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Abstract: We herein discuss the following elliptic equations:M
( ∫

RN

∫
RN
|u(x)−u(y)|p
|x−y|N+ps dx dy

)
(−∆)s

pu+

V(x)|u|p−2u = λ f (x, u) inRN, where (−∆)s
p is the fractional p-Laplacian defined by (−∆)s

pu(x) =

2 limε↘0
∫
RN\Bε(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x−y|N+ps dy, x ∈ RN . Here, Bε(x) := {y ∈ RN : |x − y| < ε},

V : RN → (0, ∞) is a continuous function and f : RN × R → R is the Carathéodory function.
Furthermore,M : R+

0 → R+ is a Kirchhoff-type function. This study has two aims. One is to study
the existence of infinitely many large energy solutions for the above problem via the variational
methods. In addition, a major point is to obtain the multiplicity results of the weak solutions for our
problem under various assumptions on the Kirchhoff functionM and the nonlinear term f . The other
is to prove the existence of small energy solutions for our problem, in that the sequence of solutions
converges to 0 in the L∞-norm.

Keywords: fractional p-Laplacian; Kirchhoff-type equations; fountain theorem; modified functional
methods; Moser iteration method

1. Introduction

Significant attention has been focused on the study of fractional-type operators in view of
the mathematical theory to some phenomena: the social sciences, quantum mechanics, continuum
mechanics, phase transition phenomena, game theory, and Levy processes [1–5].

Herein, we discuss the results regarding the existence and multiplicity of nontrivial weak solutions
for Kirchhoff-type equations

M
( ∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dx dy

)
(−∆)s

pu + V(x)|u|p−2u = λ f (x, u) in RN , (1)

where (−∆)s
p is the fractional p-Laplacian operator defined by

(−∆)s
pu(x) = 2 lim

ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+ps dy

for x ∈ RN , with 0 < s < 1 < p < ∞, ps < N, Bε(x) := {y ∈ RN : |x− y| < ε}, V : RN → (0, ∞) is a
continuous function and f : RN ×R→ R is the Carathéodory function. Furthermore,M ∈ C(R+

0 ,R+)

is a Kirchhoff-type function.
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Considering the effects of the change in the length of the stings that occurred by transverse
vibrations, Kirchhoff in [6] originally proposed the following equation:

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣dx
)∂2u

∂x2 = 0,

which is the generalization of the classical D’Alembert’s wave equation.
Subsequently, most researchers have extensively studied Kirchhoff-type equations associated with

the fractional p-Laplacian problems in various ways; see [7–14] and the references therein. The critical
point theory, originally introduced in [15] is critical in obtaining the solutions to elliptic equations of
the variational type. It is considered that one of the crucial aspects for assuring the boundedness of the
Palais–Smale sequence of the Euler–Lagrange functional, which is important to apply the critical point
theory, is the Ambrosetti and Rabinowitz condition ((AR)-condition, briefly) in [15].

(AR) There exist positive constants C and ζ such that ζ > p and

0 < ζF (x, t) ≤ f (x, t)t for x ∈ Ω and |t| ≥ C,

where F (x, t) =
∫ t

0 f (x, s) ds and Ω is a bounded domain in RN .

Most results for our problem (1) are to establish the existence of nontrivial solutions
under the (AR)-condition; see [7,10,14,16] for bounded domains and [11] for a whole space RN .
The (AR)-condition is natural and important to guarantee the boundedness of the Palais–Smale
sequence; this condition, however, is too restrictive and gets rid of many nonlinearities. Many authors
have attempted to eliminate the (AR)-condition for elliptic equations associated with the p-Laplacian;
see [17–20] and also see [21–25] for the superlinear problems of the fractional Laplacian type.

In this regard, we show that problem (1) permits the existence of multiple solutions under
various conditions weaker than the (AR)-condition. In particular, following ([17], Remark 1.8), there
exist many examples that do not fulfill the condition of the nonlinear term f in [18,19,21,22,24–26].
Thus, motivated by these examples, the first aim of this paper is to demonstrate the existence of
infinitely many large solutions for the problem above using the fountain theorem. One of novelties
of this study is to obtain the multiplicity results for problem (1) when f contains mild assumptions
different from those of [18,19,21,22,24–26] (see Theorem 1). The other is to demonstrate this result with
sufficient conditions for the modified Kirchhoff functionM, and the assumption on f similar to that in
[18,26] (see Theorem 2). As far as we are aware, none have reported such multiplicity results for our
problem under the assumptions given in Theorem 2 of Section 2.

The second aim is to investigate that the existence of small energy solutions for problem (1),
whose L∞-norms converge to zero, depends only on the local behavior and assumptions on f (x, t),
and only sufficiently small t are required. Wang [27] initially investigated that nonlinear boundary
value problems {

−∆u = λ |u|q−1 u + f (x, u), in Ω,

u = 0, on RN\Ω,

admit a sequence of infinitely many small solutions where 0 < q < 1, and the nonlinear term f
was considered as a perturbation term. He employed global variational formulations and cut off
techniques to obtain this existence result that is a local phenomenon and is forced by the sublinear
term. Utilizing the argument in [27], Guo [28] showed that the p-Laplacian equations with indefinite
concave nonlinearities have infinitely many solutions. In this regard, lots of authors have considered
the results for the elliptic equations with nonlinear terms on a bounded domain in RN ; see [29–31]. It is
well known that the studies in [14,17,19,21,22,26,29,32,33] as well as our first primary result essentially
demand some global conditions on f (x, t) for t, such as oddness and behavior at infinity, for applying
the fountain theorem to allow an infinite number of solutions. In contrast to these studies that yield
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large solutions in that they form an unbounded sequence, by modifying and extending the function
f (x, t) to a adequate function f̃ (x, t), the authors in [27–29] investigated the existence of small energy
solutions to equations of the elliptic type. A natural question is whether the results in [27–31] may
be extended to Equation (1). As is known, such a result for Kirchhoff–Schrödinger-type equations
involving the non-local fractional p-Laplacian on the whole space RN has not been much studied,
although a given domain is bounded. In particular, no results are available even though the fractional
p-Laplacian problems without Kirchhoff functionM are considered, and we are only aware of paper
[34] in this direction. In comparison with the papers [27–29], the main difficulty to obtain our second
aim is to show the L∞-bound of weak solutions for problem (1). We remark that the strategy for
obtaining this multiplicity is to assign a regularity-type result based on the work of Drábek, Kufner,
and Nicolosi in [35]. Furthermore, it is noteworthy that the conditions on f (x, t) are imposed near
zero; in particular, f (x, t) is odd in t for a small t, and no conditions on f (x, t) exist at infinity.

This paper is structured as follows. In Section 2, we state the basic results to solve the
Kirchhoff-type equation, and review the well-known facts for the fractional Sobolev spaces. Moreover,
under certain conditions on f , our problem admits a sequence of infinitely many large energy solutions
of our problem (1) via the fountain theorem. Moreover, we assign the existence of nontrivial weak
solutions for our problem with new conditions for the modified Kirchhoff functionM and the nonlinear
term f . In Section 3, we present the existence of small energy solutions for our problem in that the
sequence of solutions converges to 0 in the L∞-norm. Hence, we employ the regularity result on the
L∞-bound of a weak solution and the modified functional method.

