−u(∆M0,D+λ)

)
du

= (∆M + λ)−1e−t(∆M+λ) − (∆M0,D + λ)−1e−t(∆M0,D+λ)
(8)

This shows that (∆M + λ)−1e−t(∆M+λ) − (∆M0,D + λ)−1e−t(∆M0,D+λ) is a trace-class operator and

Tr
(
(∆M + λ)−1e−t(∆M+λ) − (∆M0,D + λ)−1e−t(∆M0,D+λ)

)
∼

∑m−3
j=0

ãj
m−j

2 −1
t−

m−j
2 +1 + ãm−2 ln t + O(1) for t→ 0+

O(e−ct) for t→ ∞

(9)

where

Tr
(

e−t(∆M+λ) − e−t(∆M0,D+λ)
)
∼

∞

∑
j=0

ãjt−
m−j

2

If we repeat this argument, after ν = [m
2 ] + 1 integrations, we have for some c̃ > 0 that

Tr
(
(∆M + λ)−νe−t(∆M+λ) − (∆M0,D + λ)−νe−t(∆M0,D+λ)

)
∼

{
O(1) for t→ 0+

O(e−c̃t) for t→ ∞
(10)

Similarly, it can be shown that for t→ 0+,

Tr
(
(∆M + λ)−ν+1e−t(∆M+λ) − (∆M0,D + λ)−ν+1e−t(∆M0,D+λ)

)
∼
{

O(ln t) for m even

O(t−
1
2 ) for m odd

(11)

and hence ∫ ∞

0
Tr
(
(∆M + λ)−ν+1e−t(∆M+λ) − (∆M0,D + λ)−ν+1e−t(∆M0,D+λ)

)
dt (12)

is integrable.
Taking the limit t→ 0+ in Equation (10), this leads to the following result.

Lemma 1. (∆M + λ)−ν − (∆M0,D + λ)−ν is a trace-class operator.

We define a relative zeta function by

ζ(s; ∆M + λ, ∆M0,D + λ) = 1
Γ(s)

∫ ∞
0 ts−1 Tr

(
e−t(∆M+λ) − e−t(∆M0,D+λ)

)
dt

= 1
Γ(s)

∫ ∞
0 ts−1e−λt Tr

(
e−t∆M − e−t∆M0,D

)
dt

(13)
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It is well known that ζ(s; ∆M + λ, ∆M0,D + λ) is analytic for Re s > m
2 and has an analytic

continuation to the whole complex plane, having a regular value at s = 0. We define the relative
zeta-determinant by

ln Det
(
∆M + λ, ∆M0,D + λ

)
= − d

ds

∣∣∣∣
s=0

ζ(s; ∆M + λ, ∆M0,D + λ) (14)

For general facts about the relative zeta-determinant, we refer to [39].

Lemma 2. For λ > 0, we have the following equality:

dν

dλν
ln Det

(
∆M + λ, ∆M0,D + λ

)
= Tr

{
dν−1

dλν−1

(
(∆M + λ)−1 − (∆M0,D + λ)−1

)}
Proof. We note that for Re s > m

2 ,

dν

dλν
ζ(s; ∆M + λ, ∆M0,D + λ) =

(−1)ν

Γ(s)

∫ ∞

0
ts+ν−1 Tr

(
e−t(∆M+λ) − e−t(∆M0,D+λ)

)
dt

=
(−1)ν

Γ(s)

∫ ∞

0
ts+ν−1

(
− d

dt

)
Tr
{
(∆M + λ)−1e−t(∆M+λ) − (∆M0,D + λ)−1e−t(∆M0,D+λ)

}
dt

=
(−1)ν(s + ν− 1)

Γ(s)

∫ ∞

0
ts+ν−2 Tr

{
(∆M + λ)−1e−t(∆M+λ) − (∆M0,D + λ)−1e−t(∆M0,D+λ)

}
dt

=
(−1)ν(s + ν− 1) · · · (s + 1)

Γ(s)

