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Abstract: Some years ago, the harmonic polynomial was introduced to study the harmonic topological
index. Here, using this polynomial, we obtain several properties of the harmonic index of many
classical symmetric operations of graphs: Cartesian product, corona product, join, Cartesian sum and
lexicographic product. Some upper and lower bounds for the harmonic indices of these operations
of graphs, in terms of related indices, are derived from known bounds on the integral of a product
on nonnegative convex functions. Besides, we provide an algorithm that computes the harmonic
polynomial with complexity O(n2).
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1. Introduction

A single number representing a chemical structure, by means of the corresponding molecular
graph, is known as topological descriptor. Topological descriptors play a prominent role in
mathematical chemistry, particularly in studies of quantitative structure–property and quantitative
structure–activity relationships. Moreover, a topological descriptor is called a topological index if it
has a mutual relationship with a molecular property. Thus, since topological indices encode some
characteristics of a molecule in a single number, they can be used to study physicochemical properties
of chemical compounds.

After the seminal work of Wiener [1], many topological indices have been defined and analysed.
Among all topological indices, probably the most studied is the Randić connectivity index (R) [2].
Several hundred papers and, at least, two books report studies of R (see, for example, [3–7] and
references therein). Moreover, with the aim of improving the predictive power of R, many additional
topological descriptors (similar to R) have been proposed. In fact, the first and second Zagreb indices,
M1 and M2, respectively, can be considered as the main successors of R. They are defined as

M1(G) = ∑
uv∈E(G)

(du + dv) = ∑
u∈V(G)

d2
u, M2(G) = ∑

uv∈E(G)

dudv,

where uv is the edge of G between vertices u and v, and du is the degree of vertex u. Both M1 and M2

have recently attracted much interest (see, e.g., [8–11]) (in particular, they are included in algorithms
used to compute topological indices).
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Another remarkable topological descriptor is the harmonic index, defined in [12] as

H(G) = ∑
uv∈E(G)

2
du + dv

.

This index has attracted a great interest in the lasts years (see, e.g., [13–18]). In particular, in [16]
appear relations for the harmonic index of some operations of graphs.

In [19], the harmonic polynomial of a graph G is defined as

H(G, x) = ∑
uv∈E(G)

xdu+dv−1,

and the harmonic polynomials of some graphs are computed. For more information on the study of
polynomials associated with topological indices and their practical applications, see, e.g., [20–23].

This polynomial owes its name to the fact that 2
∫ 1

0 H(G, x) dx = H(G).
The characterization of any graph by a polynomial is one of the open important problems in

graph theory. In recent years, there have been many works on graph polynomials (see, e.g., [21,24] and
the references therein). The research in this area has been largely driven by the advantages offered
by the use of computers: it is simpler to represent a graph by a polynomial (a vector with dimension
O(n)) than by the adjacency matrix (an n× n matrix). Some parameters of a graph allow to define
polynomials related to a graph. Although several polynomials are interesting since they compress
information about the graphs structure; unfortunately, the well-known polynomials do not solve the
problem of the characterization of any graph, since there are often non-isomorphic graphs with the
same polynomial.

Polynomials have proved to be useful in the study of several topological indices. There are many
papers studying topological indices on graph operations (see, e.g., [25–27]).

Along this work, G = (V, E) = (V(G), E(G)) indicates a finite, undirected and simple
(i.e., without multiple edges and loops) graph with E 6= ∅. The main aim of this paper is to
obtain several computational properties of the harmonic polynomial. In Section 2, we obtain closed
formulas to compute the harmonic polynomial of many classical symmetric operations of graphs:
Cartesian product, corona product, join, Cartesian sum and lexicographic product. These formulas are
interesting by themselves and, furthermore, allow to obtain new inequalities for the harmonic index of
these operations of graphs. Besides, we provide in the last section an algorithm that computes this
polynomial with complexity O(n2).

We would like to stress that the symmetry property present in the operations on graphs studied
here (Cartesian product, corona product, join, Cartesian sum and lexicographic product) was an
essential tool in the study of the topological indexes, because it allowed us to obtain closed formulas
for the harmonic polynomial and to deduce the optimal bounds for that index.

2. Definitions and Background

The following result appears in Proposition 1 of [19].

Proposition 1. If G is a k-regular graph with m edges, then H(G, x) = mx2k−1.

