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Abstract: We propose a novel real-time video stitching method using camera path estimation and
homography refinement. The method can stably stitch multiple frames acquired from moving
cameras in real time. In the proposed method, one initial between-camera (BC) homography and
each camera path (CP) homography are used to estimate the BC homography at every frame.
The BC homography is refined by using block matching to adjust the errors of estimated CPs
(homography refinement). For fast processing, we extract features using the difference of intensities
and use the optical flow to estimate camera motion (CM) homographies, which are multiplied with
the previous CMs to calculate CPs (camera path estimations). In experiments, we demonstrated
the performance of the CP estimation and homography refinement approach by comparing it with
other methods. The experimental results show that the proposed method can stably stitch two image
sequences at a rate exceeding 13 fps (frames per second).
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1. Introduction

Video stitching is a technique that stitches multiple videos acquired from moving cameras.
By allowing the videos to have a wider field of view (FOV) and higher a resolution, users can be
immersed in the video. Video stitching has been applied in various fields, including surveillance
systems [1–3], teleconferencing, immersive virtual reality, and sports broadcasting.

Most video stitching methods are for cameras mounted on fixed rigs [4]. The use of fixed rigs
is advantageous in that the processing time is short by using a fixed homography. However, it is
difficult for the general public to utilize these approaches due to the expensive camera systems.
Recently, video stitching methods for mobile devices, which are cheaper than these camera systems,
have been proposed. Lin [5] and Guo’s [6] methods use camera paths (CPs), which are the products
of the consecutive camera motion (CM) homographies, but do not rely on direct computations of
homographies. This method is very stable for moving cameras, as shown in Figure 1.

Though video stitching using CPs has acceptable performance, this approach has two problems.
First, this method requires excessive processing time. The above two methods cannot be used for
processing in a real-time system, because a conventional PC takes 3–4 s to stitch two frames for a
video with a resolution of 1280 × 720 pixels. Second, misalignments are observed by successive
compounding errors. The stitching method using CPs estimates the between-camera (BC) homography
through the products of the initial BC homography and CPs. Therefore, in case that the errors of CPs
occur, the misaligned artifacts are included in the results.
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Figure 1. Comparison of video stitching methods: (a) video stitching using direct computation of the
homography; (b) video stitching using camera paths (CPs).

This paper is aimed at resolving these two central problems of earlier video stitching algorithms.
To achieve this goal, we propose CP estimation and homography refinement. The CP estimation is a
fast homography estimation method. The CP estimation uses difference of intensity on the grid and
Lucas–Kanade optical flow [7] to estimate CPs, instead of using existing methods [8], which consist of
three steps: feature extraction (SIFT [9], SURF [10]), feature matching (FLANN [11]), and homography
estimation (RANSAC [12]), that takes a relatively long time. The homography refinement is a method
for adjusting the errors of BC estimation. The refined BCs are updated by multiplying by the inverse
of the error motions, which are estimated by block matching.

In this paper, we propose real-time video stitching using CP estimation and homography
refinement. In the experiment, we measure the processing time and stitching score with various
samples with a resolution of 1280 × 720 pixels. The experimental results show that the proposed
method can stitch two video frames in real-time at a rate exceeding 13 fps (frames per second).

The rest of this paper is organized as follows. Section 2 reviews earlier related works. Section 3
presents an overview of our methods. Section 4 presents the CP estimation in detail. Section 5 also
presents the homography refinements. Experiments are presented in Section 6. A larger discussion is
provided in Section 7. Finally, summarizing conclusions are drawn in Section 8.