2. Existence of Infinitely Many Large Energy Solutions

In this section, we recall some elementary concepts and properties of the fractional Sobolev spaces.
We refer the reader to [4,36–38] for the detailed descriptions.

Suppose that

(V1) V ∈ C(RN), infx∈RN V(x) > 0.
(V2) meas

{
x ∈ RN : V(x) ≤ V0

}
< +∞ for all V0 ∈ R.

Let 0 < s < 1 and 1 < p < +∞. We define the fractional Sobolev space Ws,p(RN) by

Ws,p(RN) :=
{

u ∈ Lp(RN) :
∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dxdy < +∞

}
,

endowed with the norm

||u||pWs,p(RN)
:= |u|pWs,p(RN)

+ ||u||pLp(RN)
with |u|pWs,p(RN)

:=
∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dxdy.

Furthermore, we denote the basic function space W(RN) by the completion of C∞
0 (RN) in

Ws,p(RN), equipped with the norm

||u||pW(RN)
:= |u|pWs,p(RN)

+ ||u||pp,V with ||u||pp,V :=
∫
RN

V(x)|u|p dx.

Following a similar argument in [11,12], we can easily show that the space W(RN) is a separable
and reflexive Banach space.

We recall the continuous or compact embedding theorem in ([11], Lemma 1) and ([24], Lemma 2.1).

Lemma 1. Let 0 < s < 1 < p < +∞ with ps < N. Then, there exists a positive constant C = C(N, p, s)
such that, for all u ∈Ws,p(RN),

||u||Lp∗s (RN)
≤ C |u|Ws,p(RN),
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where p∗s = Np
N−sp is the fractional critical exponent. Consequently, the space Ws,p(RN) is continuously

embedded in Lq(RN) for any q ∈ [p, p∗s ]. Moreover, the space Ws,p(RN) is compactly embedded in Lq
loc(R

N)

for any q ∈ [p, p∗s ).

Lemma 2. Let 0 < s < 1 < p < +∞ with ps < N. Suppose that the assumptions (V1) and (V2) hold.
If r ∈ [p, p∗s ], then the embeddings

W(RN) ↪→Ws,p(RN) ↪→ Lr(RN)

are continuous with ||u||pWs,p(RN)
≤ C||u||pW(RN)

for all u ∈ W(RN). In particular, there exists a constant

Kr > 0 such that ||u||Lr(RN) ≤ Kr||u||W(RN) for all u ∈W(RN). If r ∈ [p, p∗s ), then the embedding

W(RN) ↪→ Lr(RN)

is compact.

Definition 1. Let 0 < s < 1 < p < +∞. We say that u ∈W(RN) is a weak solution of problem (1) if

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+ps dxdy (2)

+
∫
RN

V(x) |u|p−2 uv dx = λ
∫
RN

f (x, u)v dx

for any v in W(RN).

We assume that the Kirchhoff functionM : R+
0 → R+ satisfies the following conditions:

(M1) M ∈ C(R+
0 ,R+) satisfies inft∈R+

0
M(t) ≥ m0 > 0, where m0 is a constant.

(M2) There exists θ ∈ [1, N
N−ps ) such that θM(t) ≥M(t)t for any t ≥ 0, where M(t) :=

∫ t
0 M(τ)dτ.

A typical example forM is given byM(t) = b0 + b1tn with n > 0, b0 > 0 and b1 ≥ 0.
Next, we consider the appropriate assumptions for the nonlinear term f . Let us denote F (x, t) =∫ t

0 f (x, s) ds and let θ ∈ R be given in (M2).

(F1) f : RN ×R→ R satisfies the Carathéodory condition.

(F2) There exist nonnegative functions ρ ∈ Lp′(RN) ∩ L∞(RN) and σ ∈ L
p∗s

p∗s−q (RN) ∩ L∞(RN)

such that
| f (x, t)| ≤ ρ(x) + σ(x) |t|q−1 , q ∈ (θp, p∗s )

for all (x, t) ∈ RN ×R.
(F3) lim|t|→∞

F (x,t)
|t|θp = ∞ uniformly for almost all x ∈ RN .

(F4) There exist real numbers c0 > 0, r0 ≥ 0, and κ > N
ps such that

|F (x, t)|κ ≤ c0 |t|κp F(x, t)

for all (x, t) ∈ RN ×R and |t| ≥ r0, where F(x, t) = 1
θp f (x, t)t−F (x, t) ≥ 0.

(F5) There exist µ > θp and $ > 0 such that

µF (x, t) ≤ t f (x, t) + $tp

for all (x, t) ∈ RN ×R.
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For u ∈W(RN), the Euler–Lagrange functional Eλ : W(RN)→ R is defined by

Eλ(u) = As,p(u)− λΨ(u),

where
As,p(u) :=

1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V) and Ψ(u) :=
∫
RN
F (x, u) dx.

Then, it is easily verifiable that As,p ∈ C1(W(RN),R) and Ψ ∈ C1(W(RN),R). Therefore,
the functional Eλ is Fréchet differentiable on W(RN) and its (Fréchet) derivative is as follows:

〈E ′λ(u), v〉 = 〈A′s,p(u)− λΨ′(u), v〉

=M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uv dx− λ
∫
RN

f (x, u)v dx

(3)

for any u, v ∈ W(RN). Following Lemmas 2 and 3 in [11], the functional As,p is weakly lower
semi-continuous in W(RN) and Ψ is weakly continuous in W(RN).

We now show that the functional Eλ satisfies the Cerami condition ((C)c-condition, briefly),
i.e., for c ∈ R, any sequence {un} ⊂ W(RN) such that Eλ(un) → c and ||E ′λ(un)||W∗(RN)(1 +

||un||W(RN)) → 0 as n → ∞ has a convergent subsequence. Here, W∗(RN) is a dual space of W(RN).
This plays a decisive role in establishing the existence of nontrivial weak solutions.

