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Abstract: The fitness classification of a banknote is important as it assesses the quality of banknotes
in automated banknote sorting facilities, such as counting or automated teller machines. The popular
approaches are primarily based on image processing, with banknote images acquired by various
sensors. However, most of these methods assume that the currency type, denomination, and exposed
direction of the banknote are known. In other words, not only is a pre-classification of the type of
input banknote required, but in some cases, the type of currency is required to be manually selected.
To address this problem, we propose a multinational banknote fitness-classification method that
simultaneously determines the fitness level of a banknote from multiple countries. This is achieved
without the pre-classification of input direction and denomination of the banknote, using visible-light
reflection and infrared-light transmission images of banknotes, and a convolutional neural network.
The experimental results on the combined banknote image database consisting of the Indian rupee
and Korean won with three fitness levels, and the United States dollar with two fitness levels,
show that the proposed method achieves better accuracy than other fitness classification methods.

Keywords: multinational banknote fitness classification; visible-light reflection image; infrared-light
transmission image; convolutional neural network; deep learning

1. Introduction

Currently, automated machines for financial transactions are becoming popular and have been
significantly modernized. Such facilities can handle various functionalities, including not only the
recognition of banknote type, counting, sorting and detection of counterfeits, but also serial recognition
and fitness classification [1]. The capability of operating on currencies from various countries and
regions is also being considered. Among them, banknote fitness classification evaluates the physical
condition of the banknotes that may be degraded during the recirculation process, and determines
whether they are still usable or should be replaced by new ones. This also helps to enhance the
performance of the counting and sorting functionalities, as well as preventing malfunctions and
inconveniences caused by damaged banknotes entering the counting system.

The widely used approaches for the problems of automated banknote sorting are based on image
processing techniques, in which the optical characteristics of banknotes are captured by various
imaging sensors. Because the presentations of banknotes are different among different types of
currencies, and between the front and reverse sides of the banknote, most of the studies on fitness
classification assume that the currency type, denomination, and input direction of the presented
banknote are known [1,2]. These studies were proposed for either a certain type of currency or
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multiple national currencies, and their fitness classification methods are explained in detail in the
next section.

2. Related Works

Studies have been conducted that subject fitness classification to a certain national currency or
to banknotes from various countries and regions. Considering soiling as the primary criterion for
classifying the fitness levels of Euro banknotes (EUR) [3], Geusebroek et al. [4] and Balke et al. [5]
proposed a method that evaluates soiling using the adaptive boosting (AdaBoost) algorithm with color
images of the banknotes. The classification features are the mean and standard deviation values of the
color channels’ intensity extracted from the overlapping rectangular regions on banknote images [4,5].
Another Euro banknote recognition system was proposed by Aoba et al. [6], based on the combination
and processing of visible and infrared (IR) banknote images. In this system, the banknote types are
classified by a three-layered perceptron, and banknote fitness is validated by radial basis function
(RBF) networks [6]. For assessing the quality of Chinese banknotes (RMB), both the studies in [7,8]
used the gray-level histogram of banknote images as the classification features, but employed different
algorithms as the classifiers: neural network (NN) [7], and the combination of dynamic time warp
(DTW) and support vector machine (SVM) [8]. Pham et al. [9] proposed a fitness classification method
for the Indian rupee (INR) based on grayscale images captured by visible light sensors. In this study,
they performed discrete wavelet transform (DWT) on preselected regions of interest (ROIs), calculated
the mean and standard deviation features, and classified the fitness level of the banknotes using an
SVM [9].

In the studies considering the variety of currencies, experiments were conducted with banknote
datasets consisting of currency papers from various countries or regions. The fuzzy-based method
using visible-light reflection (VR) and near-infrared light transmission (NIRT) images of the banknotes
(proposed by Kwon et al. [10]) was tested with banknotes in the United States currency (USD),
Indian currency (INR), and Korean currency (KRW). In [11], Lee et al. proposed a soiled banknote
fitness determination based on morphology and Otsu’s thresholding on EUR and Russian ruble
(RUB) banknote images, captured by a contact image sensor (CIS). The convolutional neural network
(CNN)-based method proposed by Pham et al. [2] could classify the fitness levels regardless of the
denomination, and the input direction of banknotes in each of the currencies of INR, KRW and USD.

The ability to simultaneously classify multiple currencies from various countries has been
attracting research interest, primarily for the functionality of banknote type (national currency,
denomination, and input direction) recognition. Studies have been conducted regarding the
classification of banknotes from up to two different national currencies using various methods, such as
NNs [12], NNs and genetic algorithms (GA) [13], correlation matching [14], linear discriminant analysis
(LDA) [15], and the hidden Markov model (HMM) [16]. The recent CNN-based method proposed by
Pham et al. [17] could simultaneously recognize banknotes from six countries with an accuracy of 100%
and showed that the CNN could be a promising approach for the problem of multinational banknote
classification. However, studies on banknote classification that utilize the advantages of CNNs are
still limited. There have been studies in the field of computer vision classification that employed both
handcrafted and non-handcrafted features. In the study of Nanni et al. [18], besides the network-based
features, they considered various other handcrafted features such as local ternary patterns (LTP),
local phase quantization (LPQ), local binary pattern (LBP), etc., and combined them in the classification
task by score level fusion. The experimental results show that handcrafted and non-handcrafted
features were able to extract different information from input images and their combination can
help to boost the performance [18]. However, this method used multiple CNN models and methods
for handcrafted image feature extraction and could make the classification system very complex.
The CNN-based method proposed in [17] focused on classification of currency type, denomination and
input direction of banknotes from multiple countries and did not consider the fitness for recirculation
of banknotes. In the method using CNN in [2], the fitness classification tasks were conducted on
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separate currency types. Consequently, the types of currencies still need to be manually selected
before their fitness for recirculation is evaluated. However, this research shows the fitness classification
of multiple national currencies without any prior knowledge of currency type. In addition, both of
these previous works [2,17] used only the grayscale VR banknotes image, which might show limited
performance when dealing with the problem of simultaneously classifying of banknote fitness from
multiple national currencies. As a result, banknote images acquired by multiple sensors for VR and
infrared transmission (IRT) images are considered in this study for evaluation of fitness. Experimental
results show that our method, using both VR and IRT images, outperforms those using only VR images.