Symmetry 2018, 10, 4 3 of 21

2. Related Work

2.1. Image Stitching

We will review prominent existing image stitching research. The outstanding issue of image
stitching is how to remove the misalignments that are generated by parallaxes. Researchers have
attempted various approaches to solve the problems mentioned above. The research has generally
focused on two approaches: (1) seam-driven methods [13–16], and (2) warping methods [17–20].
First, seam-driven methods are techniques that find the optimal seam that separates two images to
minimize the stitching errors. Many diverse methods to find the optimal seam have been studied.
Agarwala [13] found the seam by using a graph-cut. Gao [14] selected the best seam among the
seam candidates that are generated by various homographies. Zomet [15] proposed gradient domain
image stitching (GIST), which minimizes the cost functions of the gradient domain. Lee [16] proposed
the use of structure deformation using the histogram of gradient (HoG) along the seams. Second,
warping methods are techniques that warp the images generated by multiple homographies instead
of estimating a global homography. Gao [17] proposed a warping method using a dual-homography
that is a combination of a distance plane and a ground plane with corresponding weight maps.
Lin [18] generated smoothly varying affine models to handle the parallax in the images. Zaragoza [19]
proposed the as-projective-as-possible (APAP) method with a moving direct linear transformation
(DLT), which is a warping method that aims to obtain the global homography while allowing the
existence of local non-projective deviations. Chang’s [20] approach used a spatial combination of the
perspective and a similarity transformation.

2.2. Video Stitching

Research in the field of video stitching can broadly be divided into two categories:
(1) misalignment removal, and (2) processing time reduction. First, the processing of misalignment
removal is itself an important issue in video stitching. To remove misalignment, most papers refer
to ideas employed in image stitching. Some of these papers used seam-driven methods. He’s [1]
group proposed use of the seam selection method to avoid moving the object at every frame. Li [4]
proposed a method of video stitching based structure deformation using double seams. As mentioned
earlier, some papers propose the use of the warping method. Lin [5] recovered 3D camera paths and
points using the collaborative visual simultaneous localization and map-building (CoSLAM). Similarly,
Guo [6] proposed a video stitching method based on the estimation of optimal virtual 2D camera paths
by minimizing energy functions. Jiang [21] utilized spatial and temporal content-preserving warping
to remove misalignments.

Second, the issue of reducing processing time is important for any real-time system. To reduce
processing time, some papers have proposed using additional information of the video. El-Saban [22]
used the motion vector from SURF descriptor matching. Shimizu [23] also used the motion data
contained in the information of compressed video streams. Some papers have proposed fast
post-processing methods. El-Saban [24] proposed the use of fast blending drawn from ideas based
on the region-of-difference (ROD). Chen [25] also proposed the use of fast blending, using both the
weight map and color of the overlapping regions.

3. Overview of the Proposed Method

3.1. Notation

In this section, we introduce various motion models to understand our frameworks easily.
The motion model is a numerical representation of camera movements between two images. In the
stitching algorithm, the homographies are used to obtain the motion models. The process of video
stitching needs two type of motion models, which are spatial motion model and temporal motion
model, unlike an image stitching algorithm, which in principle needs only a spatial motion model.
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The spatial motion models are BC homographies that represent the homographies between the
multiple inputs in the same frame. Snm(t) is the BC mapped from camera n to m in the frame t.
The temporal motion models consist of successive CMs and CPs. The CMs are the homographies
between neighboring frames of the same cameras. Tn(t)a is the CM of camera n between the frame
t− 1 and t. The CP is accumulated by the individual CMs. The CPs are important components for
accurate video stitching. In the Section 3.2, this process is discussed in detail. The CP is denoted as
Cn(t) for the camera n at the frame t. It can be written as

Cn(t) = Tn(t)Cn(t− 1) = Tn(t) · · · Tn(2)Tn(1), (1)

where {Tn(t) · · · Tn(2)Tn(1)} are the products of the CMs. Figure 2 shows the BCs, CMs, and CPs.

Figure 2. Examples of the various motion models.

3.2. Basic Theory

In this section, we introduce a theory based on the proposed method. Video stitching is
implemented using the BCs and CPs. Therefore, the relationship between the CP and BC should be
understood. Figure 3 shows the relationship between the CP and BC. The CP is a product of the CMs,
as expressed in (1). The BC is

S12(t) = C1(t)S12(0)C−1
2 (t), (2)

where C1(t) and C2(t) are the CP at the cameras 1 and 2, respectively. S12(0) is the initial BC of the first
frame. S12(t) can transform the coordinates of the frame at the camera 2 on the basis of the coordinates
of images captured from the camera 1.