×
∫ ∞

0
ts Tr

{
(∆M + λ)−ν+1e−t(∆M+λ) − (∆M0,D + λ)−ν+1e−t(∆M0,D+λ)

}
dt

Using Equations (11) and (12) together with Equation (14), we have

dν

dλν
ln Det

(
∆M + λ, ∆M0,D + λ

)
= − d

ds

∣∣∣∣
s=0

dν

dλν
ζ(s; ∆M + λ, ∆M0,D + λ)

= −(−1)ν(ν− 1)!
∫ ∞

0
Tr
{
(∆M + λ)−ν+1e−t(∆M+λ) − (∆M0,D + λ)−ν+1e−t(∆M0,D+λ)

}
dt

= −(−1)ν(ν− 1)!
∫ ∞

0

(
− d

dt

)
Tr
{
(∆M + λ)−νe−t(∆M+λ) − (∆M0,D + λ)−νe−t(∆M0,D+λ)

}
dt

= (−1)ν−1(ν− 1)! Tr
{
(∆M + λ)−ν − (∆M0,D + λ)−ν

}
= Tr

{
dν−1

dλν−1

(
(∆M + λ)−1 − (∆M0,D + λ)−1

)}

We next analyze the Dirichlet-to-Neumann operator R(λ) : C∞(N)→ C∞(N) as follows. For this
purpose, we need to define some auxiliary operators. We recall that the boundary of M0 is N+ ∪ N−.
We choose a unit normal vector field ∂N along N, which points outward on N+ and inward on N−.
We define δdiag : C∞(N)→ C∞(N+ ∪ N−) and C : C∞(M0)→ C∞(N) as follows:

δdiag : C∞(N)→ C∞(N+ ∪ N−) δdiag( f ) = ( f , f ),
C : C∞(M0)→ C∞(N), C(φ) = (∂Nφ) |N+ − (∂Nφ) |N−

(15)

For later use, we define the restriction maps γ0 and γ̃0 as follows:

γ0 : C∞(M)→ C∞(N), γ0φ = φ|N ,
γ̃0 : C∞(M0)→ C∞(N+)⊕ C∞(N−) γ̃0ψ = (ψ|N+ , ψ|N−)

(16)
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Finally, we define the Poisson operator PD(λ) : C∞(N+) ⊕ C∞(N−) → C∞(M0) as follows.
For ( f , g) ∈ C∞(N+)⊕ C∞(N−), we choose ψ ∈ C∞(M0) satisfying

(∆M0 + λ)ψ = 0, γ̃0ψ = ( f , g) (17)

In fact, ψ is given by

ψ := f̃ − (∆M0,D + λ)−1(∆M + λ) f̃ (18)

where f̃ is an arbitrary extension of ( f , g) to M0. Because ∆M0,D + λ is an invertible operator, ψ exists
uniquely. We then define the Poisson operator PD(λ) by

PD(λ) : C∞(N+)⊕ C∞(N−)→ C∞(M0), PD(λ)( f , g) = ψ (19)

Using the above operators, the Dirichlet-to-Neumann operator R(λ) defined in Equations (1) and (2)
is then reformulated as follows.

Definition 1. R(λ) : C∞(N)→ C∞(N), R(λ) = C · PD(λ) · δdiag

where “·” means the composition of operators.
We need the following two auxiliary lemmas.

Lemma 3. d
dλPD(λ) = −

(
∆M0,D + λ

)−1 PD(λ)

Proof. From the definition of the Poisson operator, PD(λ) satisfies the following two equalities:(
∆M0 + λ

)
PD(λ) = 0, γ̃0PD(λ) = Id

Taking the derivative with respect to λ, from here we have

PD(λ) +
(
∆M0 + λ

) d
dλ
PD(λ) = 0, γ̃0

d
dλ
PD(λ) = 0

which shows that d
dλPD(λ) = −

(
∆M0,D + λ

)−1 PD(λ).