Table 1 summarizes the comparison between our method and a previous study. In Section 4,
we explain the proposed multinational banknote fitness classification method in detail. The experimental
results and conclusions are presented in Sections 5 and 6, respectively.

Table 1. Comparison of the proposed method and previous works on the fitness classification
of banknotes. EUR = Euro. RBF = radial basis function. IR = infrared. NN = neural network.
DTW = dynamic time warp. SVM = support vector machine. VR = visible-light reflection. INR = Indian
currency. CNN = convolutional neural network.

Category Method Advantage Disadvantage

Fitness classification on
single national currency

- Using features from color channels of EUR
banknote images [4,5]

- Using RBF for fitness validation in the EUR
banknote recognition system with visible
and IR images of banknotes [6].

- Using gray level histogram of Chinese
banknote images for classification by using
NN [7] or DTW and SVM [8].

- Using DWT for feature extraction on VR
images of INR banknotes and classifying
fitness by SVM [9].

Simplified feature
selection as the fitness
classification is
conducted on the known
(pre-classified) type of
banknote.

Effectiveness of the
fitness classification
method is not confirmed
on the other types of
currencies.

Fitness classification on
various national
currencies

- Using the grayscale histogram of banknote
images and classifying fitness using DTW
and SVM [6] or using a NN [7].

- Using multiresolutional features of visible
and IR images of banknote for
recognition [8].

- Soiling evaluation based on image
morphological operations and Otsu’s
thresholding on banknote images [11].

The fitness classification
method is tested on
various types of
currencies.

The types of currencies
are still manually
selected or pre-classified
before determining the
fitness

Multinational banknote fitness classification
using CNN (proposed method)

Fitness classification is
simultaneously
conducted on multiple
countries’ banknotes.

Intensive training of the
CNN is required.

3. Contributions

To address the problems in the previously proposed methods, we considered a multinational
banknote fitness classification method using CNN on VR and IRT banknote images. In our proposed
method, banknote images captured by various sensors are arranged into multiple channels to be the
input to the CNN classifier. Through an intensive training process, our proposed system is designed
to simultaneously classify the fitness of banknotes from multiple countries, regardless of the input
banknote’s denomination and input direction. Compared to previous studies, the novelty of our
method can be shown as follows:

- This is the first study on multinational banknote fitness classification performed on INR, KRW,
and USD currencies. Although the previous study could determine the banknote fitness levels
without the pre-classification of banknote images in the denomination and input direction [2],
the fitness classification tasks were still conducted on the separate currency types.

- The images of the input banknote are captured by VR sensors on both sides in the cases of INR
and KRW, and on the front side in the case of USD. In addition, IRT images are captured from
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the front side in all cases of INR, KRW, and USD. The captured images are arranged into a
three-channel image to be input to the CNN classifier, with the VR channel duplicated in the case
of USD. We included the USD banknote image dataset with a different number of sensors for
capturing images from that of the remaining datasets of INR and KRW. Therefore, we can evaluate
the robustness of the proposed method with various numbers of imaging sensors. Experimental
results showed good performance regardless of the types of currency and the number of sensors
for capturing banknote images.

- With the three levels of fitness (namely fit, normal, and unfit) in the cases of INR and KRW
(Case 1), and two levels of fit and unfit for USD (Case 2), the CNN classifier in our proposed
method consists of five outputs to ensure the coverage of all the fitness classes in both cases.

- We created the self-collected banknote fitness database of the Dongguk fitness database (DF-DB2),
and trained the CNN model that is publicly available through the method in [19] such that other
researchers can compare and evaluate the performance.

4. Proposed Method

4.1. Overview of the Proposed Method

Figure 1 shows the overall flowchart of the proposed method. The input banknote is captured by
VR and NIRT. The captured images are subsequently passed to the preprocessing steps, in which the
banknote regions are segmented from the background and resized to a consistent size of 115 × 51 pixels.
The equally resized images of the input banknote are arranged into a three-channel image, in which
the first channel is the IRT image, and the remainder is the VR images of both sides of the banknote.
This combined image is input into the pretrained CNN to be classified for the fitness level at the
network output.
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Figure 1. Overall flowchart of the proposed method. IRT = infrared transmission.

4.2. Banknote Image Acquisition and Preprocessing

The banknote images are captured in the commercial counting machine that is equipped with
imaging sensors capable of acquiring images in various wavelengths [20]. The analysis of the lighting
mechanisms on new and old banknotes [10] shows that light reflection tends to be reduced by scattering
on a rough surface, and light transmission is expected to be reduced owing to energy absorption by
soiling materials. Consequently, we used VR and IRT images for the fitness classification in this study.

In the banknote-counting machine, line-contact image sensors are used rather than area sensors,
for size and cost efficiency. For capturing the entire banknote, each image line comprising 1584 pixels
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is captured sequentially, one line for each triggering time. For the VR images, the trigger number when
the input banknote is INR or KRW is 464, while that for USD banknotes is 350. For the IRT images,
116 line images are captured for INR or KRW, and 175 line images are captured for USD. These line
images are concatenated for acquiring the final two-dimensional banknote images, in which the VR
images and IRT images have resolutions of 1584 × 464 and 1584 × 116 pixels, respectively, for INR
and KRW banknotes, and 1584 × 350 and 1584 × 175 pixels, respectively, for the USD banknotes.

The input banknote is inserted into the counting machine in one of the four directions, which are
forward and backward directions of the front side, and forward and backward directions of the reverse
side, labeled as A, B, C and D directions, respectively. After obtaining the banknote’s image, we used
the built-in corner detection algorithm of the counting machine [2] to segment the banknote region
from the background of the image. This task not only excludes the redundant information of the
surrounding background, but also adjusts the displacement of the input banknote captured in the
original image [17]. Examples of the captured banknote images by the machine with VR and IRT
sensors for the INR banknote are shown in Figure 2.
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Figure 2. Example of banknote images captured by the system in: forward direction with (a) front side
VR image (A direction), (b) reverse side VR image (C direction) and (c) IRT image; backward direction
with (d) front side VR image (B direction), (e) reverse side VR image (D direction) and (f) IRT image;
(g–l) are the corresponding banknote region segmented images from the original captured images in
(a–f), respectively.