However, the BC S12(t) is not used for a transformation of the coordinates between the frames.
Because the references of frames are changed dramatically, the motion of the transformed frames may
become more dramatic. Thus, the reference is set as the first frame for obtaining the stable results
that seem to be taken with a fixed camera. For this work, we need warping motions (WMs) that
transform the matrixes for mapping from the frames to the reference of the first frame. We denote WM
as Wn(t), with camera n at the frame t. The WMs are composed of the CPs and the initial BC. Figure 4
demonstrates the relationship among the WMs, CPs, and BCs. In the top of Figure 4, the red boxes are
the inputs of the camera 1, and the blue boxes are the inputs of camera 2. Boxes with a dotted line are
the inputs at the first frame, and boxes with a solid line are the inputs for individual frames denoted
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by t. In the bottom of Figure 4, each input is transformed by the WM on the basis of the first frame of
camera 1. The equation representing the WM can be written as

W1(t) = C−1
1 (t), (3)

W2(t) = S12(0)C−1
2 (t), (4)

where W1(t) and W2(t) are the WMs of the cameras 1 and 2, respectively, C1(t) and C2(t) are the CPs,
and S12(0) is the initial BC between camera 1 and 2 at the first frame. Note that (3), (4) are valid when
the CPs are accurately estimated.

Figure 3. Relationship between CP and between-camera (BC).

Figure 4. Relationships among the warping motion (WM), CP, and BC.
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3.3. Proposed Method

Our framework has four stages. Figure 5 shows the flowchart of our framework. The first step
of our algorithm is to obtain inputs from the multiple moving cameras that have a certain degree of
freedom (swing, shaking, etc.). We enforce a rough synchronization by initializing recording of the
scenes at the same time.

Figure 5. The pipeline of our framework: (a) input video; (b) camera path estimation; (c) homography
estimation; (d) warping and blending.

The second step is to estimate the CPs. The proposed method differs from the existing estimation
methods. The existing methods use SIFT and SURF for feature extraction, and FLANN for matching
features. This approach is not appropriate for a real-time video stitching algorithm, due to the excessive
processing time requirements. Therefore, we propose a novel method of CP estimation to reduce the
processing times. Our method extracts the features in every frame using the intensities of frames on
the grids, and makes matching points by tracking the features using the optical flow method.

The third step is to refine the BCs. The misalignments sometimes are observed in the results as
a result of inaccurate CPs. To remove the misalignments, we repetitively estimate the error motions
using block matching. Then, the inverses of the error motions are multiplied to the current BC.

The final step performs the warping and blending. For the warping stage, we estimate the WMs
using the CPs and BCs and generate the warping images by multiplying WMs to the frames. At the
blending stage, we remove the visual seams that are generated by the intensity differences between
the two images. In our framework, a multi-band blending [26,27] is adopted as the blending method.

4. Camera Path Estimation

In this section, we introduce the details relating to the CP estimation process. For a real-time
system, the fast homography estimation method is required. On a PC with Intel i5-4590 3.4GHz CPU,
the existing methods using SIFT and FLANN require 2–3 s of CPU time to generate a high-dimensional
descriptor of the features. However, this paper proposes a fast CP estimation method without the
use of descriptors. The proposed method measured 0.01 s on the same experimental environments.
It means that the proposed method is more suitable for real-time systems.

The proposed CP estimation method largely contributes to the field for two reasons:
(1) the uniform features extraction, and (2) the fast feature matching. The first method is uniform
feature extraction based the grid. The CP estimation is sensitively affected by the distribution of
features. For example, assume that the features are densely gathered on the certain region; the features
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then create a local homography, instead of a global homography. This local homography produces
results that include the misaligned artifacts. Therefore, the features should be distributed uniformly.
For the uniform distribution, the features are extracted using the grid. The second contribution of this
approach is the fast feature matching using the optical flows. Traditionally, when matching features,
calculating the descriptors takes a long processing time. Therefore, we need to define a new feature
matching method without the descriptors. In the method, the matching points are obtained by tracking
the features using optical flows. Figure 6 shows the flowcharts of the CP estimation method.

Figure 6. The flowchart of the camera path estimation.