Propositions 2, 4, 5, 7 in [19] have the following consequences on the graphs: Kn (the complete graph
with n vertices), Cn (the cycle with n ≥ 3 vertices), Qn (the n-dimensional hypercube), Kn1,n2 (the complete
bipartite graph with n1 + n2 vertices), Pn (the path graph with n vertices), and Wn (the wheel graph with
n ≥ 4 vertices).
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Proposition 2. We have

H(Kn, x) =
1
2

n(n− 1)x2n−3, H(Cn, x) = nx3,

H(Qn, x) = n2n−1x2n−1, H(Kn1,n2 , x) = n1n2xn1+n2−1,

H(Pn, x) = 2x2 + (n− 3)x3, H(Wn, x) = (n− 1)(xn+1 + x5).

In Propositions 2.3 and 2.6 in [28] appear the following result.

Proposition 3. If G is a graph with m edges, then:

• H(k)(G, x) ≥ 0 for every k ≥ 0 and x ∈ [0, ∞);
• H(G, x) > 0 on (0, ∞) and H(G, x) is strictly increasing on [0, ∞);
• H(G, x) is strictly convex on [0, ∞) if and only if G is not isomorphic to a union of path graphs P2; and
• 0 = H(G, 0) ≤ H(G, x) ≤ H(G, 1) = m for every x ∈ [0, 1].

Considering the Zagreb indices, Fath-Tabar [29] defined the first Zagreb polynomial as

M1(G, x) := ∑
uv∈E(G)

xdu+dv .

The harmonic and the first Zagreb indices are related by several inequalities (see [30],
Theorem 2.5 [31] and [32], p. 234). Moreover, the harmonic and the first Zagreb polynomials are
related by the equality M1(G, x) = x H(G, x),

In [33], Shuxian defined the following polynomial related to the first Zagreb index as

M∗1(G, x) := ∑
u∈V(G)

duxdu .

Given a graph G, let us denote by S(G) its subdivision graph. S(G) is constructed from G by
inserting an additional vertex into each of its edges. Concerning S(G), in Theorem 2.1 of [25],
the following result appears.

Theorem 1. For the subdivision graph S(G) of G, the first Zagreb polynomial is

M1(S(G), x) = x2M∗1(G, x).

Since the harmonic and the first Zagreb polynomials are related by the equality M1(G, x) =

x H(G, x), we have the following result for the harmonic polynomial of the subdivision graph.

Proposition 4. Given a graph G, the harmonic polynomial of its subdivision graph S(G) is

H(S(G), x) = x M∗1(G, x).

Similarly, we can obtain the harmonic polynomial for the other operations on graphs appearing
in [25].

Next, we obtain the harmonic polynomial for other classical operations: Cartesian product,
corona product, join, Cartesian sum and lexicographic product. It is important to stress that, since large
graphs are composed by smaller ones by the use of products of graphs (and, as a consequence,
their properties are strongly related), the study of products of graphs is a relevant and timely
research subject.

Let us recall the definitions of these classical products in graph theory.
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The Cartesian product G1 × G2 of the graphs G1 and G2 has the vertex set V(G1 × G2) = V(G1)×
V(G2) and (ui, vj)(uk, vl) is an edge of G1 × G2 if ui = uk and vjvl ∈ E(G2), or uiuk ∈ E(G1) and vj =

vl .
Given two graphs G1 and G2, we define the corona product G1 ◦G2 as the graph obtained by adding

to G1, |V(G1)| copies of G2 and joining each vertex of the i-th copy with the vertex vi ∈ V(G1).
The join G1 + G2 is defined as the graph obtained by taking one copy of G1 and one copy of G2,

and joining by an edge each vertex of G1 with each vertex of G2.
The Cartesian sum G1 ⊕ G2 of the graphs G1 and G2 has the vertex set V(G1 ⊕ G2) = V(G1)×

V(G2) and (ui, vj)(uk, vl) is an edge of G1 ⊕ G2 if uiuk ∈ E(G1) or vjvl ∈ E(G2).
The lexicographic product G1�G2 of the graphs G1 and G2 has V(G1)×V(G2) as vertex set, so that

two distinct vertices (ui, vj), (uk, vl) of V(G1 � G2) are adjacent if either uiuk ∈ E(G1), or ui = uk and
vjvl ∈ E(G2).

Let us introduce another topological index that will be very useful in this work.
The inverse degree ID(G) of a graph G is defined by

ID(G) := ∑
u∈V(G)

1
du

= ∑
uv∈E(G)

( 1
d2

u
+

1
d2

v

)
.