We note that (∆M + λ)−1 : L2(M) → L2(M) and
(
∆M0,D + λ

)−1 : L2(M0) → L2(M0)

are bounded operators and L2(M0) can be identified with L2(M). Hence,
(
∆M0,D + λ

)−1 can be
regarded as an operator acting on L2(M). The next lemma shows the relation between the
two operators.

Lemma 4. (∆M + λ)−1 −
(
∆M0,D + λ

)−1
= PD(λ) · δdiag · γ0 · (∆M + λ)−1 .

Proof. Because the operators on the LHS and right-hand side (RHS) are bounded, it is enough to check
the equality on C∞(M) in L2(M). Let A(λ) := (∆M + λ)−1 −

(
∆M0,D + λ

)−1. For φ ∈ C∞(M),

(∆M + λ) A(λ)φ = 0, γ0 A(λ)φ = γ0 (∆M + λ)−1 φ

which shows that A(λ) = PD(λ) · δdiag · γ0 · (∆M + λ)−1.
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From Definition 1 and Lemmas 3 and 4, we then have the following equalities:

d
dλ R(λ) = C · d

dλPD(λ) · δdiag

= − C ·
(
∆M0,D + λ

)−1 PD(λ) · δdiag

= C ·
{
− (∆M + λ)−1 + PD(λ) · δdiag · γ0 · (∆M + λ)−1

}
· PD(λ) · δdiag

= − C · (∆M + λ)−1 · PD(λ) · δdiag + C · PD(λ) · δdiag · γ0 · (∆M + λ)−1 ·
PD(λ) · δdiag

(20)

Lemma 5. C · (∆M + λ)−1 · PD(λ) · δdiag : L2(N)→ L2(N) is a zero operator.

Proof. Because C · (∆M + λ)−1 · PD(λ) · δdiag is a bounded operator, it is enough to check on C∞(M)

in L2(M). For f ∈ C∞(N), PD(λ) · δdiag f is continuous and (∆M + λ)−1 · PD(λ) · δdiag f ∈ H2(M);
hence C · (∆M + λ)−1 · PD(λ) · δdiag f = 0.

From the above lemma, we have the following equalities:

d
dλ R(λ) = C · PD(λ) · δdiag · γ0 · (∆M + λ)−1 · PD(λ) · δdiag

= R(λ) · γ0 · (∆M + λ)−1 · PD(λ) · δdiag
(21)

which shows that

R(λ)−1 · d
dλ R(λ) = γ0 · (∆M + λ)−1 · PD(λ) · δdiag

= γ0 ·
{
(∆M + λ)−1 −

(
∆M0,D + λ

)−1
}
· PD(λ) · δdiag

= γ0 ·
{
PD(λ) · δdiag · γ0 · (∆M + λ)−1

}
· PD(λ) · δdiag

= γ0 · (∆M + λ)−1 · PD(λ) · δdiag

(22)

where we have used the fact that γ0 · PD(λ) · δdiag = Id. Lemmas 2 and 4 then finally yield the
following equality:

dν

dλν ln Det
(
∆M + λ, ∆M0,D + λ

)
= Tr

{
dν−1

dλν−1

(
(∆M + λ)−1 − (∆M0,D + λ)−1)}

= Tr
{

dν−1

dλν−1

(
PD(λ) · δdiag · γ0 · (∆M + λ)−1

)}
= Tr

{
dν−1

dλν−1

(
γ0 · (∆M + λ)−1 · PD(λ) · δdiag

)}
= Tr

{
dν−1

dλν−1

(
R(λ)−1 · d

dλ R(λ)
)}

= dν

dλν ln Det R(λ)

(23)

where in the third step, cyclicity of the trace has been used.
Summarizing the above argument, we have shown the BFK-gluing formula in the context of

Laplace-type operators.

Theorem 1. There exists a real polynomial P(λ) of degree less than or equal to [m
2 ] such that

ln Det
(
∆M + λ, ∆M0,D + λ

)
= P(λ) + ln Det R(λ)

where P(λ) = ∑
[ m

2 ]
j=0 pjλ

j.

