
symmetryS S

Article

General (α, 2)-Path Sum-Connectivirty Indices
of One Important Class of Polycyclic
Aromatic Hydrocarbons

Haiying Wang

School of Science, China University of Geosciences (Beijing), Beijing 100083, China; whycht@cugb.edu.cn

Received: 14 August 2018; Accepted: 6 September 2018; Published: 21 September 2018
����������
�������

Abstract: The general (α, t)-path sum-connectivity index of a molecular graph originates from
many practical problems, such as the three-dimensional quantitative structure–activity relationships
(3D QSAR) and molecular chirality. For arbitrary nonzero real number α and arbitrary positive integer
t, it is defined as tχα(G) = ∑Pt=vi1

vi2 ···vit+1
⊆G[dG(vi1)dG(vi2) · · · dG(vit+1)]

α, where we take the sum

over all possible paths of length t of G and two paths vi1 vi2 · · · vit+1 and vit+1 · · · vi2 vi1 are considered
to be one path. In this work, one important class of polycyclic aromatic hydrocarbons and their
structures are firstly considered, which play a role in organic materials and medical sciences. We try
to compute the exact general (α, 2)-path sum-connectivity indices of these hydrocarbon systems.
Furthermore, we exactly derive the monotonicity and the extremal values of these polycyclic aromatic
hydrocarbons for any real number α. These valuable results could produce strong guiding significance
to these applied sciences.

Keywords: topological indices; general (α, t)-path sum-connectivity index; polycyclic aromatic
hydrocarbons

1. Introduction

1.1. Application Background

In many fields (e.g., physics, chemistry, and electrical networks), the boiling point, the melting
point, the chemical bonds, and the bond energy are all important quantifiable parameters.
To understand the physico-chemical properties of chemical compounds or network structures,
we abstractly define different concepts, collectively named the topological descriptors or the
topological indices after mathematical modelings. We called them different names, such as Randić
index and Zagreb index [1–3]. Different index represents its corresponding chemical structures in
graph-theoretical terms via arbitrary molecular graph.

In the past decades, these two-dimensional topological indices have been used as a powerful
approach to discover many new drugs, such as anticonvulsants, anineoplastics, antimalarials,
and antiallergics and Silico generation [4–8]. Therefore, the practice has proven that the topological
indices and the quantitative structure-activity relationships (QSAR) have moved from an attractive
possibility to representing a foundation stone in the process of drug discovery and other
research areas [9–12].

Most importantly, with the further study of chemical indices and drug design and discovery,
three-dimensional molecular features (topographic indices) and molecular chirality are also presented.
It is increasingly urgent to study the three-dimensional quantitative structure-activity relationships
such as molecular chirality. However, so far there have been few results, except for one related
definition that is mentioned generally in [8].
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1.2. Definitions and Notations

In the whole paper, we always let G = (VG, EG) be a simple molecular graph, in which VG and EG
are the vertex set and edge set of G, respectively. We denote |VG| and |EG| as the numbers of vertices
and edges of G, respectively. In physico-chemical graph theory, the atoms and the bonds represent
the vertices and edges, respectively. Two vertices are called adjacent if there is an edge between them
in G. For any vertex u ∈ VG, the number of its adjacent vertices is called its degree in G and denote
dG(u). The set of all neighbors of u is denoted by NG(u), and a vertex of G is called a pendant if its
degree is 1. Similarly, the minimum and maximum degree of G are denoted by δG and ∆G, respectively.
All other notations and terminologies are referred to [13].

In 1975, Randić index was introduced by the chemist M. Randić during his study of
alkanes [1]. As a molecular structure-descriptor and a graphical description of molecular structure,
Randić index is most commonly used in the quantitative structure-property and structure-activity
studies [6,14]. Randić index is defined as the sum over all edges uv ∈ EG of a molecular graph of the
terms [dG(u)dG(v)]−

1
2 . That is,

R(G) = ∑
uv∈EG

[dG(u)dG(v)]−
1
2 .

The first Zagreb index was introduced more than forty years ago by Gutman and
Trinajestić [15,16], and is defined as

M1(G) = ∑
x∈VG

dG(x) = ∑
uv∈EG

[dG(u) + dG(v)].

Later [17], some researchers began to define another new index of a graph G as

χ(G) = ∑
uv∈EG

[dG(u) + dG(v)]−
1
2 ,

which is named the sum-connectivity index and denoted by χ(G).
In 2008, Zhou and Trinajestic [17] proposed the sum-connectivity index, which is a closely related

variant of Randić connectivity index of G. Now we define the general sum-connectivity index χα(G) as

χα(G) = ∑
uv∈EG

[dG(u) + dG(v)]α.

With the intention of extending the applicability of the general sum-connectivity
index, we begin to consider the general (α, t)-path sum-connectivity index of G as where
we take the sum over all possible paths of length t of G:

tχα(G) = ∑
Pt=vi1

vi2 ···vit+1
⊆G

[dG(vi1) + dG(vi2) + · · ·+ dG(vit+1)]
α,

with any nonzero real number α and any positive integer t, and two paths vi1 vi2 · · · vit+1 and
vit+1 · · · vi2 vi1 are considered to be one path.