Lemma 3. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), and (F1)–(F4)
hold. Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN), that is,

Eλ(un)→ c and ||E ′λ(un)||W∗(RN)(1 + ||un||W(RN))→ 0 as n→ ∞, (4)

which implies that
c = Eλ(un) + o(1) and

〈
E ′λ(un), un

〉
= o(1), (5)

where o(1) → 0 is n → ∞. If {un} is bounded in W(RN), it follows from the proceeding as in the
proof of Lemma 6 in [11] that {un} converges strongly to u in W(RN). Hence, it suffices to verify that
the sequence {un} is bounded in W(RN). However, we argue by contradiction and suppose that the
conclusion is false, i.e., {un} is a unbounded sequence in W(RN). Therefore, we may assume that

||un||W(RN) > 1 and ||un||W(RN) → ∞, as n→ ∞. (6)

Define a sequence {wn} by wn = un/||un||W(RN). Then, it is clear that {wn} ⊂ W(RN) and
||wn||W(RN) = 1. Hence, up to a subsequence (still denoted as the sequence {wn}), we obtain wn ⇀ w
in W(RN) as n→ ∞. Furthermore, by Lemma 2, we have

wn(x)→ w(x) a.e. in RN and wn → w in Lr(RN) as n→ ∞ (7)

for p ≤ r < p∗s . Owing to the condition (5), we have

c = Eλ(un) + o(1) =
1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN
F (x, un) dx + o(1).
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Since ||un||W(RN) → ∞ as n→ ∞, we assert that

∫
RN
F (x, un) dx =

1
λp

(M(|un|pWs,p(RN)
) + ||un||pp,V)−

c
λ
+

o(1)
λ

≥ 1
λp

(
1
θ
M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+ ||un||pp,V)−

c
λ
+

o(1)
λ

≥ min{m0/θ, 1}
λp

||un||pW(RN)
− c

λ
+

o(1)
λ
→ ∞ as n→ ∞. (8)

The assumption (F3) implies that there exists t0 > 1 such that F (x, t) > |t|θp for all x ∈ RN

and |t| > t0. From the assumptions (F1) and (F2), there is a constant C > 0 such that |F (x, t)| ≤ C
for all (x, t) ∈ RN × [−t0, t0]. Therefore, we can choose C0 ∈ R such that F (x, t) ≥ C0 for all
(x, t) ∈ RN ×R; thus,

F (x, un)− C0

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ 0, (9)

for all x ∈ RN , and for all n ∈ N. Set Ω =
{

x ∈ RN : w(x) 6= 0
}

. By the convergence (7), we know that
|un(x)| = |wn(x)| ||un||W(RN) → ∞ as n→ ∞ for all x ∈ Ω. Therefore, it follows from the assumptions
(M2), (F3), and the relation (6) that, for all x ∈ Ω,

lim
n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ lim
n→∞

F (x, un)

M(1) |un|θp
Ws,p(RN)

+ ||un||pp,V

≥ lim
n→∞

F (x, un)

M(1)||un||θp
W(RN)

+ ||un||pW(RN)

≥ lim
n→∞

F (x, un)

M(1)||un||θp
W(RN)

+ ||un||θp
W(RN)

= lim
n→∞

F (x, un)

(M(1) + 1)||un||θp
W(RN)

= lim
n→∞

F (x, un)

(M(1) + 1) |un(x)|θp |wn(x)|θp

= ∞, (10)

where we use the inequality M(|un|pWs,p(RN)
) ≤ M(1) |un|θp

Ws,p(RN)
. Hence, we obtain meas(Ω) = 0.

If meas(Ω) 6= 0, according to relations (8)–(10) and Fatou’s lemma, we deduce that

1
λ
= lim inf

n→∞

∫
RN F (x, un) dx

λ
∫
RN F (x, un) dx + c− o(1)

= lim inf
n→∞

∫
RN

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≥ lim inf
n→∞

∫
Ω

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx− lim sup
n→∞

∫
Ω

pC0

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

= lim inf
n→∞

∫
Ω

p(F (x, un)− C0)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≥
∫

Ω
lim inf

n→∞

p(F (x, un)− C0)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx
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=
∫

Ω
lim inf

n→∞

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx−
∫

Ω
lim sup

n→∞

pC0

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

= ∞, (11)

which yields a contradiction. Thus, w(x) = 0 for almost all x ∈ RN .
Observe that, for a sufficiently large n,

c + 1 ≥ Eλ(un)−
1

θp
〈
E ′λ(un), un

〉
=

1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN
F (x, un) dx

− 1
θp

(M(|un|pWs,p(RN)
)|un|pWs,p(RN)

+ ||un||pp,V) +
λ

θp

∫
RN

f (x, un)un dx

≥ λ
∫
RN

F(x, un) dx, (12)

where F is given in (F4). Let us define Ωn(a, b) := {x ∈ RN : a ≤ |un(x)| < b} for a ≥ 0. By the
convergence (7),

wn → 0 in Lr(RN) and wn(x)→ 0 a.e. in RN as n→ ∞ (13)

for p ≤ r < p∗s . Hence, from the relation (8), we obtain

0 <
1

λp
≤ lim sup

n→∞

∫
RN

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx. (14)

Meanwhile, from the assumptions (M2), (F2), the relation (13), and Lemma 2, we obtain

∫
Ωn(0,r0)

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≤
∫

Ωn(0,r0)

ρ(x) |un(x)|+ σ(x)
q |un(x)|q

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≤
||ρ||Lp′ (RN)

||un||Lp(RN)

M(|un|pWs,p(RN)
) + ||un||pp,V

+
||σ||L∞(RN)

min{1, m0/θ}q

∫
Ωn(0,r0)

|un(x)|q−p |wn(x)|p dx

≤
||ρ||Lp′ (RN)

||un||Lp(RN)

M(|un|pWs,p(RN)
) + ||un||pp,V

+
||σ||L∞(RN)

min{1, m0/θ}q rq−p
0

∫
RN
|wn(x)|p dx

≤
Kp||ρ||Lp′ (RN)

||un||W(RN)

min{1, m0/θ}||un||pW(RN)

+
||σ||L∞(RN)

min{1, m0/θ}q rq−p
0

∫
RN
|wn(x)|p dx

≤ C1

min{1, m0/θ}||un||p−1
W(RN)

+
||σ||L∞(RN)

min{1, m0/θ}q rq−p
0

∫
RN
|wn(x)|p dx → 0, as n→ ∞, (15)

where C1 is a positive constant, r0 is given in (F4), and we use the following inequality:

M(|un|pWs,p(RN)
) + ||un||pp,V ≥ min{1, m0/θ}||un||pW(RN)

.
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We set κ′ = κ/(κ − 1). Since κ > N/ps, we have p < κ′p < p∗s . Hence, it follows from (F4),
estimates (12) and (13) that

∫
Ωn(r0 ,∞)

|F (x, un)|
M(|un|pWs,p(RN )

) + ||un||pp,V
dx ≤

∫
Ωn(r0 ,∞)

|F (x, un)|
min{1, m0/θ} |un(x)|p

|wn(x)|p dx

≤ 1
min{1, m0/θ}

{ ∫
Ωn(r0 ,∞)

(
|F(x, un)|
|un(x)|p

)κ

dx

} 1
κ
{ ∫

Ωn(r0 ,∞)
|wn(x)|κ

′ p

} 1
κ′

≤
c

1
κ
0

min{1, m0/θ}

{ ∫
Ωn(r0 ,∞)

F(x, un) dx

} 1
κ
{ ∫

RN
|wn(x)|κ

′ p

} 1
κ′

≤
c

1
κ
0

min{1, m0/θ}

(
c + 1

λ

) 1
κ

{ ∫
RN
|wn(x)|κ

′ p

} 1
κ′

→ 0, as n→ ∞. (16)

Combining the relation (15) with the convergence (16), we have

∫
RN

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx =

∫
Ωn(0,r0)

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx

+
∫

Ωn(r0,∞)

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx → 0

as n→ ∞, which contradicts inequality the convergence (14). The proof is completed.