The segmented banknote images are subsequently equally resized to 115 × 51 pixels, and arranged
into a three-channel image for each input banknote, in which the first channel is the IRT image, and the
second and third channels are the VR images of the front and reverse sides, respectively. This combined
image is input to the CNN classifier in the next step.

4.3. The CNN Architecture

The CNN structure used in our proposed method consists of five convolutional layers, denoted as
L1 to L5, and three fully connected layers, denoted as F1 to F3, as shown in Figure 3. This architecture
is inspired by the AlexNet architecture [2,17,21]. The details of each layer’s attributes and the size of
the feature map at each layer are shown in Table 2. Rectified linear unit (ReLU) layers are connected
to all of the convolutional layers and two of the three fully connected layers. The ReLU activation
function is widely used in CNNs for diminishing the computational complexity, increasing the training
speed, and avoiding the gradient-vanishing effect [2,17,22].
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Figure 3. Overall flowchart of the proposed method. L1–L5 = convolutional layers 1–5. F1–F3 = fully
connected layers 1–3. ReLU = rectified linear unit. CCN = cross-channel normalization. Conv = two-
dimensional (2-D) convolutional layers.

In the first two layers of L1 and L2, we implemented the local response normalization, namely the
cross-channel normalization (CCN) layers, to aid generalization [22]. The CNN equation is as follows:

a =
a(

K + α·SS
WindowChannelSize

)β
(1)

in which K, α and β are the hyperparameters, a is the value obtained by normalization, α is the neuron
activity computed at the output of the kernel, SS is the sum of the squared activity elements in the
normalized window, with the WindowChannelSize value set to 5 [2,17,21]. We chose the values of K,
and α and β as 1, 10−4 and 0.75, respectively.

At the end of the L1, L2 and L5 layers, we performed a down-sampling on the feature maps’
channels by the max pooling layers. This will reduce the number of parameters and computations
in the network, and also reduce overfitting [23]. The details of the network structure and the size of
the feature map at each layer are given in Table 2. At layer ith of the CNN, the feature map size of
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the height or width is denoted as di, and is calculated based on the corresponding dimensions of its
preceding layer’s feature map d(i−1) and kernel f (height or width) as follows [23]:

di =
di−1 − f + 2p

s
+ 1 (2)

where p and s are the numbers of pixels for padding and striding, respectively. The depth of the
feature map is maintained in the pooling layer or is equal to the number of kernels in the convolutional
layer [2,17]. With the input image having the size of 115 × 51 pixels and three channels, the feature
map size changes at each stage of the convolutional layers and has the size of 6 × 2 × 128 at the
final L5 layer of the network, as shown in Table 2. This resulted in 1536 features of the input
banknote being subsequently connected to the three fully connected layers, which are considered as
the system classifier.

In the connections between the second and third fully connected layers, we adopted the dropout
regularization method to prevent overfitting in the network training [21,24]. In this method, neurons
are excluded from the feed-forward network and do not participate in the back-propagation training
process by disconnecting their connections with a certain probability. From the standard feed-forward
operation in Equation (3), the output vector y of the previous lth layer before serving as the input
vector for the ith node of the (l + 1)th layer is multiplied by element with the vector r, of which its
elements are the Bernoulli random variables with a probability p of 1. Combining Equations (3) and
(4), we obtain the output of the ith node in the (l + 1)th layer, denoted by zl+1

i , in the feedforward
operation with dropout, as shown in Equation (5).

zl+1
i = f

(
wl+1

i yl + bl+1
i

)
(3)

r ∼ Bernoulli(p) (4)

zl+1
i = f

(
wl+1

i

(
yl ◦ r

)
+ bl+1

i

)
(5)

where bl+1
i is the bias and f (·) is the activation function of the neuron. The small circle symbol (◦) in

Equation (5) denotes the element-wise multiplication of the two vectors, yl and r.
At the output of the final fully connected layer F3, the fitness level of the input banknote is

determined. As our database is composed of mixed banknotes with two cases of fitness levels, each of
which includes either three levels in the case of INR and KRW, or two levels for USD, the CNN classifier
is designed to recognize the banknote fitness for all the cases. Consequently, the number of outputs
of the CNN structure is five, corresponding to the total five classes: fit, normal and unfit of the first
case (Case 1), and fit and unfit of the second case (Case 2). The calculated output values of the neuron
units in the F3 layer are normalized using the softmax function, which is widely used for classification
problems with more than two classes [2,17,25,26]. From the output value zi of the ith neuron unit in
the output layer, the probability pi of the case where the input banknote belongs to the ith class is
calculated by the normalized exponential function (softmax function) as the following Equation (6):

pi =
exp(zi)

∑N
i=1 exp(zi)

(6)

Based on the calculated values pi (i = 1, ..., N), the input banknote is classified to the class
that corresponds to the highest value among n classes. With the completely trained CNN model,
our method can simultaneously classify the fitness of INR, KRW, and USD banknotes in combination
of all the denomination and input directions with two cases of fitness level. The performance of the
proposed method was evaluated experimentally, of which the details are presented in the next section.
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Table 2. Details of the CNN and size of feature maps at each CNN’s layer (unit: pixel).

Layer Type Kernel Attribute Number of Filters Feature Map Size

Image Input Layer 115 × 51 × 3

L1

Convolutional Layer 7 × 7 × 3, stride 2, no padding 96 55 × 23 × 96

ReLU Layer

CCN Layer

Max Pooling 3 × 3, stride 2, no padding 27 × 11 × 96

L2

Convolutional Layer 5 × 5 × 96, stride 1, 2 × 2 zero padding 128 27 × 11 × 128

ReLU Layer

CCN Layer

Max Pooling 3 × 3, stride 2, no padding 13 × 5 × 128

L3
Convolutional Layer 3 × 3 × 128, stride 1, 1 × 1 zero padding 256 13 × 5 × 256

ReLU Layer

L4
Convolutional Layer 3 × 3 × 256, stride 1, 1 × 1 zero padding 256 13 × 5 × 256