This is equivalent to Equations (3) and (4). The fact that pj is given as an integral of some density
on N follows from the λ→ ∞ behavior of ln Det

(
∆M + λ, ∆M0,D + λ

)
and ln Det R(λ) [30].
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Example 1. As an illustration, we consider a simple one-dimensional example. Let 0 < c < 1 and Ic = [0, c].
The setting for the gluing formula is I1 = Ic ∪{c} [c, 1]. We consider the following eigenvalue problem:

− ∂2

∂x2 φn(x) = λnφn(x), φn(0) = φn(c) = 0

The eigenfunctions and eigenvalues then are

φn(x) = sin
(nπx

c

)
, λn =

(nπ

c

)2
, n ∈ N

and the associated zeta function is given by the zeta function ζR(s) of Riemann. In detail,

ζc(s) =
( c

π

)2s
ζR(2s)

and thus
ζ ′c(0) = − ln(2c)

Similarly the intervals [c, 1] and I1 can be treated and the relevant combination on the LHS of Theorem 1
then is

−ζ ′1(0) + ζ ′c(0) + ζ ′1−c(0) = − ln [2c(1− c)]

On the other side, the Dirichlet-to-Neumann map involves the solutions to the following problems:

∂2

∂x2 ψ1(x) = 0, ψ1(0) = 0, ψ1(c) = h

∂2

∂x2 ψ2(x) = 0, ψ2(1) = 0, ψ2(c) = h

In terms of these, one defines

R(h) =
∂

∂x
(ψ1 − ψ2)

∣∣∣∣
x=c

Explicitly, it is easy to see that

ψ1(x) =
h
c

x, ψ2(x) =
h

1− c
(1− x)

such that
R(h) =

h
c
+

h
1− c

=
h

c(1− c)

and
ln Det R = − ln [c(1− c)]

For this example, we therefore verify that Theorem 1 is satisfied with

P(0) = − ln 2

3. Gluing Formula for Casimir Energies

We next relate the gluing formula to a finite-temperature quantum field theory of a
non-self-interacting massive scalar field in a piston geometry. Relevant one-particle energy spectra
then follow from eigenvalues of suitable Laplace-type operators. As indicated earlier, to relate this
quantum field theory to the considerations of Section 2, let Mi =Mi × S1, where S1 denotes a circle
of perimeter β, andMi denotes a smooth compact Riemannian manifold with smooth boundary N .
This manifold represents the spatial dimensions of the space-time where the quantum field lives. As far
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as Figure 1 goes, what one sees there is reallyM1 andM2, although for the application to the gluing
formula, Mi =Mi × S1 is needed.

Let τ ∈ [0, β] parameterize S1 and impose periodic boundary conditions along that circle.
Furthermore, let y be coordinates onMi. For the analysis of Casimir energies, the relevant eigenvalue
problems then are, with λ being the mass of the quantum field,(

∆Mi ,D + λ
)

φ
(i)
j,n(τ, y) = α

(i)
j,nφ

(i)
j,n(τ, y), φ

(i)
j,n(τ, y)

∣∣∣
y∈N

= 0 (24)

More explicitly, because of the product structure,

α
(i)
j,n =

(
2πn

β

)2
+ E2

i,j, n ∈ Z, j ∈ N (25)

where E2
i,j are the eigenvalues of the “spatial part” of the Laplacian, namely we have

(
∆Mi ,D + λ

)
ϕ
(i)
j (y) = E2

i,j ϕ
(i)
j (y), ϕ

(i)
j (y)

∣∣∣
y∈N

= 0 (26)

The associated zeta functions,

ζ(i)(s) =
∞

∑
n=−∞

∞

∑
j=1

[(
2πn

β

)2
+ E2

i,j

]−s

(27)

encode the finite-temperature Casimir energy via

E(i)
Cas = −

1
2

∂

∂β
ζ(i)
′
(0) (28)