Lemma 4. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), (F1)–(F3),
and (F5) hold. Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN) satisfying (4). Then, relation (5) holds.
As in the proof of Lemma 3, we only prove that {un} is bounded in W(RN). However, arguing by
contradiction, suppose that ||un||W(RN) → ∞ as n→ ∞. Let vn = un/||un||W(RN). Then, ||vn||W(RN) = 1
and ||vn||Lr(RN) ≤ Kr||vn||W(RN) = Kr for p ≤ r ≤ p∗s by the continuous embedding in Lemma 2.
Passing to a subsequence, we may assume that vn ⇀ v in W(RN) as n → ∞; then, by compact
embedding, vn → v in Lr(RN) for p ≤ r < p∗s , and vn(x) → v(x) for almost all x ∈ RN as n → ∞.
By the assumption (F5), one obtains

c + 1 ≥ Eλ(un)−
1
µ

〈
E ′λ(un), un

〉
=

1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN
F (x, un) dx

− 1
µ
(M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+ ||un||pp,V) +

λ

µ

∫
RN

f (x, un)un dx

≥
( 1

θp
− 1

µ

)
M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+

(
1
p
− 1

µ

)
||un||pp,V −

λ$

µ

∫
RN
|un(x)|p dx

≥ min{1, m0}
( 1

θp
− 1

µ

)
||un||pW(RN)

− λ$

µ

∫
RN
|un(x)|p dx, (17)

which implies

1 ≤ λ$θp
min{1, m0}(µ− θp)

lim sup
n→∞

||vn||pLp(RN)
=

λ$θp
min{1, m0}(µ− θp)

||v||pLp(RN)
. (18)

Hence, it follows from the inequality (18) that v 6= 0. From the same argument as in Lemma
3, we can verify the relations (8)–(10), and hence yield the relation (11). Therefore, we arrive at a
contradiction. Thus, {un} is bounded in W(RN).
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Next, based on the fountain theorem in ([39], Theorem 3.6), we demonstrate the infinitely many
weak solutions for problem (1). Hence, we let X be a separable and reflexive Banach space. It is well
known that there exists {en} ⊆ X and { f ∗n} ⊆ X∗ such that

X = span{en : n = 1, 2, · · · }, X∗ = span{ f ∗n : n = 1, 2, · · · },

and

〈
f ∗i , ej

〉
=

{
1, if i = j,

0, if i 6= j.

Let us denote Xn = span{en}, Yk =
⊕k

n=1 Xn, and Zk =
⊕∞

n=k Xn. Then, we recall the
fountain lemma.

Lemma 5. Let X be a real reflexive Banach space, E ∈ C1(X ,R) satisfies the (C)c-condition for any c > 0, and
E is even. If for each sufficiently large k ∈ N, there exist ρk > δk > 0 such that the following conditions hold:

(1) bk := inf{E(u) : u ∈ Zk, ||u||X = δk} → ∞ as k→ ∞,
(2) ak := max{E(u) : u ∈ Yk, ||u||X = ρk} ≤ 0.

Then, the functional E has an unbounded sequence of critical values, i.e., there exists a sequence {un} ⊂ X
such that E ′(un) = 0 and E(un)→ ∞ as n→ ∞.

Using Lemma 5, we demonstrate the existence of infinitely many nontrivial weak solutions for
our problem.

Theorem 1. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), and (F1)–(F4)
hold. If f (x,−t) = − f (x, t) satisfies for all (x, t) ∈ RN × R, then the functional Eλ has a sequence of
nontrivial weak solutions {un} in W(RN) such that Eλ(un)→ ∞ as n→ ∞ for any λ > 0 .

Proof. Clearly, Eλ is an even functional and satisfies the (C)c-condition. Note that W(RN) is a
separable and reflexive Banach space. According to Lemma 5, it suffices to show that there exists
ρk > δk > 0 such that

(1) bk := inf{Eλ(u) : u ∈ Zk, ||u||W(RN) = δk} → ∞ as k→ ∞;
(2) ak := max{Eλ(u) : u ∈ Yk, ||u||W(RN) = ρk} ≤ 0,

for a sufficiently large k. We denote

αk := sup
u∈Zk ,||u||W(RN )

=1

( ∫
RN

1
q
|u(x)|q dx

)
, θp < q < p∗s .

Then, we know αk → 0 as k→ ∞. Indeed, suppose to the contrary that there exist ε0 > 0 and a
sequence {uk} in Zk such that

||uk||W(RN) = 1,
∫
RN

1
q
|uk(x)|q dx ≥ ε0

for all k ≥ k0. Since the sequence {uk} is bounded in W(RN), there exists an element u in W(RN) such
that uk ⇀ u in W(RN) as k→ ∞, and

〈 f ∗j , u〉 = lim
k→∞
〈 f ∗j , uk〉 = 0
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for j = 1, 2, · · · . Hence, u = 0. However, we obtain

ε0 ≤ lim
k→∞

∫
RN

1
q
|uk(x)|q dx =

∫
RN

1
q
|u(x)|q dx = 0,

which yields a contradiction.
For any u ∈ Zk, it follows from assumptions (M2), (F2), and the Hölder inequality that

Eλ(u) =
1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN
F (x, u) dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN
|ρ(x)| |u(x)| dx− λ

∫
RN

|σ(x)|
q
|u(x)|q dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ||ρ||Lp′ (RN)
||u||Lp(RN) −

λ

q
||σ||L∞(RN)

∫
RN
|u(x)|q dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λC2||u||W(RN) −
λ

q
C3||u||

q
Lq(RN)

≥ min{1, m0/θ}
p

||u||pW(RN)
− λC2||u||W(RN) −

λ

q
α

q
kC4||u||

q
W(RN)

, (19)

where C2, C3 and C4 are positive constants. We choose δk = (2λC4α
q
k/ min{1, m0/θ})1/(p−q). Since p < q

and αk → 0 as k → ∞, we assert δk → ∞ as k → ∞. Hence, if u ∈ Zk and ||u||W(RN) = δk, then we
deduce that

Eλ(u) ≥
(

1
p
− 1

q

)
δ

p
k − 2λC2δk → ∞ as k→ ∞,

which implies the condition (1).
Next, suppose that condition (2) is not satisfied for some k. Then, there exists a sequence {un} in

Yk such that

||un||W(RN) > 1 and ||un||W(RN) → ∞ as n→ ∞ and Eλ(un) ≥ 0. (20)

Let wn = un/||un||W(RN). Then, it is obvious that ||wn||W(RN) = 1. Since dim Yk < ∞, there exists
w ∈ Yk \ {0} such that, up to a subsequence,

||wn − w||W(RN) → 0 and wn(x)→ w(x)

for almost all x ∈ RN as n → ∞. For x ∈ Ω :=
{

x ∈ RN : w(x) 6= 0
}

, we obtain |un(x)| → ∞ as
n→ ∞. Hence, it follows from the assumption (F3) that

lim
n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ lim
n→∞

F (x, un)

(M(1) + 1) |un(x)|θp |wn(x)|θp = ∞. (21)

As shown in the proof of Lemma 3, we can choose C1 ∈ R such that

F (x, un)− C1

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ 0 (22)

for x ∈ Ω. Considering the inequalities (21), (22) and Fatou’s lemma, we assert by a similar argument
to the inequality (10) that

lim
n→∞

∫
Ω

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx ≥ lim inf
n→∞

∫
Ω

F (x, un)− C1

M(|un|pWs,p(RN)
) + ||un||pp,V

dx
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≥
∫

Ω
lim inf

n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx = ∞. (23)

Therefore, using the relation (23), we have

Eλ(un) ≤
1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫

Ω
F (x, un) dx

=
M(|un|pWs,p(RN)

) + ||un||pp,V

p

1− λp
∫

Ω

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

→ −∞

as n→ ∞, which yields a contradiction to the relation (20). The proof is complete.