According to the above definition, the general (α, t)-path sum-connectivity index of an arbitrary graph
is one real constant and an important invariant under graph automorphism. It is closely related to
the structures of a molecular graph. For any molecular material, only by mastering its structure can
we calculate the exact value of its general (α, t)-path sum-connectivity index.

In this work, one important class of polycyclic aromatic hydrocarbons and their structures are
considered which play a role in organic materials and medical sciences. Then, we try to compute
the exact general (α, 2)-path sum-connectivity indices of these hydrocarbon systems. Furthermore,
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we exactly derive its monotonicity and extremal values for these polycyclic aromatic hydrocarbons
for any real number α. These valuable results could produce strong guiding significance to these
applied sciences.

For convenience, it is necessary to simplify some basic concepts and notations in polycyclic
aromatic hydrocarbons. A vertex with degree i is called an i-vertex. An edge between a j-vertex and a
k-vertex is called a (j, k)-edge. Besides, the numbers of i-vertices and (j, k)-edges are denoted as ni and
mjk, respectively.

Let vi0 vi1 · · · vit be a path Pt of length t in polycyclic aromatic hydrocarbons, denoted
Pt = vi0 vi1 · · · vit . (dG(vi0), dG(vi1), · · · , dG(vit)) is called its degree sequence. Obviously, there are in
total two types (i.e., (1, 3, 3) and (3, 3, 3)) of degree sequences of different 2-paths in these polycyclic
aromatic hydrocarbons in Figure 1. Let m133 and m333 denote the numbers of all 2-paths of the degree
sequence types (1, 3, 3) and (3, 3, 3) in polycyclic aromatic hydrocarbons, respectively.

2. Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons are important and ubiquitous combustion materials.
They belong to one class of hydrocarbon molecules. Polycyclic aromatic hydrocarbons have been
considered as an important class of carcinogens. They also play a role in the graphitisation of medical
science and organic materials [18,19].

In the field of chemical materials, polycyclic aromatic hydrocarbons have become molecular
analogues of graphite for interstellar species and building blocks of functional materials for device
applications [20–22]. Thus, detailed descriptions of all these molecular properties are necessary for the
available synthetic routes to polycyclic aromatic hydrocarbons and their specific applications.

In essence, polycyclic aromatic hydrocarbons can be considered as small pieces of graphene
sheets, in which the free valences of the dangling bonds are saturated by hydrocarbons. Vice versa,
a graphene sheet can be interpreted as an infinite polycyclic aromatic hydrocarbon molecule [22].
Many scientists have reported many successful applications of polycyclic aromatic hydrocarbons in
graphite surface modeling. As we know, benzenoid systems are a very famous family of hydrocarbon
molecules and belong to the circumcoronene homologous series of benzenoid, and polycyclic aromatic
hydrocarbons have very similar properties to them.

One important class of polycyclic aromatic hydrocarbons shown in Figure 1 belong to linear and
regular circular polycyclic aromatic hydrocarbons [22]. However, the class of symmetrical poly-aromatic
hydrocarbons is important in sciencesw. For an arbitrary positive integer n, let PAHn be the general
expression of this class of polycyclic aromatic hydrocarbons shown in Figure 1.

Obviously, the first three members of this hydrocarbon family are given in Figure 2, where PAH1

is called benzene, PAH2 coronene, and PAH3 circumcoronene . Obviously, benzene has 6 carbon atoms
and 6 hydrogen atoms, coronene has 24 carbon atoms and 12 hydrogen atoms, and circumcoronene has
54 carbon atoms and 18 hydrogen atoms.
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Figure 1. General representation of a polycyclic aromatic hydrocarbon.

Figure 2. The first three graphs of polycyclic aromatic hydrocarbons.

From Figure 1 above, we know that the class polycyclic aromatic hydrocarbon PAHn contains 6n2

carbon atoms and 6n are hydrogen atoms. Thus, this molecular graph has 6n2 + 6n vertices or atoms
such that 6n2 of them are carbon atoms and 6n are hydrogen atoms. Each hydrogen atom is 1-vertex
and each carbon atom is 3-vertex in PAHn. Therefore, this hydrocarbon molecule PAHn satisfies that
|VPAHn | = 6n2 + 6n. In this hydrocarbon molecule, we have

|EPAHn | =
3× 6n2 + 1× 6n

2
= 9n2 + 3n,

in which |EPAHn |means its number of edges (actually chemical bonds).
According to Figure 1, each hydrogen atoms has just one edge/bond between only one carbon

atom in the class of polycyclic aromatic hydrocarbon system. Any other carbon atoms just have three
bonds with carbon atoms or hydrogen atoms. From the structure of Figure 1, it is clear that we can
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divide the edge set of the class of polycyclic aromatic hydrocarbons into two partitions: the (1, 3)-edge
subset and the (3, 3)-edge subset. Thus,

m13 = n1 = 6n

and
m33 = |EPAHn | − n1 = 9n2 − 3n.