Leaving a discussion of finite ambiguities aside, when discussing forces, there will be none;
it is an interesting question to ask how the Casimir energy behaves when gluing together two
manifolds with identical boundaries. More precisely, the question is what the relation is between ECas,
the Casimir energy on M =M× S1, and E(1)

Cas + E(2)
Cas. An answer is provided by the gluing formula;

namely from Equation (4), one has

ECas − E(1)
Cas − E(2)

Cas = −
1
2

∂

∂β
ζ ′DN(0) +

1
2

∂

∂β
P(λ) (29)

This is the gluing formula for Casimir energies. The change of the Casimir energy of the
manifolds M1 and M2 when glued together along their boundary N × S1 is described by the zeta
function associated with the Dirichlet-to-Neumann map and a (partially known) expression in terms
of geometric tensors of their boundary N [30,40].

4. Dirichlet-to-Neumann Map and Casimir Forces on Pistons

The gluing formula for Casimir energies allows immediately a reformulation of the Casimir
force in piston configurations. Let a denote the position of N within the “cylindrical part” of the
configuration in Figure 1. Then the force on the piston is

FCas(β) = − ∂

∂a

(
E(1)

Cas + E(2)
Cas

)
=

∂

∂a

(
ECas − E(1)

Cas − E(2)
Cas

)
= −1

2
∂

∂a
∂

∂β
ζ ′DN(0) (30)

We note that P(λ) is completely independent of the location of N within the cylindrical part,
and the force is encoded completely by the Dirichlet-to-Neumann map. Thus the force is fully
determined by the “harmonic functions” of M1 and M2, that is, by solutions of (∆Mj + λ)φj = 0.
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In order to observe an immediate advantage of this formulation, we recall that the
Dirichlet-to-Neumann map is a map from functions on N to functions on N. That is, the force is
determined from a map between an m-dimensional manifold instead of the (m + 1)-dimensional
manifold we started with. Thus this formulation achieves a dimensional reduction without any effort.

We now use this new formulation to obtain the Casimir force on pistons for configurations that
have been dealt with before. It will become apparent that the dimensional reduction for explicit
examples technically means that one summation is explicitly performed without ever worrying
about it.

We consider the configuration analyzed in, for example, [18,23]. Each chamber is assumed to
have the structure

Mi = Ii × S1 ×N ,

with metric
ds2 = dx2 + dτ2 + dN 2

Typically, N = C × K, where C is the (visible) cross-section of the cylinder and K denotes a
manifold representing additional Kaluza–Klein dimensions. Finally, I1 = [0, a] and I2 = [a, L] are the
intervals giving the extension of each cylindrical part of the chambers. Assuming Dirichlet boundary
conditions at x = 0 and x = L, we next formulate the relevant boundary value problems to obtain the
Dirichlet-to-Neumann operator for this setting. In the left chamber we need to consider[

− d2

dx2 + ∆N + λ

]
φ1(x, τ, y) = 0, φ1(0, τ, y) = 0, φ1(a, τ, y) = ϕ(τ, y) (31)

By choosing ϕ(τ, y) = e2πinτ/β ϕj(y), the problem of Equation (31) turns into the following easily
solvable problem:[

d2

dx2 −
(

2πn
β

)2
− µ2

j

]
ψ1,j(x) = 0, ψ1,j(0) = 0, ψ1,j(a) = 1 (32)

where µ2
j are eigenvalues of the following eigenvalue problem:

(∆N + λ) ϕj(y) = µ2
j ϕj(y) (33)

The general solution of the ordinary differential equation in Equation (32) is

ψ1,j(x) = Aeρn,jx + Be−ρn,jx

where

ρn,j =

√(
2πn

β

)2
+ µ2

j (34)