4.1. Feature Extraction

The feature extraction process, based on the grid, is made up of two steps: (1) frame division for a
uniform distribution of features, and (2) feature extraction using the intensity of difference between
adjacent frames. First, we divide the frames of input into a grid. Figure 7 show the inputs which are
divided into a grid. The green lines are the lines of grid. The grid size is empirically set to 70 at the
HD resolution (1280 × 720 pixels). The vertexes of a grid become potential features for extracting the
features. After dividing an image into a grid, we select the features in the candidates on the vertexes of
the grid. Second, the extraction method uses the difference of the intensity between the current and
previous frames:

|It(x, y)− It−1(x, y)| > τi, (5)

where x and y are the coordinates on the vertexes of the grid, It(x, y) and It−1(x, y) are the intensities at
the current time t and previous time t− 1, respectively, and τi is a threshold (we use τi = 5). Figure 8a
shows the features by using (5).
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Figure 7. Input images divided into a grid: (a) complex image; (b) simple image.

Figure 8. Feature distributions of image: (a) proposed method; (b) Harris corner detection.

The feature extraction based on the grid is not only fast, but also stable. Our extraction method
produces a more stable CM than the other methods. For example, when applying the general method
into the frame, such as with Harris corner detection [28], we frequently confirm that the features
are densely located in certain regions, as shown in Figure 8b, because the method produces more
features on the highly textured regions (e.g., the buildings, the trees) than the poorly textured regions
(e.g., the sky, the roads). The biased feature distribution estimates the local homography based on the
planes with the greatest number of features. Estimating the CM using the local homography, we obtain
poor results that are concentrated on a plane with many features. In contrast, our proposed method
extracts the uniform features. This approach estimates a global homography which produces better
results than any individual local homography.

4.2. Feature Matching

In the traditional stitching method, the matching methods use the features including the
high-dimensional descriptors. For making descriptors, the matching algorithm performs a complicated
process. This method needs much more time to obtain a result. Therefore, we need new feature
matching methods, without the use of descriptors.

For fast matching methods without the descriptors, we use the optical flow method. The optical
flow method is a tracking algorithm that aims to find target objects between neighboring frames.
The purpose of the optical flow method is to track objects. However, we use optical flow for
tracking the features, instead of the objects. We use the positions of features as the seeds for the
optical flow, and track the features. Figure 9a shows the tracked features using the optical of the
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images with difference of intensity between the previous and current frames. The red lines are the
well-tracked features.

Figure 9. Examples of features tracking using optical flow: (a) well-tracked features; (b) removal of
tracking errors using the error function.

The tracking errors may be observed due to the similar patterns of the regions between the current
and previous frames. To remove the tracking errors, we use the following equation in the [12]:

d1(p, ptrack)/N(w) < τe, (6)

where d1(p, ptrack) is the L1 distance between initial points p and tracked points ptrack, N(w) is the
number of pixels in a search window, and τe is a threshold to determine whether the point is correct or
not (we use τe = 5). By using constraint (6), the tracking errors are removed, as shown in Figure 9b.

4.3. Feature Selection

In this section, we describe the feature selection method. In general, the feature distributions of the
frames are similar, because the difference in time between the frames is very small. However, different
feature distributions often appear due to changes in illumination or dramatic movements of the camera.
This fact often makes for the unstable results. To guard against these situations, we implement a
feature selection process before estimating the CM.

The feature selection protects against two unwanted situations: (1) different distributions of features
are compared with the previous frame, and (2) no feature points are identified. First, the distribution
of features is sometimes different from that of the previous frame. This situation produces the
discontinuous result. For solving this problem, it is supposed that there is little difference between
the current and previous CMs. Using this supposition, we transform the current features using the
previous CM. Then, we calculate the Euclidean distances between the features transformed by the
previous CM and the features tracked using the optical flow method. The distance is checked for
whether it is smaller than a threshold. The features with distances smaller than a threshold are regarded
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as the inliers. Finally, the CMs are estimated by the inliers using RANSAC, and are multiplied by the
previous CP to estimate the new CP. The method is defined as

d2(ppre, ptrack) < τs, (7)

where d2(ppre, ptrack) is the L2 distance between features ppre transformed by the previous CM and
the tracked features ptrack using the optical flow. τs is the threshold. We set this threshold to τs = 30.
Then, the CMs are estimated by the inliers using RANSAC, and are multiplied by the previous CP to
estimate the new CP.