3. Main Results on the General (α, 2)-Path Sum-Connectivity Indices of PAHn

In this section, let PAHn be the general representation of the class of polycyclic aromatic
hydrocarbon molecules in Figure 1 for any positive integer n. Then, there are 6n hydrogen atoms
and 6n2 carbon atoms in PAHn. We compute the general (α, 2)-path sum-connectivity index of a family
of polycyclic aromatic hydrocarbons as follows. The indices should directly reflect the material’s
natural properties.

Theorem 1. For an arbitrary real number α, the general (α, 2)-path sum-connectivity index of PAHn is equal to

2χα(PAHn) = 6 · n · [32α+1 · n− 2(9α − 7α)]. (1)

Proof of Theorem 1. According to the structures of PAHn, consider any (1, 3)-edge e. Then, there are
in total two different 2-paths, and each path contains this edge e. Consider any (3, 3)-edge e′. There are
in total four different 2-paths, and each path contains this edge e′. Since we do not distinguish between
the paths vi1 vi2 · · · vit+1 and vit+1 · · · vi2 vi1 , each 2-path of PAHn will compute twice. Then, the total
number of different 2-paths, denoted N(P2), is

N(P2) =
NH · 2 + m33 · 4

2
=

6n · 2 + (9n2 − 3n) · 4
2

= 18n2.

If the degree sequence of a 2-path is the type (1, 3, 3), then this path begins or ends with one
hydrogen atom. Obviously, each hydrogen atom can produce two different P2, and there are 6n
hydrogen atoms in PAHn. Then,

m133 = 2 ·m13 = 2 · 6n = 12n.

Since there are in total two types (1, 3, 3) and (3, 3, 3) of degree sequences of 2-paths in PAHn,
we have

m333 + m133 = N(P2),

which induces that
m333 = N(P2)−m133 = 18n2 − 12n.

By usage of the definitions of the general (α, 2)-path sum-connectivity index, we can compute it of
the polycyclic aromatic hydrocarbon in Figure 1 as follows:

2χα(PAHn) = ∑
P2=vi1

vi2 vi3∈G
[dG(vi1) + dG(vi1) + dG(vi1)]

α

= m133 · (1 + 3 + 3)α + m333 · (3 + 3 + 3)α

= (12n) · 7α + (18n2 − 12n) · 9α
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= 6 · n · [32α+1 · n− 2(9α − 7α)].

4. The Monotonicity and the Extremal Values of 2χα(PAHn)

Let PAHn be the general representation of the class of polycyclic aromatic hydrocarbon molecules
shown in Figure 1 for any positive integer n. In this section, we approach the monotonicity and
the extremal values of 2χα(PAHn) for any real number α.

By Equation (1), we can see that 2χα(PAHn) is a strictly increasing function on n. That is, the larger
n is, the larger 2χα(PAHn) is.

Let
2χα(PAHn) = 6 · n · [32α+1 · n− 2(9α − 7α)] = 0. (2)

Then, Equation (2) has two real zeroes n1 = 0 and n2 = 2
3 [1− ( 7

9 )
α].

It is clear that
n2 =

2
3
[1− (

7
9
)α] <

2
3

for any real number α. Thus, 2χα(PAHn) is a strictly increasing function on the positive number n and
for any real number α.

Thus, we can conclude the theorem as follows.

Theorem 2. Let PAHn be the general representation of the class of polycyclic aromatic hydrocarbon molecules
shown in Figure 1. Then

1. For any real number α, we have 2χα(PAHn) is strictly increasing with respect to all positive integers n.
2. The smallest general (α, 2)-path sum-connectivity index of Polycyclic aromatic hydrocarbons is

2χα(PAHn)min =2 χα(PAH1) = 6[9α + 2 · 7α] (3)

when and only when n = 1. Of course, PAH1 is benzene (see Figure 1).

5. Conclusions

The general sum-connectivity index χα(PAHn) and its minimum value of the class of polycyclic
aromatic hydrocarbons can be obtained by substituting the specific value t = 1 in the results above.

6. Further Research

In this article, we only consider one important class of symmetrical poly-aromatic hydrocarbons
PAHn (see Figure 1), which belong to linear and regular circular polycyclic aromatic hydrocarbons [22].
However, there are broader and more useful polycyclic aromatic hydrocarbons in the world. There are
many linearly fused circular PAHs with different structures, such as naphthalene, anthracene, tetracene,
and pentacene. On the other hand, there are great nonlinear and irregular or non-symmetrical
aromatic hydrocarbons, such as pyrene, benzopyrene, derivatives of azulene and pentahelicene.
In the future, we intend to conduct scientific research on the relationship between the complicated
aromatic hydrocarbons and their general (α, t)-path sum-connectivity indices. This research will be very
meaningful, interesting and worthwhile.
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