Imposing the boundary condition at x = 0 shows

ψ1,j(0) = 0 = A + B =⇒ A = −B

The boundary conditions at x = a give

ψ1,j(a) = 1 = A
(
eρn,ja − e−ρn,ja

)
=⇒ A =

1
eρn,ja − e−ρn,ja
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and thus

ψ1,j(x) =
eρn,jx − e−ρn,jx

eρn,ja − e−ρn,ja

Similarly, for the right chamber we need to solve[
d2

dx2 −
(

2πn
β

)2
− µ2

j

]
ψ2,j(x) = 0, ψ2,j(L) = 0, ψ2,j(a) = 1

Along the same lines, one obtains

ψ2,j(x) =
eρn,j(L−x) − e−ρn,j(L−x)

eρn,j(L−a) − e−ρn,j(L−a)

For the Dirichlet-to-Neumann map, we need the first derivative at x = a:

ψ′1,j(a) = ρn,j
cosh(ρn,ja)
sinh(ρn,ja)

, ψ′2,j(a) = −ρn,j
cosh(ρn,j(L− a))
sinh(ρn,j(L− a))

and thus

ψ′1,j(a)− ψ′2,j(a) = ρn,j

[
cosh(ρn,ja)
sinh(ρn,ja)

+
cosh(ρn,j(L− a))
sinh(ρn,j(L− a))

]
(35)

These are the eigenvalues of the Dirichlet-to-Neumann map with eigenfunctions e2πinτ/β ϕj(y)!
It is clear that eigenvalues of the Dirichlet-to-Neumann map are fairly complicated functions of the
eigenvalues of the “underlying” Laplacian on N.

Equation (35) shows that the zeta function associated with the Dirichlet-to-Neumann map is

ζDN(s) =
∞

∑
n=−∞

∞

∑
j=1

ρ−s
n,j

[
cosh(ρn,ja)
sinh(ρn,ja)

+
cosh(ρn,j(L− a))
sinh(ρn,j(L− a))

]−s

(36)

The analysis of this zeta function is simplified by observing that

cosh(ρn,ja)
sinh(ρn,ja)

+
cosh(ρn,j(L− a))
sinh(ρn,j(L− a))

=
sinh(ρn,jL)

sinh(ρn,ja) sinh(ρn,j(L− a))

which allows us to write ζDN(s) as

ζDN(s) = 2−s
∞

∑
n=−∞

∞

∑
j=1

ρ−s
n,j

(
1− e−2ρn,j L

)−s

(
1− e−2ρn,ja

)−s (
1− e−2ρn,j(L−a)

)−s (37)

From the large eigenvalue behavior of ρn,j (Equation (34)), this series representation is clearly
convergent for <s > m. This form is very suitable for finding ζ ′DN(0), and we obtain

ζ ′DN(0) = 1
2 ζ ′N×S1(0)− ln 2 ζN×S1(0)

− ∑∞
n=−∞ ∑∞

j=1

[
ln
(

1− e−2ρn,j L
)
− ln

(
1− e−2ρn,ja

)
− ln

(
1− e−2ρn,j(L−a)

)] (38)

where

ζN×S1(s) =
∞

∑
n=−∞

∞

∑
j=1

ρ−2s
n,j

All series in Equation (38) are clearly absolutely convergent.
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For the Casimir force on the piston, the only relevant pieces are a-dependent pieces, and we have

FCas(β) = − 1
2

∂
∂a

∂
∂β ζ ′DN(0)

= ∂
∂a


 2a

β3 ∑∞
n=1 ∑∞

j=1
(2πn)2√(
2πn

β

)2
+µ2

j

1

e
2a

√(
2πn

β

)2
+µ2

j −1

+ [a→ (L− a)]

 (39)

where the β-differentiation has been performed.
We compare this result with known answers. First, we consider the zero temperature limit, that is,

β→ ∞. In this limit, the n-summation turns into an integral, and we have

FCas(0) =
∂

∂a

∞

∑
j=1


 a

π

∞∫
0

t2√
t2 + µ2

j

1

e
2a
√

t2+µ2
j − 1

dt

+ [a→ (L− a)]