ReLU Layer

L5

Convolutional Layer 3 × 3 × 256, stride 1, 1 × 1 zero padding 128 13 × 5 × 128

ReLU Layer

Max Pooling 3 × 3, stride 2, no padding 6 × 2 × 128

F1
Fully Connected Layer 4096

ReLU Layer

F2

Fully Connected Layer 2048

ReLU Layer

Dropout

F3
Fully Connected Layer 5

Softmax Layer

5. Experimental Results

5.1. Descriptions of Experimental Databases

In this study, we conducted the experiments using the proposed fitness classification method
with a multinational banknote database comprising images from three national currencies: INR,
KRW, and USD. Six denominations exist in the INR dataset: 10, 20, 50, 100, 500 and 1000 rupees,
and two denominations exist in the KRW dataset: 1000 and 5000 wons, each of which consists of
three fitness levels of fit, normal, and unfit for recirculation, called the Case 1 fitness level. In these
Case 1 datasets, each banknote image was captured using VR sensors on both sides, and IRT sensors
on the front side. Five denominations exist for the USD: 5, 10, 20, 50 and 100 dollars, divided into
two fitness levels of fit and unfit, called the Case 2 fitness level. The number of images captured
per banknote was two, including the VR and IRT images of one side of the banknote. The banknote
fitness levels were determined based on the densitometer measurement [10]. That is, with the actual
densitometer measurement values, human experts classified the banknotes in the experiment database
as fit banknotes (good quality for use), normal banknotes (acceptable quality for use) and unfit
banknotes (bad quality and should be replaced) for ground-truth data. Based on the discrimination
of the measured values among banknotes in the databases, the fitness levels were determined to
be three levels in the case of INR and KRW, and two levels for USD. Figures 4–6 show examples of
banknote images with different fitness levels in the experimental database. The numbers of banknotes
in each national currency and fitness levels are shown in Table 3. This database is available as DF-DB2
in [19]. With the image capturing method mentioned above, the numbers of IRT images in all the three
types of currency (and that of the VR images in the case of USD) is equal to the number of banknotes;
meanwhile, the numbers of VR images in the INR and KRW datasets are twice as many as the number
of banknotes in these cases. For adapting the USD images with the three-channel input of the CNN,
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we duplicated the VR image of the USD in the second channel and third channel of the input image.
When combining into the three-channel image to be input to the CNN, the number of input images is
the same as the number of banknotes.
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Figure 4. Examples of banknote images in the INR dataset: (a) fit; (b) normal; and (c) unfit banknotes.
The images on the left, middle and right of each figure are the IRT image, the VR image captured
from the same side with the IRT and the VR image captured from the opposite side of the input
banknote, respectively.
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Table 3. Numbers of banknotes in the experimental multinational banknote fitness database.

Currency Case 1–Fit Case
1–Normal

Case
1–Unfit Case 2–Fit Case

2–Unfit

INR
Number of banknotes 5945 3898 903 N/A N/A

Number of banknotes
after data augmentation 11,890 11,694 14,448 N/A N/A

KRW
Number of banknotes 7395 6307 5747 N/A N/A

Number of banknotes
after data augmentation 14,790 12,614 11,494 N/A N/A

USD
Number of banknotes N/A N/A N/A 2574 377

Number of banknotes
after data augmentation N/A N/A N/A 12,870 9048
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5.2. Training of CNN

For evaluating the performance of the proposed method, we conducted the experiments with
a two-fold cross validation. The database was randomly divided into two subsets, one for training
and another for testing, and the process was repeated with these two subsets swapped. The overall
performance was measured based on the average of the obtained results from two trials.

In the first experiments for training the CNN, we trained the network model on each subset of
the two-fold cross validation, and saved the trained models for testing in the remaining subsets of the
next experiments. As the CNN models were trained from scratch, we performed data augmentation to
increase the amount of data used in the training process for generalization and avoiding overfitting [17].
The training data was expanded using the boundary cropping method [2], i.e., the boundaries of the
original image in the training subset was randomly cropped in the range of 1–7 pixels. This type of
data augmentation has been widely used in previous research [21]. With the various augmenting
factors, the number of banknotes in each national currency and each class of fitness were increased
to be relatively comparable, as shown in Table 3. We performed the CNN training using MATLAB
(MathWorks, Inc., Natick, MA, USA) [27] on a desktop computer with the following configuration:
Intel® Core™ i7-3770K CPU @ 3.50 GHz [28], 16 GB DDR3 memory, and NVIDIA GeForce GTX 1070
graphics card (1920 CUDA cores, 8 GB GDDR5 memory) [29]. The training method is the stochastic
gradient descend (SGD), in which the network weights are updated based on batches of data points at
a time [26], with the parameters set as follows: the training epoch number is 100, the learning rate is
initialized at 0.01 and reduced with the factor of 0.1 at every 20 epochs, and the dropout factor p in
Equation (4) is set to 50%. Figure 7 shows the graphs of accuracy and batch loss of the training process
on the two subsets of training data in the two-fold cross-validation method.
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Figure 8 shows the trained filters in the first convolutional layer (L1) of the CNN models obtained
by two training trials of the two-fold cross validation. The filters in the first layers were trained to
extract the important low-, mid- and high-frequency features that reflect the fitness characteristics of a
banknote on all the input image channels. Each filter in Figure 8 was resized from 7 × 7 × 3 pixels,
as shown in Table 2, to five times larger, and scaled from the original real pixel values to the range of
0–255 by integer for visualization.
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5.3. Testing of Proposed Method and Comparative Experiments

In the subsequent experiments, we performed the measurement of the classification accuracy
on the remaining subsets against the training sets of the multinational banknote database. From the
accuracies obtained by the two testing trials, we calculated the average accuracy as the ratio of the total
accurately classified cases of the two subsets, and the total number of samples in the database [2,17].
In Table 4, we show the confusion matrices of the classification accuracy of the experimental results
using the proposed CNN-based method with two-fold cross validation on the multinational banknote
fitness database.

Table 4. Confusion matrix of the testing results on the multinational banknote fitness database using
the proposed method. The first testing results and second testing results mean the results of the testing
on the first and second subsets of banknotes with the trained CNN models using the alternative subsets
in the two-fold cross-validation method, respectively (unit: %).

First Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.805 0.195 0 0 0
Case 1–Normal 0.470 99.177 0.353 0 0

Case 1–Unfit 0 0.330 99.670 0 0
Case 2–Fit 0 0 0 96.906 3.094

Case 2–Unfit 0 0 0 39.175 60.825

Second Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.715 0.285 0 0 0
Case 1–Normal 0.275 99.294 0.431 0 0

Case 1–Unfit 0 0.693 99.307 0 0
Case 2–Fit 0 0 0 98.517 1.483

Case 2–Unfit 0 0 0 32.787 67.213

Average Accuracy 98.977
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As shown in Table 4, the overall testing accuracy of the proposed method on the experimental
database with merged currency types, denominations, and input directions of the banknotes is nearly
99%. These results proved that the proposed CNN-based method yields good fitness classification
performance with the conditions of the multinational banknote dataset.

In the proposed method, we used the combination of images captured by various sensors per input
banknote, in which one IRT and two VR images were used. In the next experiments, we investigated
the optimality of the possible combinations of the captured images per banknote for inputting to the
CNN models, as well as the effect of each type of image on the classification of the banknote fitness.
Five cases were considered: using IRT images only (denoted by IRT), using VR images captured from
the front side only (denoted by VR1), using two-channel input images of IRT and front side VR images
(denoted by IRT-VR1), using two-channel input images of two VR images (denoted by VR1-VR2),
and using three-channel input images of IRT and two VR images (the proposed method). In the
multinational banknote database, the USD dataset consists of only one IRT and one VR image captured
from the front side; therefore, the combination of IRT and reverse side VR images, which might be
considered as IRT-VR2, is not considered. In the case of VR1-VR2, for the USD banknotes in the
dataset, the VR image was duplicated into the two channels of the input image. We also used the CNN
structure similar to the two-fold cross-validation for these comparative experiments. The results are
shown in Figure 9 with the average classification accuracy for each case of input image to the CNNs.
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Figure 9. Comparative experimental results of fitness classification with various input methods of the
captured banknote images to the CNNs.

Among the methods for inputting banknotes to the CNNs, the proposed method of using the
three-channel input comprising all the captured images yielded the best accuracy, because it can fully
utilize the available captured information of the banknote for fitness classification, as shown in Figure 9.
Furthermore, Figure 9 shows that the IRT images of the banknote reflect the most fitness information,
expressed by the high classification accuracy in the cases that present IRT images.

The examples of the correctly classified cases by our proposed method are shown in Figure 10,
including the captured images of the banknotes from the three national currencies of the database.
Figure 10 shows that the fitness levels in these examples are more clearly distinguished for the INR
banknotes than those for KRW and USD. However, the IRT images of banknotes from different
fitness levels are slightly more distinguishable than the VR images. This results in the relative high
classification effect of the IRT images, as shown in the experimental results of Figure 9. To adapt to
the multinational banknote fitness system, the VR image of USD, or the Case 2 fitness, need to be
duplicated to form the three-channel input image. This leads to insufficient information for fitness
classification in this case, and results in the high error rate in the Case 2 fitness levels.
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Figure 10. Examples of correctly classified cases (genuine acceptance) by the proposed method of the
(a) INR; (b) KRW and (c) USD datasets. In (a,b), from left to right are the IRT image and VR images of
the front and reverse sides of the input banknote, respectively; and from the top down are the correctly
classified Case 1–fit, Case 1–normal and Case 1–unfit banknotes, respectively. In (c), the left and right
images are the IRT and VR images of the input USD banknote; and the upper and lower figures are the
correctly classified Case 2–fit and Case 2–unfit banknotes, respectively.

In Figures 11–13, we visualize the examples of feature maps at the outputs of the pooling layers in
the CNN structure for the genuine acceptance cases shown in Figure 10. There are three max pooling
layers in the convolutional layers of L1, L2 and L5. At the output of these pooling layers of L1, L2 and
L5, the numbers of feature maps’ channels are 96, 128 and 128, respectively, as shown in Table 2.
By visualizing the output feature maps, we can see in Figures 11–13 that the extracted features become
more distinguishable over the stages of the convolutional layers among banknotes of the same national
currency with different fitness classes. Banknote images responded differently to the filters of the first
convolutional layer, and the output features of this L1 layer consist of many minor details, as shown
in the left images of Figures 11–13. However, as the banknote features pass through the stages of the
convolutional networks from L1 to L5, the noises are gradually reduced, and only the classification
features are maintained before being input to the successive fully connected layers. In the Case 1
fitness examples of Figures 11 and 12, the output features at the last layer (L5) consist of the patterns
that their noticeability reduces from unfit to normal to fit input banknotes, because the high-pass filters
in the first L1 layers, which are visualized in Figure 8, tend to have more response to the details of the
damage on the unfit banknote images than those on the normal and fit banknotes. These responses are
maintained through max pooling layers to the last layers of the feature extraction part of the CNN.
With the Case 2 fitness of USD, fitness levels of fit and unfit tend to be classified according to the
brightness of the banknote images, since unfit banknote features at L5 have lower pixel values than
that of the fit banknote, as shown in Figure 13.
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Figure 11. Visualization of the feature maps at the output of the pooling layers in the CNN structure of
the (a) fit, (b) normal and (c) unfit INR banknotes in the examples shown in Figure 10a. The images on
the left, middle and right of each figure are the output features of the max pooling layers of the L1,
L2 and L5 convolutional layers (as shown in Table 2), respectively.
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Figure 12. Visualization of the feature maps at the output of the pooling layers in the CNN structure of
the (a) fit, (b) normal and (c) unfit KRW banknotes in the examples shown in Figure 10b. The images in
each figure are arranged similarly as those in Figure 11.
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the (a) fit and (b) unfit USD banknotes in the examples shown in Figure 10c. The images in each figure
are arranged similarly as those in Figure 11.