Remark 1. Although we replaced (F4) with (F5) in the assumption of Theorem 1, we assert that the problem
(1) admits a sequence of nontrivial weak solutions {un} in W(RN) such that Eλ(un)→ ∞ as n→ ∞.

Lastly, we investigate the existence of nontrivial weak solutions for our problem by replacing the
assumptions (F4) and (F5) with the following condition, which is from the work of L. Jeanjean [40]:

(F6) There exists a constant ν ≥ 1 such that

νF̂(x, t) ≥ F̂(x, st)

for (x, t) ∈ RN ×R and s ∈ [0, 1], where F̂(x, t) = f (x, t)t− θpF (x, t).

When the Kirchhoff functionM is constant, and the condition (F6) with θ = 1 holds, the author
in [24] obtained the existence of at least one nontrivial weak solution for the superlinear problems of
the fractional p-Laplacian, which is motivated by the works of [18,26].

To the best of our belief, such existence and multiplicity results are not available for the elliptic
equation of the Kirchhoff type under the assumption (F6). Hence, we obtain the following lemma
with the sufficient conditions for the modified Kirchhoff functionM and the assumption (F6).

Lemma 6. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), (F1)–(F3),
and (F6) hold. Furthermore, we assume that

(M3) H(st) ≤ H(t) for s ∈ [0, 1], whereH(t) = θM(t)−M(t)t for any t ≥ 0 and θ is given in (M2).

Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN) satisfying the convergence (4). Then, the
relation (5) holds. By Lemma 3, we only prove that {un} is bounded in W(RN). Therefore, we argue
by contradiction and suppose that the conclusion is false, i.e., ||un||W(RN) > 1 and ||un||W(RN) → ∞ as
n→ ∞. In addition, we define a sequence {ωn} by ωn = un/||un||W(RN). Then, up to a subsequence
(still denoted as the sequence {ωn}), we obtain ωn ⇀ ω in W(RN) as n→ ∞,

ωn(x)→ ω(x) a.e. in RN , ωn → ω in Lq(RN), and ωn → ω in Lp(RN) as n→ ∞,

where θp < q < p∗s .
We set Ω =

{
x ∈ RN : ω(x) 6= 0

}
. From the similar manner as in Lemma 3, we obtain meas(Ω) = 0.

Therefore, ω(x) = 0 for almost all x ∈ RN . Since Eλ(tun) is continuous at t ∈ [0, 1], for each n ∈ N,
there exists tn ∈ [0, 1] such that

Eλ(tnun) := max
t∈[0,1]

Eλ(tun).

Let {`k} be a positive sequence of real numbers such that limk→∞ `k = ∞ and `k > 1 for any k.
Then, it is clear that ||`kωn||W(RN) = `k > 1 for any k and n. Fix k, since ωn → 0 strongly in Lq(RN) as
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n→ ∞, the continuity of the Nemytskii operator implies F (x, `kωn)→ 0 in L1(RN) as n→ ∞. Hence,
we assert

lim
n→∞

∫
RN
F (x, `kωn) dx = 0. (24)

Since ||un||W(RN) → ∞ as n → ∞, we obtain ||un||W(RN) > `k for a sufficiently large n. Thus,
we know by (M2) and the convergence (24) that

Eλ(tnun) ≥ Eλ

(
`k

||un||W(RN)
un

)
= Eλ(`kωn)

=
1
p
(M(|`kωn|pWs,p(RN)

) + ||`kωn||pp,V)− λ
∫
RN
F (x, `kωn) dx

≥ 1
pθ
M(|`kωn|pWs,p(RN)

)|`kωn|pWs,p(RN)
+

1
p
||`kωn||pp,V − λ

∫
RN
F (x, `kωn) dx

≥ min{1, m0}
pθ

||`kωn||pW(RN)
− λ

∫
RN
F (x, `kωn) dx

≥ min{1, m0}
pθ

`
p
k

for a large enough n. Then, letting n, k→ ∞, we get

lim
n→∞

Eλ(tnun) = ∞. (25)

Since Eλ(0) = 0 and Eλ(un)→ c as n→ ∞, it is obvious that tn ∈ (0, 1), and
〈
E ′λ(tnun), tnun

〉
= 0.

Therefore, owing to the assumptions (M3) and (F6), for all sufficiently large n, we deduce that

1
ν
Eλ(tnun) =

1
ν
Eλ(tnun)−

1
pθν

〈
E ′λ(tnun), tnun

〉
+ o(1)

=
1
pν

(M(|tnun|pWs,p(RN)
) + ||tnun||pp,V)−

λ

ν

∫
RN
F (x, tnun) dx

− 1
pθν

(M(|tnun|pWs,p(RN)
)|tnun|pWs,p(RN)

+ ||tnun||pp,V) +
λ

pθν

∫
RN

f (x, tnun)tnun dx + o(1)

=
1

pθν
H(tnun) +

1
pν
||tnun||pp,V −

1
pθν
||tnun||pp,V +

λ

pθν

∫
RN

F̂(x, tnun) dx + o(1)

≤ 1
pθ
H(un) +

1
p
||tnun||pp,V −

1
pθ
||tnun||pp,V +

λ

pθ

∫
RN

F̂(x, un) dx + o(1)

=
1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN
F (x, un) dx

− 1
pθ

(M(|un|pWs,p(RN)
)|un|pWs,p(RN)

+ ||un||pp,V) +
λ

pθ

∫
RN

f (x, un)un dx + o(1)

= Eλ(un)−
1
pθ

〈
E ′λ(un), un

〉
+ o(1)→ c as n→ ∞,

which contradicts the convergence (25). This completes the proof.

We give an example regarding a functionM with the assumptions (M1)–(M3).

Example 1. Let us see

M(t) = 1 +
1

e + t
, t ≥ 0.

Then, it is easily checked that this functionM complies with the assumptions (M1)–(M3).
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Theorem 2. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1)–(M3), (F1)–(F3),
and (F6) hold. If f (x,−t) = − f (x, t) holds for all (x, t) ∈ RN ×R, then, for any λ > 0, the functional Eλ

has a sequence of nontrivial weak solutions {un} in W(RN) such that Eλ(un)→ ∞ as n→ ∞.

Proof. The proof is essentially the same as that of Theorem 1.