Second, we prevent the case that extracts the small amounts of inliers after selecting the features.
If the CM is estimated using a small number of features, a wrong CM may be estimated. To prevent
this undesirable situation, we adopt a simple method that replaces the current CM with the previous
CM. This method can be exploited because there is little difference between the adjacent CMs.

5. Homography Refinement

In this section, we describe how to refine the BCs. In the process of video stitching, the coordinates
of different cameras are represented on the common space using Equations (2)–(4). However, the BC
can include the errors resulting from inaccurate CPs, which are estimated incorrectly due to dramatic
camera movement or intensity changes. Therefore, we propose to accomplish BC refinement by using
block matching.

When the observation of BC S12(t) is defined as

S12(t) = C1(t)S12(0)C
−1
2 (t), (8)

S12(t) = E12(t)C1(t)S12(0)C−1
2 (t), (9)

where C1(t) and C2(t) are the observation of CPs that includes the error motion E12(t), the relationship
equation between the observation of BC and the ideal BC is estimated as

S12(t) = E1,2(t)S12(t). (10)

Actually, the error motions between the adjacent frames have little effect on the misalignments.
However, the errors are accumulated over time. At the last frame, the results include remarkably
misaligned artifacts. This will be illustrated in Section 6. Therefore, observation of the BC must be
updated by multiplication with the inverse of E12(t) as follows:

Ŝ12(t) = E−1
12 (t)S12(t), (11)

where Ŝ12(t) is the refined BC. In practice, the refined WMs Ŵ1(t) and Ŵ2(t) are estimated using (11)
to warp the images:

Ŵ1(t) = C−1
1 (t), (12)

Ŵ2(t) = Ŝ12(t)C
−1
2 (t) = E−1

12 (t)S12(t)C
−1
2 (t). (13)

To update the refined BCs, the error motion E12(t) should be estimated using the features and
the refined features, which are the ideal features for stitching, as shown in Figure 10a. In other words,
the locations of the refined features are found. The simplest method for finding the refined features is
the method using SIFT and FLANN. However, this method is not suitable for a real-time system, due to
the long processing time. Therefore, we estimate the error motion using block matching. The block
matching is a matching algorithm that finds locations of templates. To find refined features, a template
is constructed around the features from the right frame and a search ROI, which is the search range
for block matching, and is built on the left frame, as shown in Figure 10b. Then, the error motion is
estimated by implementing the block matching algorithms.
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Figure 10. Example of the block matching: (a) example of the error motion; (b) example of the search
ROI and template.

Figure 11 shows the flowchart of the homography refinement in detail. In the first step,
we calculate the initial BC by using SIFT and FLANN at the first frame. Though this initial step
has a long processing time, it is important to accurately estimate the initial BC, which is used as a
reference for the refined BCs. In the second step, we reuse the features, which are obtained in the
CP estimation, from the right frames, to construct the templates and search ROIs. In the third step,
we form the templates of size (n × n) and search ROIs of size (m × m) around the warped features in
the warped right and left frames, respectively. We define n, m as 9, 21, respectively. In the fourth step,
we carry out the block matching to estimate the error motions. The block matching uses the normalized
cross correlations (NCC) to measure the matching rate between the templates and search ROIs:

r(x, y) =
∑x′ ,y′ (it(x′, y′)i(x + x′, y + y′))√

∑x′ ,y′ it(x′, y′)2∑x′ ,y′ i(x + x′, y + y′)2
, (14)

where x and y are pixel coordinates in the warped frames, x′ and y′ are pixel coordinates in the
templates, r(x, y) is the value of NCC, i(x, y) and it(x, y) are the intensities in the warped frame and
templates, respectively. We select the features with a maximum r(x, y) as the refined features. Finally,
the current BCs are updated by the error motions, which are estimated by the refined matching points
using the RANSAC algorithm and using (11).

Figure 11. The flowchart of homography refinement.
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6. Experimental Results

To evaluate the performance of the proposed method, we performed three experiments as follows:
(1) we evaluated the performance of our method using a variety of samples (i.e., processing time
and stitching qualities), (2) we demonstrated the performance of this CP estimation and homography
refinement approach by comparing it with other methods, and (3) we found the optimal parameters.