Figure 14 shows the examples of error cases that occurred in the testing process for each case of
fitness levels. In some cases, the banknote region segmentation did not operate correctly, as shown in
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Figure 14c,f. Consequently, the classification results were affected. The fit INR banknote in Figure 14a
was misclassified to normal, because it contained a reverse side VR image with slightly low contrast,
and soiling on the upper part, which was visible but not as clear in the IRT and front side VR images.
The soiling in the lower part of the VR image is also the reason for the fit banknote in Figure 14e to be
incorrectly recognized as unfit. In the case of normal fitness banknote in Figure 14b, the brightness
of the banknote images were not highly different from the fit banknotes; meanwhile, the tearing
near the middle of the banknote was not clearly visible when being resized to be input to the CNN.
The misclassification to unfit shown in Figure 14d is a KRW banknote with normal fitness with a small
tearing part that is visible by the IRT image, and the handwritten mark on the opposite side of the
banknote is captured by the VR sensor.
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Figure 14. Example of testing error cases by our method: (a) Case 1–fit banknote misclassified to
Case 1–normal; (b) Case 1–normal banknote misclassified to Case 1–fit; (c) Case 1–unfit banknote
misclassified to Case 1–normal; (d) Case 1–normal banknote misclassified to Case 1–unfit; (e) Case
2–fit banknote misclassified to Case 2–unfit; and (f) Case 2–unfit banknote misclassified to Case 2–fit.
In each figure of (a–d), the upper, middle and lower images are the IRT image and VR images of the
front and reverse sides of the input banknote, respectively. In (e,f), the upper and lower images are the
IRT image and VR image of the input banknote, respectively.

To make a further comparison with an equal number of fitness levels, we conducted the
experiments of multinational banknote fitness classification with the two fitness levels of fit and
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unfit on the three currency types (USD, KRW, and INR) in the database. Since the fitness levels of the
banknotes in the database were determined by human experts based on the densitometer measurement
values [10], it is difficult to manually and subjectively reassign an additional level of normal for USD
banknotes, as well as reassign the normal banknotes of INR and KRW into fit and unfit classes. As a
result, we considered the experiments with the two fitness levels of fit and unfit cases. With the normal
banknotes excluded from the INR and KRW datasets, we modified the CNN structure to have two
outputs, corresponding to the two classes of fit and unfit of the three national currencies’ datasets.
Experimental results of two-fold cross-validation of the two fitness levels classification for multiple
currencies of INR, KRW and USD using the proposed CNN-based method are shown in Table 5 in the
form of confusion matrices. In Table 6, we show the experimental results with average accuracy of
each testing phase and overall testing results in Table 5 separately for each national currency.

Table 5. Confusion matrix of the testing results on the multinational banknote fitness database with
two fitness levels using the proposed method. The first testing and second testing mean the same as
those in Table 4 (unit: %).

First Testing Results
Classification Results

Fit Unfit

Desired Outputs Fit 99.686 0.314
Unfit 1.987 98.013

Second Testing Results
Classification Results

Fit Unfit

Desired Outputs Fit 99.685 0.315
Unfit 1.570 98.430

Average Accuracy 99.237

Table 6. Classification accuracy on each national currency dataset with two fitness levels of fit and
unfit using the proposed method. The first testing and second testing mean the same as those in Table 4
(unit: %).

Currency Type First Testing Results Second Testing Results Average Accuracy

INR 100 99.971 99.985

KRW 99.985 100 99.992

USD 93.679 94.604 94.138

It can be seen from Table 6 that the classification accuracies of INR and KRW were nearly 100%
and the performance in the case of the USD dataset is the lowest among the three national currencies.
The reason for the experimental results can be explained as follows. The data of the three fitness levels
exists for the original INR and KRW databases. Therefore, without the data of normal banknotes
from these databases, the possibility of overlap between the two classes of fit and unfit is lower than
that among the three classes of fit, normal, and unfit. Whereas, the original USD dataset has two
fitness levels, and the consequent possibility of overlap between classes is still maintained. Moreover,
the third channel of input image in the case of USD is the duplication of the VR image in the second
channel to adapt to the three-channel input of the CNN structure, resulting in the disparity of the
fitness information in the input data between USD banknotes and the banknotes of the remaining
currencies. This causes the lower accuracy in the case of USD compared to INR and KRW.

For confirming the generalization of the results of the proposed method, we conducted the
additional experiments with a five-fold cross-validation method. That is, the database was randomly
divided into five subsets, in which four subsets were used for training and the remainder was used
for testing. These processes of training and testing are repeated five times with the alternated subsets,
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and we calculated the average testing accuracy. Figure 15 shows the visualized filters in the first
convolutional layer (L1) of the CNN models obtained by five training experiments. The visualization
method is similar to that of Figure 8. The confusion matrices of the experimental results with five-fold
cross-validation using the proposed method are shown in Table 7.
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It can be seen from Table 7 that the average classification accuracy of the five-fold cross-validation
was slightly higher than that of the two-fold cross-validation using the proposed method, as shown in
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Table 4, owing to the more intensive training tasks in the five-fold cross-validation compared to the
two-fold cross-validation method.

Table 7. Confusion matrix of the testing results on the multinational banknote fitness database using
the proposed method. The first, second, third, fourth, and fifth testing results mean the results of the
testing on the first, second, third, fourth and fifth subsets of banknotes, with the trained CNN models
using the remaining four subsets in each case in the five-fold cross-validation method, respectively
(unit: %).

First Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.962 0.038 0 0 0
Case 1–Normal 0.196 99.559 0.245 0 0

Case 1–Unfit 0 0.226 99.774 0 0
Case 2–Fit 0 0 0 99.020 0.980

Case 2–Unfit 0 0 0 28.767 71.233

Second Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.850 0.150 0 0 0
Case 1–Normal 0.049 99.706 0.245 0 0

Case 1–Unfit 0 0.376 99.624 0 0
Case 2–Fit 0 0 0 99.031 0.969

Case 2–Unfit 0 0 0 18.421 81.579

Third Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.925 0.075 0 0 0
Case 1–Normal 0.196 99.706 0.098 0 0

Case 1–Unfit 0 0.526 99.474 0 0
Case 2–Fit 0 0 0 97.868 2.132

Case 2–Unfit 0 0 0 14.474 85.526

Fourth Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 99.700 0.300 0 0 0
Case 1–Normal 0.245 99.412 0.343 0 0

Case 1–Unfit 0 0.225 99.775 0 0
Case 2–Fit 0 0 0 97.674 2.326

Case 2–Unfit 0 0 0 13.158 86.842

Fifth Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 98.951 1.049 0 0 0
Case 1–Normal 1.274 97.844 0.882 0 0

Case 1–Unfit 0 1.503 98.497 0 0
Case 2–Fit 0 0 0 94.767 5.233

Case 2–Unfit 0 0 0 13.158 86.842

Average Accuracy 99.143

In order to compare our method to the more complex network, we conducted comparative
experiments with the ResNet model [30]. In these experiments, we used the pretrained ResNet-50
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model that was trained on the ImageNet database on MATLAB [31] and conducted transfer
learning [32] with the following parameters: the first half number of the layers of ResNet-50 model
is frozen while training, the number of training epochs was 10, and the learning rate was 0.001.
The experimental results of two-fold cross-validation on the multinational banknote fitness database
using ResNet-50 CNN structure are shown in Table 8 in the form of confusion matrices.