3. Existence of Infinitely Many Small Energy Solutions

In this section, we prove the existence of a sequence of small energy solutions for the problem (1)
converging to zero in L∞-norm based on the Moser bootstrap iteration technique in ([35], Theorem 4.1)
(see also [34]). First, we state the following additional assumptions:

(F7) There exists a constant s0 > 0 such that pF (x, t)− f (x, t)t > 0 for all x ∈ RN and for 0 < |t| < s0.
(F8) lim|t|→0

f (x,t)
|t|p−2t

= +∞ uniformly for all x ∈ RN .

Because problem (1) includes the potential term and the nonlinear term f is slightly different from
that of [35], a more complicated analysis has to be carefully performed when we apply the bootstrap
iteration argument.

Proposition 1. Assume that (V1), (M1), and (F1)–(F2) hold. If u is a weak solution of the problem (1),
then u ∈ Lr(RN) for all r ∈ [p∗s , ∞].

Proof. Suppose that u is non-negative. For K > 0, we define

vK(x) = min{u(x), K}

and choose v = vmp+1
K (m ≥ 0) as a test function in the equality (2). Then, v ∈W(RN) ∩ L∞(RN), and

it follows from the equality (2) that

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx = λ

∫
RN

f (x, u)vmp+1
K dx. (26)

The left-hand side of the relation (26) can be estimated as follows:

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx

≥ m0

∫
RN

∫
RN

|u(x)− u(y)|p−1
∣∣∣vmp+1

K (x)− vmp+1
K (y)

∣∣∣
|x− y|N+ps dxdy +

∫
RN

V(x)v(m+1)p
K dx

≥ m0C5

∫
RN

∫
RN

|vm+1
K (x)− vm+1

K (y)|p

|x− y|N+ps dxdy +
∫
RN

V(x)v(m+1)p
K dx

≥ min{m0C5, 1}||vm+1
K ||pW(RN)

≥ min{m0C5, 1}C6

(∫
RN
|vK|(m+1)p∗s dx

) p
p∗s

(27)

for some positive constants C5 and C6. Using the assumption (F2), the Hölder inequality and the
relation (27), the right-hand side of the relation (26) can be estimated:

λ
∫
RN

f (x, u)vmp+1
K dx ≤ λ

∫
RN
| f (x, u)||u|mp+1 dx
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≤ λ
∫
RN

ρ(x)|u|mp+1 + σ(x)|u|mp+q dx

≤ λ
∫
RN

ρ(x)(|u|mp+p + |u|m+1) dx

+ λ

(∫
RN

σγ1 (x) dx
) 1

γ1
(∫

RN
|u|(m+1)pγ′1 |u|(q−p)γ′1 dx

) 1
γ′1 (28)

≤ λ||ρ||L∞(RN)

∫
RN
|u|(m+1)p dx + λ||ρ||Lp′ (RN)

(∫
RN
|u|(m+1)p dx

) 1
p

+ λ

(∫
RN

σγ1 (x) dx
) 1

γ1
(∫

RN
|u|(m+1)β dx

) p
β
(∫

RN
|u|

(q−p)γ′1
β

β−pγ′1 dx
) β−pγ′1

βγ′1 ,

where γ1 = p∗s
p∗s−q , and β =

pp∗s γ′1
p∗s−(q−p)γ′1

. Obviously β ≤ p∗s , 1 < β
pγ′1

, and (q−p)γ′1β

β−pγ′1
= p∗s , and hence the

estimate (28) yields

λ
∫
RN

f (x, u)vmp+1
K dx ≤ λ||ρ||L∞(RN)

∫
RN
|u|(m+1)p dx + λ||ρ||Lp′ (RN)

(∫
RN
|u|(m+1)p dx

) 1
p

+ λ

(∫
RN

σγ1(x) dx
) 1

γ1
(∫

RN
|u|p∗s dx

) β−pγ′1
βγ′1

(∫
RN
|u|(m+1)β dx

) p
β

. (29)

It follows from relations (26), (27), (29), and the Sobolev inequality that there exists positive
constants C7, C8 and C9 (independent of K and m > 0) such that

(∫
RN
|vK|(m+1)p∗s dx

) p
p∗s ≤ C7

∫
RN
|u|(m+1)p dx + C8

(∫
RN
|u|(m+1)p dx

) 1
p
+ C9

(∫
RN
|u|(m+1)β dx

) p
β

,

which implies

||vK||
(m+1)p
L(m+1)p∗s (RN)

≤ C7||u||
(m+1)p
L(m+1)p(RN)

+ C8||u||m+1
L(m+1)p(RN)

+ C9||u||
(m+1)p
L(m+1)β(RN)

. (30)

To apply the argument that is critical in L∞-estimates, we first assume that ||u||L(m+1)p(RN) ≥ 1.
From the estimate (30), we have

||vK||
(m+1)p
L(m+1)p∗s (RN)

≤ C7||u||
(m+1)p
L(m+1)p(RN)

+ C8||u||m+1
L(m+1)p(RN)

+ C9||u||
(m+1)p
L(m+1)β(RN)

≤ (C7 + C8)||u||
(m+1)p
L(m+1)p(RN)

+ C9||u||
(m+1)p
L(m+1)β(RN)

, (31)

which implies

||vK||L(m+1)p∗s (RN)
≤ C

1
(m+1)p
10 ||u||L(m+1)t(RN) (32)

for some positive constant C10 and for any positive constant K, where t is either p or β. The expression
in the estimate (32) is a starting point for a bootstrap technique. Since u ∈W(RN), hence u ∈ Lp∗s (RN)

and we can choose m := m1 in the estimate (32) such that (m1 + 1)t = p∗s , i.e., m1 = p∗s
t − 1. Then,

we have

||vK||L(m1+1)p∗s (RN)
≤ C

1
(m1+1)p
10 ||u||L(m1+1)t(RN)

(33)

for any positive constant K. Owing to u(x) = lim
K→∞

vK(x) for almost every x ∈ RN , Fatou’s lemma and

the estimate (33) imply

||u||L(m1+1)p∗s (RN)
≤ C

1
(m1+1)p
10 ||u||L(m1+1)t(RN)

. (34)
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Thus, we can choose m = m2 in the estimate (32) such that (m2 + 1)t = (m1 + 1)p∗s = (p∗s )2

t .
By repeating the similar manner, we obtain

||u||L(m2+1)p∗s (RN)
≤ C

1
(m2+1)p
10 ||u||L(m2+1)t(RN)

.