We tested our method on a PC with an Intel i5-4590 3.4GHz CPU and 4G RAM. Our method is
implemented using C++.

Input videos used in the experiments are acquired by the iPhone 6s with a resolution of
1280 × 720 pixels at 24 fps.

To validate our method, we collected various kinds of video samples, with six of these shown in
Figure 12. Here, the samples include diverse environments (streets, building, etc.) and many kinds of
camera motions (swings, parallel translations, dynamic moving). The first, second and third examples
contain various environments. The third example contains a moving object. The fourth, fifth, and sixth
samples are filmed under various camera movements, i.e., swings, parallel translations, and dynamic
moving, respectively (the original videos and experimental results can be found at [29]).

Figure 12. Cont.
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Figure 12. Video stitching results from various samples: (a) sample 1; (b) sample 2; (c) sample 3;
(d) sample 4; (e) sample 5; and (f) sample 6.

6.1. Processing Time and Stitching Quality

The important components, which indicate the performances of the video stitching, are the
processing times and qualities of alignments. To show the two performances, we measured the
processing times using the win32 API and the stitching score proposed in [6], using samples 1–6,
as shown in Figure 12.

Table 1 shows the processing times using the six samples. On average, the proposed method
spent 11.0 ms, 6.2 ms, 15.6 ms, 42.0 ms, for the camera path estimation, homography refinement, warp
and blending, respectively. The total processing time is 75.6 ms (i.e., about 13.2 fps). In Figure 13, it is
demonstrated that this method takes less time than video stitching using SIFT, which takes about 3.9 s.
The proposed method approximately shortens the processing time by a factor of 50. This confirms that
the proposed method is suitable for real-time systems.

Table 1. The processing time (ms) using samples 1–6.

Dataset Camera Path
Estimation (ms)

Homography
Refinement (ms)

Frame
Warping (ms)

Multi-Band
Blending (ms)

Total
(ms)

Sample 1 10.5 6.3 16.9 46.1 80.5
Sample 2 11.6 6.2 14.7 39.1 72.4
Sample 3 10.3 6.4 15.3 41.6 74.6
Sample 4 10.8 6.1 17.1 49.4 83.9
Sample 5 11.5 5.8 15.4 34.7 68.2
Sample 6 11.5 6.3 14.5 40.7 73.8
Average 11.0 6.2 15.6 42.0 75.6

Figure 13. Comparison of processing time with the proposed video stitching and video stitching
with SIFT.
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Now, we evaluate the alignment quality. For numerical evaluation of the alignment quality,
the stitching scores, which are proposed in [6], are measured. To explain briefly, the stitching score is
the L2 distance between features transformed in the estimated homography and ideal homography.
For the ideal homography, we re-estimate the new homography between two frames using SIFT and
FLANN. The new homography is considered as the ideal homography. A smaller stitching score
represents a better quality of alignments. Table 2 shows the stitching scores that compare the two cases
with and without homography refinement, using samples 1–6. In Table 2, the average stitching score
without the homography refinement is 6.433. When applying the homography refinement, the average
stitching score is 1.027. We numerically confirm that the homography refinement removes the error
motion caused by the accumulated errors, as shown in Figure 14.

Table 2. The stitching scores using samples 1–6.

Stitching
Score Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Average

Without
refinement 3.031 3.315 7.187 17.126 6.533 1.434 6.433

Homography
refinement 0.621 0.623 0.576 0.595 2.695 1.051 1.027

Figure 14. Stitching result of video stitching: (a) with homography refinement; (b) without
homography refinement.

6.2. Comparison with Other Methods

To reduce the processing time, we tried a variety of methods. In particular, we strived to
improve the features extraction process in CP estimation, and improved the process of finding the
refined features in the homography refinement. In the feature extraction process, we experimented
with the proposed method, good feature to track (GFTT) [30], and Harris corner detection. In the
matching methods, we ran experiments with the proposed method and nearest neighbor search (NNS).
The stitching score and processing time are shown in Tables 3 and 4. In Table 3, we measure the
stitching score without homography refinement and processing time during the CP estimation process.
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In the Table 4, we measure the stitching score with homography refinement and the processing time
during the homography refinement. The results are obtained based on the first sample in Figure 12.