It can be seen from Table 8 that the results when using ResNet-50 were not as good as those
of the proposed method in terms of lower average classification accuracy. This can be explained
by the method for training the network models between the two methods. The ResNet model was
pretrained with the ImageNet database, and we applied transfer learning on this model with the first
half number of the layers frozen to reduce training time. Meanwhile, for the proposed CNN structure,
we conducted training from scratch by our banknote image dataset, as the number of parameters is
smaller than that of the ResNet model. As a result, the filters in the early layers of our proposed model
are able to respond and select the details on banknote images that reflect the fitness characteristic of
the banknote, such as stains, tearing or other damage. The overall classification accuracy was higher
when using the proposed method than using the ResNet model.

Table 8. Confusion matrix of the testing results on the multinational banknote fitness database using
the proposed method. The first testing and second testing mean the same as those in Table 4 (unit: %).

First Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 98.397 1.603 0 0 0
Case 1–Normal 3.839 92.656 3.506 0 0

Case 1–Unfit 0 1.382 98.618 0 0
Case 2–Fit 0 0 0 97.525 2.475

Case 2–Unfit 0 0 0 47.938 52.062

Second Testing Results
Classification Results

Case
1–Fit

Case
1–Normal

Case
1–Unfit

Case
2–Fit

Case
2–Unfit

Desired
Outputs

Case 1–Fit 98.364 1.636 0 0 0
Case 1–Normal 3.471 93.254 3.275 0 0

Case 1–Unfit 0 2.048 97.952 0 0
Case 2–Fit 0 0 0 97.892 2.108

Case 2–Unfit 0 0 0 39.891 60.109

Average Accuracy 96.156

We also experimentally compared our proposed method to previous studies [2,7,9]. The two-fold
cross-validation method was also adopted in these comparative experiments. In the method proposed
in [2], the grayscale VR images of banknotes were used for the fitness classification by the CNN.
This can be considered as equivalent to the VR1 experiment mentioned above. For the experiments
using the method in [7], we extracted the histogram features from the grayscale VR images of the
banknotes and classified the fitness levels using a multilayered perceptron (MLP) network with
95 nodes in the input and hidden layers. Referring to [9], we located the ROIs on the VR banknote
images, performed Daubechies wavelet decomposition on the ROIs, and calculated the mean and
standard variation values of the wavelet-transformed sub-bands. The means and standard variations
were selected as the features to be classified for fitness levels by the SVM. The number of fitness classes
in these three comparative experiments was maintained to that of the proposed method; consequently,
we used the one-against-all training strategy for the SVM classifiers in the implementation of [9].
For the comparative experiments using the DWT and SVM method [9], the assumption of the prior
knowledge of the currency type, denomination, and input direction of the banknote is required,
as the ROI’s positions are different among the types of banknote images; meanwhile, in the cases
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of [2,7], we could conduct the comparative experiments with the multinational currency condition.
The experiments with the previous fitness classification method were implemented in MATLAB [33,34].
Figure 16 shows the comparative experimental results of the proposed method to the previous study
with the average classification accuracies of the two-fold cross-validation method.
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Figure 16. Comparative experimental results of the proposed method and the previous methods,
including: method based on 1-channel VR images and CNN [2], method based on grayscale histogram
and a multilayered perceptron (MLP) [7], and method based on DWT and SVM [9].

As the method proposed in [9] required the pre-classification of denomination and input direction
of banknote images, we implemented the experiments using this DWT and SVM-based method with
two-fold cross-validation separately on each type of banknote image. As a result, the classification
accuracies were calculated separately according to the currency types, denominations and input
directions of banknotes, and shown in Table 9 for all the adopted methods. In the methods in [2,7] and
the proposed method, the pre-classification of these categories was not required.

The experimental results in Figure 16 show that the proposed method outperformed the methods
of the previous studies, and in most of the cases of banknote types in Table 9, the proposed method and
the CNN-based method in [2] outperformed the other methods in terms of higher average classification
accuracy with two-fold cross validation. The reason for the comparative experimental results can
be explained as follows. The histogram-based method of [7] used only the brightness characteristic
of the visible light banknote images, which were strongly affected by the illumination condition of
the sensors, for the fitness levels determination. This consequently does not guarantee the reliability
for the recognition of the other cases of degradation such as tearing or staining, which might occur
sparsely on the banknote and are hardly represented by the brightness histogram characteristics. In the
case of [9], banknote fitness was classified by the features extracted from the ROIs that are the blank
areas on the banknote images. This method is not effective for cases where damage or staining occurs
on other areas of the banknotes. The most accurate recognition cases were the CNN-based methods
of [2] and the proposed method, in which the proposed method used the additional IRT images for
the classification of the banknote fitness. The advantage of the CNN-based method is that both of
the classifier’s parameters in the fully connected layers and the feature extraction stage’s parameters
in the convolutional layers are trained with the training dataset. In addition, the proposed method
used banknote images captured by various sensors of visible-light and near-infrared. Consequently,
the appropriate features for the fitness classification of banknotes can be captured by the proposed
system and extracted, as well as classified, by the CNN architecture to obtain the best accuracy,
compared to the previous methods in the experiments shown in Figure 16.
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Table 9. Comparison of classification accuracies by our proposed fitness classification method and the previous methods on each currency’s denomination and input
direction. The first testing and second testing mean the same as those in Table 4 (unit: %). Denom = denomination. Dir = direction. Avg. Acc. = average accuracy.

Denom. Dir.