=

∂

∂a

∞

∑
j=1


 a

π

∞∫
0

t2√
t2 + µ2

j

e
−2a

√
t2+µ2

j

1− e
−2a

√
t2+µ2

j

dt

+ [a→ (L− a)]


=

∂

∂a

∞

∑
j=1

∞

∑
n=1


 a

π

∞∫
0

t2√
t2 + µ2

j

e
−2a

√
t2+µ2

j n
dt

+ [a→ (L− a)]


Assuming for the moment that µ2

j > 0, the integral can be performed using [41], 8.432.9:

∞∫
0

t2√
t2 + µ2

j

e
−2a

√
t2+µ2

j n
dt =

µj

2an
K1(2anµj)

such that the Casimir force on the piston reads

FCas(0) =
1

2π

∂

∂a

∞

∑
n=1

∞

∑
j=1

µj

n
[
K1(2anµj) + K1(2(L− a)nµj)

]
(40)

which is in exact agreement with Equation (4.3) in [18]. The result clearly shows that the piston is
pulled towards the closer wall.

Also at a finite temperature, the result of Equation (39) is equivalent to known results presented
in [18,23], although these appear to be different. The reason is that typically in finite-temperature
computations, the Matsubara sum involving the n-summation above is manipulated. Here instead, the
sum from the intervals I1 and I2 is automatically manipulated (performed), and thus final answers
appear to be different, as effectively resummations for different summations have been performed.

The case for which µj = 0 is possible, for example, µ0 = 0 with a degeneracy g0; for n = 0, this
leads to zero modes on N. The contribution to ζ ′DN(0) can be computed along the lines of Example
1; see Equation (1). This is independent of β and does not enter the Casimir energy or force. Thus
Equation (39) remains valid with the summation starting at j = 0, repeated according to its multiplicity.
When considering the zero temperature limit, the required integral this time is

∞∫
0

t
e2at − 1

dt =
π2

24a2
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and the force receives an extra contribution g0 times

− π

24a2 +
π

24(L− a)2

which again is in exact agreement with Equation (4.3) in [18].

5. Conclusions

In this article, we have introduced a completely new perspective on the analysis of Casimir forces
in piston configurations. The most important result is Equation (30), which, for the case in which
∂N = ∅, expresses the force in terms of the appropriate Dirichlet-to-Neumann map.

However, in order for the gluing formula to be useful in a typical piston setting, the manifold N
must be allowed to have a boundary. In this case, the piston could be something such as a disc, and
the configurations one might consider become physically more realistic. As a next step, one therefore
should try to prove the BFK-gluing formula in this more general context. An example described in the
following gives an indication that the more general context may indeed work.

We consider the example that essentially was given in Section 3. We assume Mi = Ii × N,
where I1 = [0, a], I2 = [a, L] and the metric is

ds2 = dx2 + dN2

with dN2 being the metric on N. We allow ∂N 6= ∅ and impose Dirichlet boundary conditions on ∂Mi.
When referring to eigenfunctions ϕj(y) on N, again Dirichlet boundary conditions are assumed. Along
the lines of the computation in Section 4, the zeta function of the Dirichlet-to-Neumann operator then
follows immediately from Equation (36), namely,

ζDN(s) =
∞

∑
j=1

ρ−s
j

[
cosh(ρja)
sinh(ρja)

+
cosh(ρj(L− a))
sinh(ρj(L− a))

]−s

(41)

where
(∆N,D + λ) ϕj(y) = ρ2

j ϕj(y)

From here,

ζ ′DN(0) = 1
2 ζ ′N(0)− ln 2 ζN(0)

− ∑∞
j=1

[
ln
(

1− e−2ρj L
)
− ln

(
1− e−2ρja

)
− ln

(
1− e−2ρj(L−a)

)] (42)

with

ζN(s) =
∞

∑
j=1

ρ−2s
j

We next verify the validity of the gluing formula for this setting. In order to do so, we need
to consider