Table 3. Comparison of the stitching score and processing time (ms) with various features extraction
methods in the CP estimation.

Methods Stitching Score
(without Homography Refinement)

Processing Time (ms)
(Camera Path Estimation)

Proposed method 3.031 14.2
GFTT 2.565 63.2

Harris corner detection 3.157 69.5

Table 4. Comparison of stitching score and processing time (ms) with proposed method and NNS.

Methods Stitching Score
(with Homography Refinement)

Processing Time (ms)
(Homography Refinement)

Proposed method 0.649 12.4
NNS 103.106 11.5

GFTT and Harris corner detection were used as feature extraction methods in CP estimation,
and were compared with the proposed method. First, GFTT is also a feature extraction algorithm for
the tracking algorithm. Features obtained using GFTT are uniformly dispersed. Due to suitable feature
detection for tracking objects, GFTT has a better stitching score than the proposed method. However,
GFTT has the notable disadvantage of a greater processing time. Second, Harris corner detection is
a basic detection algorithm using the Hessian matrix. Although the stitching score of Harris corner
detection is equal to that of the proposed method, the processing time incurred by the Harris corner
detection is five times larger than that of the proposed method. Additionally, Harris corner detection
has the disadvantage that the local CMs are estimated, as shown in the Figure 8b.

To illustrate our superior performance of finding the refined features, our method is compared
with NNS. NNS is a simple matching algorithm that selects the closest features. Below, we present the
instructions of NNS for matching features. We first establish the ROI around the features. The matching
candidates are regenerated using the feature extraction in the ROI. The nearest candidate from features
is selected as the matching points. The NNS requires less processing time than the proposed method.
For the stitching score, however, the NNS algorithm is woefully inadequate, because the method only
uses the distance information. Thus, NNS is inappropriate for matching algorithms.

6.3. Parameter Optimization

We will define appropriate parameters for our system. Our system uses various parameters
in both the CP estimation and homography refinement. Among various parameters, this section is
focused on six parameters that are mentioned above. The six parameters can be categorized into
two types of the parameter: (1) size type (i.e., the size of the grid in the CP estimation, and the size
of templates and search ROI in the homography refinement); (2) threshold type (i.e., τi, τe, and τs).
The six parameters are optimized by the experiments. To optimize the type of size, we measured the
processing times and stitching score with changes in the value of the parameters, because the type of
size influences the trade-off between computational complexities and quality of stitching. Similarly,
the threshold types are optimized by comparing the results of tests with change in the threshold values.

The size of the grid influences the number of features. The smaller the grid size, the more features
are extracted. Figure 15 shows the stitching scores and processing times as a function of the changes in
the grid size. We first measure processing time in the CP estimation step. We then calculate stitching
scores without the homography refinement. In Figure 15, the processing time generally decreases
by increasing the grid size. In detail, the grid sizes with 30 or more elements show no change in
processing time. However, the stitching score is independent of the grid size, while a large grid size
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has a higher probability of leading to misalignments. On the whole, a high score is observed with
large grid size. At the grid size of 80 elements, the highest score is obtained. Therefore, we consider
the results of experiments to maintain a balance between the processing time and the stitching score.
In this framework, we select grid sizes of 70 elements.

Figure 15. The stitching score and processing times as a function of changes in the grid size.

In the block matching process, the size of the template images and search ROI are important
parameters relating to the computational complexities. Figures 16 and 17 show the stitching scores
and processing times as a function of changes in size of the template and the search ROI. We measure
processing time during the homography refinement step. We calculate stitching scores after completion
of the homography refinement. In Figures 16 and 17, we confirm that the stitching score and the
processing time gradually decrease with expansion of the template image, and are unrelated to the
size of the search ROI. Figure 16 shows that the size of the template has little impact on the processing
time, except for a size of 5. According to the results, we only consider the size of the template for the
optimal parameter. But the large size of the search ROI is an important component. Inputs with fast
movement require a wide search range. If a small size is set for the search ROI, inputs with fast camera
movement are inappropriate for consideration. Therefore, we should consider an optimal search ROI.
In the paper, we set the size of the template image and search ROI as 9 and 21.

Figure 16. Processing time by size change of the template image, and search ROI.
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Figure 17. Stitching score by size change of the template image, and search ROI.