By the mathematical induction, we have

||u||L(mn+1)p∗s (RN)
≤ C

1
(mn+1)p
10 ||u||L(mn+1)t(RN) (35)

for any n ∈ N, where mn + 1 =
(

p∗s
t

)n
. It follows from relations (34) and (35) that

||u||L(mn+1)p∗s (RN)
≤ C

1
p ∑n

j=1
1

mj+1

10 ||u||Lp∗s (RN)
. (36)

However, ∑n
j=1

1
mj+1 = ∑n

j=1

(
t

p∗s

)j
and t

p∗s
< 1. Hence, it follows from the estimate (36) that there

exists a constant C11 > 0 such that

||u||Lrn (RN) ≤ C11||u||Lp∗s (RN)
(37)

for rn = (mn + 1)p∗s → ∞ when n→ ∞. An indirect argument concludes that

||u||L∞(RN) ≤ C11||u||Lp∗s (RN)
≤ C12

for some constant C12 > 0. Meanwhile, we assume that ||u||L(m+1)p(RN) < 1. From the relation (30),
we have

||vK||
(m+1)p
L(m+1)p∗s (RN)

≤ C7 + C8 + C9||u||
(m+1)p
L(m+1)β(RN)

≤ C13||u||
(m+1)p
L(m+1)β(RN)

,

which implies

||vK||L(m+1)p∗s (RN)
≤ C

1
(m+1)p
13 ||u||L(m+1)β(RN)

for some positive constant C13. Repeating the iterations as in the arguments above, we derive
||u||L∞(RN) ≤ C14 for some positive constant C14.

If u changes sign, we set positive and negative parts as u+(x) = max{u(x), 0} and u−(x) =

min{u(x), 0}. Then, it is obvious that u+ ∈ W(RN) and u− ∈ W(RN). For each K > 0, we define
vK(x) = min{u+(x), K}. Taking again v = vmp+1

K as a test function in W(RN), we obtain

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx = λ

∫
RN

f (x, u)vmp+1
K dx,

which implies that

M(|u+|pWs,p(RN)
)
∫
RN

∫
RN

|u+(x)− u+(y)|p−2(u+(x)− u+(y))(vmp+1
K (x)− vmp+1

K (y))
|x− y|N+ps dxdy

+
∫
RN

V(x)
∣∣u+

∣∣p−2 u+vmp+1
K dx = λ

∫
RN

f (x, u+)vmp+1
K dx.

Proceeding with the similar way as above, we obtain u+ ∈ L∞(RN). Similarly, we obtain
u− ∈ L∞(RN). Therefore, u = u+ + u− is in L∞(RN). The proof is complete.
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The following result can be found in [41].

Lemma 7. Let E ∈ C1(X ,R) where X is a Banach space. We assume that E satisfies the (PS)-condition, is
even and bounded from below, and E(0) = 0. If, for any n ∈ N, there exist an n-dimensional subspace Xn and
ρn > 0 such that

sup
Xn∩Sρn

E < 0,

where Sρ := {u ∈ X : ||u||X = ρ}, then E possesses a sequence of critical values cn < 0 satisfying cn → 0 as
n→ ∞.

Based on the work of [27,29], we provide the following two lemmas.

Lemma 8. Assume that (V1), (M1) and (F1)–(F2) hold. Furthermore, we assume that M(t) ≤M(t)t for
any t ≥ 0, where M is given in (M2). Furthermore, if

pF (x, t)− f (x, t)t > 0 (38)

for all x ∈ RN and for t 6= 0. Then,

Eλ(u) = 0 =
〈
E ′λ(u), u

〉
if and only if u = 0.

Proof. Let Eλ(u) =
〈
E ′λ(u), u

〉
= 0. Then,

0 =− pEλ(u)

=−M(|u|pWs,p(RN)
)−

∫
RN

V(x)|u|p dx + λp
∫
RN
F (x, u) dx, (39)

and 〈
E ′λ(u), u

〉
=M(|u|pWs,p(RN)

)|u|pWs,p(RN)
+
∫
RN

V(x) |u|p dx− λ
∫
RN

f (x, u)u dx = 0. (40)

It follows from the relations (39) and (40) that∫
RN
{pF (x, u)− f (x, u)u} dx ≤ 0.

Consequently, the assumption (38) implies u = 0.

Lemma 9. Assume that (F1)–(F2) and (F7)–(F8) are fulfilled. Then, there exist 0 < t0 < min{s0, 1}/2
and f̃ ∈ C1(RN ×R,R) such that f̃ (x, t) is odd in t and satisfies

F̃(x, t) := pF̃ (x, t)− f̃ (x, t)t ≥ 0,

F̃(x, t) = 0 iff t = 0 or |t| ≥ 2t0,

where ∂
∂t F̃ (x, t) = f̃ (x, t).

Proof. Let us define a cut-off function κ ∈ C1(R,R) satisfying κ(t) = 1 for |t| ≤ t0, κ(t) = 0 for
|t| ≥ 2t0, |κ′(t)| ≤ 2/t0, and κ′(t)t ≤ 0. Therefore, we define

F̃ (x, t) = κ(t)F (x, t) + (1− κ(t))ξ|t|p and f̃ (x, t) =
∂

∂t
F̃ (x, t), (41)

where ξ > 0 is a constant. It is straightforward that

pF̃ (x, t)− f̃ (x, t)t = κ(t)F(x, t)− κ′(t)tF (x, t) + κ′(t)tξ|t|p,
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where F(x, t) := pF (x, t) − f (x, t)t. For 0 ≤ |t| ≤ t0 and |t| ≥ 2t0, the conclusion is as follows.
Owing to (F8), we choose a sufficiently small t0 > 0 such that F (x, t) ≥ ξtp for t0 ≤ |t| ≤ 2t0.
By assuming κ′(t)t ≤ 0, we obtain the conclusion.

Now, with the aid of Proposition 1, and Lemmas 7 and 9, we are ready to prove the second
primary result.

Theorem 3. Assume that (V1), (M1), (F1)–(F2), and (F7)–(F8) hold. Moreover, assume that M(t) ≤
M(t)t for any t ≥ 0 and f (x, t) is odd in t for a small t. Then, there is a positive λ∗ such that the problem (1)
admits a sequence of weak solutions {un} satisfying ||un||L∞(RN) → 0 as n→ ∞ for every λ ∈ (0, λ∗).

Proof. We can modify and extend the given function f (x, t) to f̃ ∈ C1(RN × R,R) satisfying all
properties given in Lemma 9. First, we will show that Ẽλ := As,p − λΨ̃ is coercive on W(RN).
Let u ∈ W(RN) and ||u||W(RN) > 1. By Lemma 9, it is easily shown that Ẽλ ∈ C1(W(RN),R) and is
even on W(RN). Moreover, it follows from (F2) that, for |u(x)| ≤ 2t0, there exists a positive constant
K1 such that ρ(x) |u|+ K1|u|p ≥ |F(x, u)|.