It is relevant to mention that the surmises inferred through the computer program Graffiti [12]
attracted the attention of researchers. Thus, since then, several studies (see, e.g., [34–38]) focusing
on relationships between ID(G) and other graph invariants (such as diameter, edge-connectivity,
matching number and Wiener index) have appeared in the literature.

Let us define the inverse degree polynomial of a graph G as

ID(G, x) = ∑
u∈V(G)

xdu−1.

Thus, we have
∫ 1

0 ID(G, x) dx = ID(G). Note that x(xID(G, x))′ = M∗1(G, x).
The following result summarizes some interesting properties of the inverse degree polynomial.

Recall that a vertex of a graph is said to be pendant if it has degree 1.

Proposition 5. If G is a graph with n vertices and k pendant vertices, then:

• ID(j)(G, x) ≥ 0 for every j ≥ 0 and x ∈ [0, ∞);
• ID(G, x) > 0 on (0, ∞);
• ID(G, x) is strictly increasing on [0, ∞) if and only if G is not isomorphic to a union of path graphs P2;
• ID(G, x) is strictly convex on [0, ∞) if and only if G is not isomorphic to a union of path graphs; and
• k = ID(G, 0) ≤ ID(G, x) ≤ ID(G, 1) = n for every x ∈ [0, 1].

Proof. Since every coefficient of the polynomial ID(G, x) is non-negative, the first statement holds.
Since every coefficient of the polynomial ID(G, x) is non-negative and ID(G, x) is not identically

zero, we have ID(G, x) > 0 on (0, ∞).
Since every coefficient of the polynomial ID(G, x) is non-negative, we have ID′(G, x) > 0 on

(0, ∞) if and only if there exists a vertex u ∈ V(G) with du ≥ 2, and this holds if and only if G is not
isomorphic to a union of path graphs P2.

Similarly, ID(G, x) is strictly convex on [0, ∞) if and only if there exists a vertex u ∈ V(G) with
du ≥ 3, and this holds if and only if G is not isomorphic to a union of path graphs.

Finally, if x ∈ [0, 1], then
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k = ID(G, 0) ≤ ∑
u∈V(G)

xdu−1 ≤ ∑
u∈V(G)

1 = ID(G, 1) = n.

Proposition 4 has the following consequence, which illustrates how these polynomials associated
to topological indices provide information about the topological indices themselves.

Corollary 1. Given a graph G with maximum degree ∆, the harmonic index of the subdivision graph
S(G) satisfies

H(S(G)) ≤ 2∆ ID(G).

Proof. Proposition 4 gives

H(S(G)) = 2
∫ 1

0
H(S(G), x) dx = 2

∫ 1

0
x M∗1(G, x) dx = 2

∫ 1

0
x ∑
u∈V(G)

duxdu dx

≤ 2∆
∫ 1

0
∑

u∈V(G)

xdu−1dx = 2∆
∫ 1

0
ID(G, x) dx = 2∆ ID(G).

3. Computation of the Harmonic Index of Graph Operations

Let us start with the formula of the harmonic polynomial of the Cartesian product.

Theorem 2. Given two graphs G1 and G2, the harmonic polynomial of the Cartesian product G1 × G2 is

H(G1 × G2, x) = x2H(G1, x) ID(G2, x2) + x2H(G2, x) ID(G1, x2).

Proof. Denote by n1 and n2 the cardinality of the vertices of G1 and G2, respectively.
Note that if (ui, vj) ∈ V(G1 × G2), then d(ui ,vj)

= dui + dvj .
If (ui, vk)(uj, vk) ∈ E(G1 × G2), then the corresponding monomial of the harmonic polynomial is

xdui+dvk+duj+dvk−1
= x2dvk xdui+duj−1.

Hence,

n2

∑
k=1

∑
uiuj∈E(G1)

x2dvk xdui+duj−1
= x2

n2

∑
k=1

(x2)dvk−1 ∑
uiuj∈E(G1)

xdui+duj−1
= x2 ID(G2, x2) H(G1, x).

The same argument gives that the sum of the monomials corresponding to (uk, vi)(uk, vj) ∈
E(G1 × G2) is x2H(G2, x) ID(G1, x2), and the equality holds.

Next, we present two useful improvements (for convex functions) of the well-known
Chebyshev’s inequalities.