To set the appropriate value of threshold τi in the (5), both the number and position of features
are considered. Figure 18 shows the results of experiments with a change in value of the threshold.
The red crosses indicate the positions of the features. In the Figure 18a, some features are extracted on
the poorly textured region like sky, causing the errors of optical flow. In the Figure 18c,d, although
the features are extracted on the highly textured region, the number of features is insufficient for
homography estimation. Therefore, an optimal threshold value τi is set to 5.

Figure 18. The results of experiments with change in value of τi: (a) τi = 2; (b) τi = 5; (c) τi = 10;
(d) τi = 20.

The value of threshold τe in (6) is also optimized by comparing the results of experiments. The role
of threshold τe is to distinguish errors from the feature tracking. Therefore, when the optimal τe is
set in (6), incorrect flows are classified as the false detection. Figure 19 is the results of experiments
with change in the value of τe. Red lines indicate well-tracked features, and magenta lines indicate the
errors. In the Figure 19a, the well-tracked features are recognized as the errors in a green box, unlike a
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green box in the Figure 19b. On the other hand, in the Figure 19c,d, the errors are missed in a cyan box.
According to the results, the value of τe is set to 5.

Figure 19. The results of experiments with change in value of τe: (a) τe = 2; (b) τe = 5; (c) τe = 10;
(d) τe = 15.

Finally, we estimate the threshold value τs to analysis the results of experiments with change in
value of τs. In the Figure 20, we can compare with the results using (7) in the green boxes. The red
crosses indicate the selected features, and the magenta crosses indicate the unselected features that are
insufficient to be selected for estimation of homography. In the Figure 20c,d, the selected features are
over-selected, while the proper features are selected as shown in Figure 20a. Therefore, in the paper,
the threshold τs is set to 30. However, it notes that the τs can be adaptively set according to movement
of the cameras. In the case that the movement of cameras is dynamic, τs is set to a higher value than
the optimal value of 30.

Figure 20. Cont.
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Figure 20. The results of experiments with change in value of τs: (a) τs = 25; (b) τs = 30; (c) τs = 35;
(d) τs = 40.

7. Discussion

In this section, we describe limitations. Although our method demonstrates an improvement
over previous work, samples of failure are sometimes observed, as shown in Figure 21. By analyzing
the samples of failure, we determine that they occur due to two reasons: (1) a dramatic movement
of camera, and (2) multiple planes in the scene. The first reason, a dramatic movement of camera,
produces weird and unusual CPs. We suppose that videos must have continuity between adjacent
frames for the optical flow. However, a video with a dramatic movement may have discontinuities that
are susceptible to producing errors. Moreover, under these conditions, the template images cannot be
matched in the homography refinement, because the variation of scenes is beyond the range of the
search ROI. The second reason, multiple planes in the scene, is related to estimate homography. In our
method, the misalignments are less frequently observed using the global homography than the local
homography. Therefore, to estimate global homography, the scenes including a dominant plane are
exploited as inputs. To use the inputs including multiple planes, we consider the method that blends
the local homography, as in [6].

Figure 21. Results with the errors.

Furthermore, we consider some components to develop our framework. For example, we can
consider a video synchronization. When we carried out tests, we roughly record the videos by starting
at the same time. This can make for slightly unnatural results. To solve the problem, the use of advanced
synchronization [31] is considered. Also, we can consider the application of video stabilization. In the
proposed method, our results are seen as the videos captured from fixed cameras. This situation has
limitations when the outputs are cropped. The use of video stabilization [32,33] is a solution for this
problem. To improve the performance, we consider the use of video stabilization using the energy
function minimization [32], or Kalman filtering [33].
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8. Conclusions

In this paper, we propose a novel video stitching method that combines multiple input videos
from handheld cameras in real-time. The proposed method contributes to two improvements to video
stitching: (1) processing time reduction, and (2) the removal of misalignments. To reduce processing
time, we propose the use of CP estimation, which is an estimation method using a grid and optical
flow. To remove the error of alignment, we propose the homography refinement, which is a refinement
method that uses block matching. The experiments and supplements have demonstrated that our
method can build the stitched results in real-time, with clear advantages over earlier algorithms.
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