We set Ω1 :=
{

x ∈ RN : |u(x)| ≤ t0
}

, Ω2 :=
{

x ∈ RN : t0 ≤ |u(x)| ≤ 2t0
}

, and Ω3 :={
x ∈ RN : 2t0 ≤ |u(x)|

}
, where t0 is given in Lemma 9. From the relation (41) and the conditions of κ,

we have

Ẽλ(u) :=
1
p
(M(|u|pWs,p(RN )

) + ||u||pp,V)− λ
∫
RN
F̃ (x, u) dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1

F (x, u) dx− λ
∫

Ω2

{κ(u)F (x, u) + (1− κ(u))ξ|u|p} dx− λ
∫

Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1∪Ω2

F (x, u) dx− λ
∫

Ω2∪Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1∪Ω2

ρ(x)|u| dx− λ
∫

Ω1∪Ω2

K1|u|p dx− λ
∫

Ω2∪Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− 2λ||ρ||Lp′ (RN )

||u||Lp(RN ) − λ (K1 + ξ)
∫
RN
|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

(
2C15||ρ||Lp′ (RN )

+ K1 + ξ
)
||u||pW(RN )

for some positive constant C15. If we set

λ∗ :=
1

p(2C15||ρ||Lp′ (RN)
+ K1 + ξ)

,

then we deduce that for any λ ∈ (0, λ∗), Ẽλ is coercive, that is, Ẽλ(u)→ ∞ as ||u||W(RN) → ∞.
Next, we claim that the functional Ψ̃′ : W(RN)→W∗(RN), defined by

〈
Ψ̃′(u), ϕ

〉
=
∫
RN

f̃ (x, u)ϕ dx for any ϕ ∈W(RN),

is compact in W(RN). Let us assume that un ⇀ u in W(RN) as n → ∞. Since the measures of Ω2

and Ω3 are finite, we can write Ω2 = Ω̃2 ∪ N2 and Ω3 = Ω̃3 ∪ N3, where Ω̃2 and Ω̃3 are bounded
sets and N2, N3 are of measure zero. Let us denote BR(0) := {x ∈ RN : |x| ≤ R} contained in the
bounded sets Ω̃2 and Ω̃3 for a sufficiently large R ∈ N. Then, from the definition of f̃ (x, u), we have
f̃ (x, u) = f (x, u) on RN \ (Ω2 ∪Ω3). Thus, we deduce that for any ϕ ∈W(RN)

sup
||ϕ||W(RN )

≤1

∣∣〈Ψ̃′(un)− Ψ̃′(u), ϕ〉
∣∣ = sup

||ϕ||W(RN )
≤1

∣∣∣∫
RN

( f̃ (x, un)− f̃ (x, u))ϕ dx
∣∣∣
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≤ sup
||ϕ||W(RN )

≤1

∣∣∣∫
BR(0)

( f̃ (x, un)− f̃ (x, u))ϕ dx
∣∣∣

+ sup
||ϕ||W(RN )

≤1

∣∣∣∫
RN\(BR(0)∪N4∪N5)

( f (x, un)− f (x, u))ϕ dx
∣∣∣. (42)

Owing to Lemma 1, the compact embedding

W(RN) ↪→ Lp(BR(0)) implies un → u in Lp(BR(0)) as n→ ∞.

The above, together with the continuity of the Nemytskij operator with f̃ and acting from
Lp(BR(0)) into Lq′(BR(0)), it is clearly shown that the first term on the right side of the inequality (42)
tends to 0 as n→ ∞. For the second term in the inequality (42), we have∣∣∣∫

RN\(BR(0)∪N2∪N3)
( f (x, un)− f (x, u))ϕdx

∣∣∣
≤
∫
RN\(BR(0)∪N2∪N3)

σ(x)(|un(x)|q−1 + |u(x)|q−1) |ϕ| dx

≤ ||σ||
L

p∗s
p∗s−q (RN\(BR(0)∪N2∪N3))

(
||un||q−1

Lp∗s (RN)
+ ||u||q−1

Lp∗s (RN)

)
||ϕ||Lp∗s (RN)

.

From the assumption (F2), for ε > 0, there exists N(R) ∈ R such that

||σ||
L

p∗s
p∗s−q (RN\(BR(0)∪N2∪N3))

< ε

for R > N(R). As the sequence {un} is bounded in W(RN), according to Lemma 1, one has {un}
bounded in Lp∗s (RN). Thus,∣∣∣∣∫RN\(BR(0)∪N2∪N3)

( f (x, un)− f (x, u))ϕ dx
∣∣∣∣ ≤ C16ε (43)

for a positive constant C16. Owing to the estimate (43), we can deduce that∫
RN

( f (x, un)− f (x, u))ϕ dx → 0 as n→ ∞.

This implies that Ψ̃′ is compact in W(RN), as claimed.
Since the derivative of Ψ̃ is compact, it follows from the coercivity of Ẽλ that the functional Ẽλ

satisfies the (PS)-condition. The weak lower semicontinuity and the coercivity of Ẽλ ensure that Ẽλ is
bounded from below. To utilize Lemma 7, we only need to obtain for any n ∈ N, a subspace Xn and
ρn > 0 such that supXn∩Sρn

Ẽλ < 0. For any n ∈ N, we obtain n independent smooth functions φi for
i = 1, · · · , n, and define Xn := span {φ1, ..., φn}. Owing to Lemma 9, when ||u||W(RN) < 1, we have

Ẽλ(u) =
1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN
F̃ (x, u) dx

≤ 1
p
||u||pW(RN)

− λC17

∫
RN
F (x, u) dx,

for C17 > 0. Taking the assumption (F8) into account, it follows that there exists δ0 > 0 such that
|t| < δ0, which implies ∫

RN
F (x, t) dx ≥ K2

p

∫
RN
|t|p dx (44)
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for a sufficiently large K2 > 0. Using the inequality (44) and the fact that all norms on Xn are equivalent,
we can choose a appropriate constant C17 and a small enough ρn > 0 to obtain

sup
Xn∩Sρn

Ẽλ < 0.

According to Lemma 7, we obtain a sequence cn < 0 for Ẽλ satisfying cn → 0 when n goes to ∞.
Then, for any un ∈W(RN) satisfying Ẽλ(un) = cn and Ẽ ′λ(un) = 0, {un} is a (PS)-sequence of Ẽλ(u),
and {un} has a convergent subsequence. From Lemmas 8 and 9, we deduce that 0 is the only critical
point with 0 energy, and the subsequence of {un} has to converge to 0. Using an indirect argument,
we show that {un} has to converge to 0. Meanwhile, we obtain un ∈ Lr(RN) for all p∗s ≤ r ≤ ∞ owing
to Proposition 1. Since ||un||L∞(RN) → 0, by Lemma 9 again, we have ||un||L∞(RN) ≤ t0 for a large n.
Thus, {un} is a sequence of weak solutions of problem (1). This completes the proof.

4. Conclusions

In summary, this paper is devoted to the study of weak solutions for Kirchhoff–Schrödinger-type
equations involving the fractional p-Laplacian. In the first part of the present paper, under various
assumptions onM and f , we show that our problem admits a sequence of the weak solutions whose
energy functional converges to infinity. As we know, a typical example for Kirchhoff functionM is
M(t) = b0 + b1tn (n > 0, b0 > 0, b1 ≥ 0) and, based on this example, most results for the multiplicity of
solutions are presented. From a different point of view, an infinite number of solutions is proved when
M contains new conditions different from those studied in previous related works; see Example 1.
The second part is to investigate the existence of small energy solutions for the given problem whose
L∞-norms converge to zero. As mentioned in the Introduction, the main difficulty is to show the
L∞-bound of weak solutions. Our approach is new to the fractional p-Laplacian problems even if
we utilize the well known Moser bootstrap iteration method to overcome this. To the best of our
knowledge, such results have not been studied much in these situations.
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