ζa(s) =
∞

∑
k=1

∞

∑
j=1

[(
kπ

a

)2
+ ρ2

j

]−s

(43)

and compute ζ ′a(0), as well as compare ζ ′L(0)− ζ ′a(0)− ζ ′L−a(0) with ζ ′DN(0) (Equation (42)).
In order to perform a Poisson resummation [42]:

∞

∑
`=−∞

e−t`2
=
(π

t

)1/2 ∞

∑
`=−∞

e−
π2`2

t
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of the k-sum, we first rewrite the k-sum and apply a Mellin transform to obtain

ζa(s) =
1
2

∞

∑
k=−∞

∞

∑
j=1

[(
kπ

a

)2
+ ρ2

j

]−s

− 1
2

∞

∑
j=1

ρ−2s
j

= −1
2

ζN(s) +
1
2

∞

∑
k=−∞

∞

∑
j=1

1
Γ(s)

∞∫
0

ts−1e−(
kπ
a )

2
t−ρ2

j t dt

= −1
2

ζN(s) +
a

2
√

πΓ(s)

∞

∑
k=−∞

∞

∑
j=1

∞∫
0

ts− 3
2 e−

a2k2
t −ρ2

j t dt

Treating the k = 0 term separately, this gives

ζa(s) = −1
2

ζN(s) +
a

2
√

π

Γ
(

s− 1
2

)
Γ(s)

ζN

(
s− 1

2

)

+
a√

πΓ(s)

∞

∑
k=1

∞

∑
j=1

∞∫
0

ts− 3
2 e−

a2k2
t −ρ2

j t dt

Using
∞∫

0

t−
3
2 e−

c
t−bt dt =

√
π

c
e−2
√

cb

the derivative with respect to s at s = 0 can easily be taken, and one finds

ζ ′a(0) = −a FP ζN

(
−1

2

)
+ 2a Res ζN

(
−1

2

)
[ln 2− 1]− 1

2
ζ ′N(0)−

∞

∑
j=1

ln
(

1− e−2aρj
)

where FP and Res denotes the finite part and the residue, respectively, of the zeta function at the
argument indicated. Adding up the relevant combination, the BFK-gluing formula is verified with

P(λ) = − ln 2 ζN(0) (44)

Thus a gluing formula may exist also in the more general context of ∂N 6= ∅.
In order to more explicitly see the polynomial structure of P(λ), we note the following (for small

enough λ):

ζN(s) =
∞

∑
j=1

(µ2
j + λ)−s =

∞

∑
j=1

µ−2s
j

(
1 +

λ

µ2
j

)−s

=
∞

∑
j=1

µ−2s
j

∞

∑
`=0

(−1)`
Γ(s + `)

`!Γ(s)

(
λ

µ2
j

)`
=

∞

∑
`=0

(−1)`
Γ(s + `)

`!Γ(s)
λ`ζ∆N (s + `)

where ζ∆N is the zeta function associated with the Laplacian on N. From here, one finds

ζN(0) = ζ∆N (0) +
[m

2 ]

∑
`=1

(−1)`

`
λ` Res ζ∆N (`)

where for the case ∂N = ∅, exact agreement with [31] is found (once possible zero modes on N
are taken into account). We note that because of boundary contributions in heat kernel coefficients,
values and residues of ζ∆N do not vanish generically, and thus the polynomial will not vanish for m
odd, as it does for ∂N = ∅.
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In addition to the described generalization to ∂N 6= ∅, in order to be applicable to the
electromagnetic field, we plan to generalize the BFK-gluing formula to different boundary conditions.
Thus, instead of imposing Dirichlet boundary conditions on the piston, Robin boundary conditions
will be allowed, and the corresponding relevant Robin-to-Robin map needs to be found.

It is hoped that using the vast amount of literature on the Dirichlet-to-Neumann map,
(see, e.g., [43–49]), new insights can be gained on what the decisive topological and geometrical
factors are that lead to attractive or repulsive Casimir forces.
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