Method Based on 1-Channel VR
Image and CNN [2]

Method Based on Grayscale
Histogram and MLP [7]

Method Based on DWT and
SVM [9] Proposed Method

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

INR10
A 100 100 100 97.835 96.647 97.241 91.339 89.941 90.640 100 98.619 99.310

B 100 100 100 97.292 98.450 97.870 91.489 90.892 91.191 100 98.643 99.322

INR20
A 100 99.718 99.860 85.434 90.986 88.202 85.994 84.789 85.393 99.720 100 99.860

B 100 99.713 99.857 91.714 89.112 90.415 87.143 85.673 86.409 100 99.713 99.857

INR50
A 100 100 100 92.440 93.772 93.103 93.471 93.772 93.621 100 100 100

B 100 99.654 99.828 95.533 91.696 93.621 89.347 91.695 90.517 100 100 100

INR100
A 99.623 99.244 99.434 96.101 94.836 95.469 90.566 92.191 91.378 99.623 100 99.811

B 99.875 100 99.937 95.614 96.236 95.925 89.975 90.088 90.031 99.875 99.875 99.875

INR500
A 99.591 99.589 99.590 82.618 85.421 84.016 88.344 86.653 87.500 99.591 99.589 99.590

B 99.596 99.594 99.595 84.242 81.339 82.794 85.050 86.410 85.729 99.394 100 99.696

INR1000
A 100 99.587 99.794 86.831 86.364 86.598 76.955 76.859 76.907 100 100 100

B 100 100 100 87.500 85.772 86.640 79.839 79.268 79.555 99.194 99.593 99.393

KRW1000

A 98.676 96.729 97.703 84.289 80.990 82.641 78.376 81.609 79.991 99.382 99.558 99.470

B 98.722 97.743 98.232 88.421 87.359 87.890 79.323 77.953 78.639 99.549 99.549 99.549

C 96.438 96.257 96.347 87.088 82.709 84.900 51.291 49.020 50.156 99.020 98.930 98.976

D 97.033 96.681 96.857 87.696 88.559 88.127 60.559 60.175 60.367 99.389 99.651 99.520

KRW5000

A 98.487 97.610 98.049 84.236 82.311 83.274 81.529 82.390 81.959 99.522 98.884 99.204

B 98.348 98.348 98.348 83.934 82.132 83.033 79.054 79.129 79.092 99.625 99.625 99.625

C 98.719 98.205 98.462 84.458 81.538 82.999 71.050 72.479 71.764 99.744 99.487 99.616

D 97.738 97.896 97.817 82.472 83.172 82.821 76.737 77.184 76.960 99.273 99.434 99.353

USD5

A 60.526 75.000 67.568 63.158 72.222 67.568 81.579 83.333 82.432 84.211 94.444 89.189

B 75.610 66.667 71.250 63.415 61.538 62.500 78.049 74.359 76.250 85.366 97.436 91.250

C 77.143 79.412 78.261 74.286 67.647 71.014 82.857 76.471 79.710 85.714 91.176 88.406

D 81.818 84.375 83.077 66.667 75.000 70.769 75.758 71.875 73.846 90.909 90.625 90.769
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Table 9. Cont.

Denom. Dir.

Method Based on 1-Channel VR
Image and CNN [2]

Method Based on Grayscale
Histogram and MLP [7]

Method Based on DWT and
SVM [9] Proposed Method

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

First
Testing

Second
Testing

Avg.
Acc.

USD10

A 98.333 100 99.160 86.667 93.220 89.916 98.333 100 99.160 95.000 98.305 96.639

B 73.016 75.806 74.400 80.952 80.645 80.800 80.952 70.968 76.000 90.476 83.871 87.200

C 86.441 77.193 81.897 77.966 71.930 75.000 79.661 73.684 76.724 96.610 84.211 90.517

D 87.037 90.566 88.785 75.926 71.698 73.832 72.222 73.585 72.897 96.296 84.906 90.654

USD20

A 92.063 93.548 92.800 84.127 83.871 84.000 93.651 93.548 93.600 93.651 95.161 94.400

B 81.818 81.818 81.818 69.091 80.000 74.545 74.546 80.000 77.273 89.091 96.364 92.727

C 82.692 94.118 88.350 80.769 82.353 81.553 90.385 92.157 91.262 92.308 98.039 95.146

D 84.615 86.275 85.437 86.538 82.353 84.466 88.462 88.235 88.350 92.308 90.196 91.262

USD50

A 92.437 96.639 94.538 88.235 84.874 86.555 95.798 95.798 95.798 96.639 96.639 96.639

B 79.646 95.495 87.500 78.761 87.387 83.036 92.035 92.793 92.411 92.035 93.694 92.857

C 97.248 97.222 97.235 96.330 90.741 93.548 97.248 97.222 97.235 96.330 100 98.157

D 97.222 97.170 97.196 95.370 94.340 94.860 95.370 96.226 95.794 94.444 98.113 96.262

USD100

A 93.750 93.636 93.694 92.857 90.909 91.892 91.071 91.818 91.441 91.964 97.273 94.595

B 92.727 90.826 91.781 92.727 88.073 90.411 88.182 88.073 88.128 95.455 97.248 96.347

C 93.519 94.393 93.953 87.037 88.785 87.907 88.889 86.916 87.907 88.889 97.196 93.023

D 90.291 97.087 93.689 92.233 89.320 90.777 89.320 89.320 89.320 84.466 91.262 87.864

Avg. Acc. 97.695 86.903 79.252 98.977
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6. Conclusions

In this study, we proposed a multinational banknote fitness classification method using IRT and
two-sided VR images of the input banknote, and the CNN. The proposed method is designed to
simultaneously classify the fitness of banknotes from three national currencies: INR, KRW, and USD.
The fitness levels were mixed with three levels for the INR and KRW banknotes, and two levels for the
USD banknotes. The experimental results (using two-fold cross validation in the combined banknote
fitness database of INR, KRW, and USD banknote images), showed that our proposed method yielded
good performance and outperformed the previous fitness classification method in terms of higher
accuracy. For future work, we plan to combine the banknote fitness classification with the recognition
of banknote type and denomination, as well as further study other problems related to banknote
sorting, such as counterfeit detection and serial number recognition, using various architectures of the
CNN. We also plan to study employing handcrafted features in combination with the CNN features of
input banknote images for enhancing the performance of the banknote classification systems.
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