Lemma 1 ([39]). Let f1, . . . , fk be non-negative convex functions defined on the interval [0, 1]. Then,

∫ 1

0

k

∏
i=1

fi(x) dx ≥ 2k

k + 1

k

∏
i=1

∫ 1

0
fi(x) dx .
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Lemma 2 (Corollary 5.2 [40]). Let f1, . . . , fk be non-negative convex functions defined on the interval
[0, 1]. Then

∫ 1

0

k

∏
i=1

fi(x) dx ≤ 2
k + 1

(
k

∏
i=1

∫ 1

0
fi(x) dx

)1/k ( k

∏
i=1

(
fi(0) + fi(1)

))1−1/k

.

Theorem 3. Given two graphs G1 and G2 with n1 and n2 vertices, and m1 and m2 edges, respectively, the
harmonic index of the Cartesian product G1 × G2 satisfies

H(G1 × G2) ≥
1
2

H(G1) ID(G2) +
1
2

H(G2) ID(G1),

H(G1 × G2) ≤ min
{2

3

(
m1n2H(G1) ID(G2)

)1/2
,

1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3}
+ min

{2
3

(
m2n1H(G2) ID(G1)

)1/2
,

1
2

(
m2

2n2
1H(G2) ID(G1)

)1/3}
.

Proof. Propositions 3 and 5 give that H(G1, x), ID(G2, x2), H(G2, x), ID(G1, x2) are non-negative
convex functions. Thus, Lemma 1 gives

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≥ 23

3 + 1

∫ 1

0
x dx

∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

= 2
1
2

∫ 1

0
H(G1, x) dx

∫ 1

0
ID(G2, x) dx =

1
2

H(G1) ID(G2).

Similarly, ∫ 1

0
2x2H(G2, x) ID(G1, x2) dx ≥ 1

2
H(G2) ID(G1).

These inequalities, Theorem 2 and H(G1 × G2) = 2
∫ 1

0 H(G1 × G2, x) dx give the lower bound.
Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤

∫ 1

0
2x H(G1, x) ID(G2, x2) dx

≤ 2
3

(∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

)1/2 (
2H(G1, 1) ID(G2, 1)

)1/2

=
2
3

(
m1n2H(G1) ID(G2)

)1/2
.

In addition, Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤ 1

2

(∫ 1

0
x dx

∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

)1/3 (
2H(G1, 1) ID(G2, 1)

)2/3

=
1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3
.

These inequalities give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤ min

{2
3

(
m1n2H(G1) ID(G2)

)1/2
,

1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3}
.

Similarly,

∫ 1

0
2x2H(G2, x) ID(G1, x2) dx ≤ min

{2
3

(
m2n1H(G2) ID(G1)

)1/2
,

1
2

(
m2

2n2
1H(G2) ID(G1)

)1/3}
.
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These inequalities, Theorem 2 and H(G1×G2) = 2
∫ 1

0 H(G1×G2, x) dx give the upper bound.

Theorem 4. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the corona product G1 ◦ G2 is

H(G1 ◦ G2, x) = x2n2 H(G1, x) + n1x2H(G2, x) + xn2+2 ID(G1, x) ID(G2, x).

Proof. The degree of u ∈ V(G1), considered as a vertex of G1 ◦ G2, is du + n2. The degree of any copy
v′ of v ∈ V(G2), considered as a vertex of G1 ◦ G2, is dv + 1.

If uiuj ∈ E(G1), then the corresponding monomial of the harmonic polynomial of G1 ◦ G2 is

xdui+n2+duj+n2−1
= x2n2 xdui+duj−1.

Hence,

∑
uiuj∈E(G1)

x2n2 xdui+duj−1
= x2n2 ∑

uiuj∈E(G1)

xdui+duj−1
= x2n2 H(G1, x).

If vivj ∈ E(G2), then each corresponding monomial of the harmonic polynomial of G1 ◦ G2 is

xdvi+1+dvj+1−1
= x2xdvi+dvj−1.

Therefore,

∑
vivj∈E(G2)

x2xdvi+dvj−1
= x2 ∑

vivj∈E(G2)

xdvi+dvj−1
= x2H(G2, x).

If we add the corresponding polynomials of the n1 copies of G2, then we obtain n1x2H(G2, x).
If uiv′j ∈ E(G1 ◦ G2) with ui ∈ V(G1) and vj ∈ V(G2), then the corresponding monomial of the

harmonic polynomial is

xdui+n2+dvj+1−1
= xn2+2xdui−1xdvj−1.

Hence,

n1

∑
i=1

n2

∑
j=1

xn2+2xdui−1xdvj−1
= xn2+2

n1

∑
i=1

xdui−1
n2

∑
j=1

xdvj−1
= xn2+2 ID(G1, x) ID(G2, x).

Thus, the equality holds.

Theorem 5. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the corona product G1 ◦ G2 satisfies

H(G1 ◦ G2) ≥
4

3(2n2 + 1)
H(G1) +

4n1

9
H(G1) +

4
n2 + 3

ID(G1) ID(G2),

H(G1 ◦ G2) ≤
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
+

2n1

3

(2m2

3
H(G2)

)1/2

+
( 1

n2 + 3
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

Proof. Lemma 1 gives

∫ 1

0
2x2n2 H(G1, x) dx ≥ 4

3

∫ 1

0
x2n2 dx

∫ 1

0
2 H(G1, x) dx =

4
3(2n2 + 1)

H(G1),∫ 1

0
2n1x2H(G2, x) dx ≥ 4n1

3

∫ 1

0
x2dx

∫ 1

0
2 H(G1, x) dx =

4n1

9
H(G1),
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∫ 1

0
2xn2+2 ID(G1, x) ID(G2, x) dx ≥ 8

4

∫ 1

0
2xn2+2dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

=
4

n2 + 3
ID(G1) ID(G2).

These inequalities, Theorem 4 and H(G1 ◦ G2) = 2
∫ 1

0 H(G1 ◦ G2, x) dx give the lower bound.
Lemma 2 and Proposition 3 give

∫ 1

0
2x2n2 H(G1, x) dx ≤ 2

3

(∫ 1

0
x2n2 dx

∫ 1

0
2 H(G1, x) dx

)1/2 (
2H(G1, 1)

)1/2

=
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
.

In addition, Lemma 2 and Proposition 3 give

∫ 1

0
2n1x2H(G2, x) dx ≤ 2n1

3

(∫ 1

0
x2dx

∫ 1

0
2 H(G2, x) dx

)1/2 (
2H(G2, 1)

)1/2

=
2n1

3

(2m2

3
H(G2)

)1/2
.

Lemma 2 and Proposition 5 give

∫ 1

0
2xn2+2 ID(G1, x) ID(G2, x) dx ≤ 2

4
2
(∫ 1

0
xn2+2dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
(ID(G1, 1) + ID(G1, 0))(ID(G2, 1) + ID(G2, 0))

)2/3

=
( 1

n2 + 3
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

These inequalities, Theorem 4 and H(G1 ◦ G2) = 2
∫ 1

0 H(G1 ◦ G2, x) dx give the upper bound.

Theorem 6. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the join G1 + G2 is

H(G1 + G2, x) = x2n2 H(G1, x) + x2n1 H(G2, x) + xn1+n2+1 ID(G1, x) ID(G2, x).

Proof. The degree of u ∈ V(G1), considered as a vertex of G1 +G2, is du + n2. The degree of v ∈ V(G2),
considered as a vertex of G1 + G2, is dv + n1.

If uiuj ∈ E(G1), then the corresponding monomial of the harmonic polynomial of G1 + G2 is

xdui+n2+duj+n2−1
= x2n2 xdui+duj−1.

Hence,

∑
uiuj∈E(G1)

x2n2 xdui+duj−1
= x2n2 ∑

uiuj∈E(G1)

xdui+duj−1
= x2n2 H(G1, x).

If vivj ∈ E(G2), then the corresponding monomial of the harmonic polynomial of G1 + G2 is

xdvi+n1+dvj+n1−1
= x2n1 xdvi+dvj−1.

Therefore,

∑
vivj∈E(G2)

x2n1 xdvi+dvj−1
= x2n1 ∑

vivj∈E(G2)

xdvi+dvj−1
= x2n1 H(G2, x).
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If uivj ∈ E(G1 + G2) with ui ∈ V(G1) and vj ∈ V(G2), then the corresponding monomial of the
harmonic polynomial is

xdui+n2+dvj+n1−1
= xn1+n2+1xdui−1xdvj−1.

Hence,

n1

∑
i=1

n2

∑
j=1

xn1+n2+1xdui−1xdvj−1
= xn1+n2+1

n1

∑
i=1

xdui−1
n2

∑
j=1

xdvj−1
= xn1+n2+1 ID(G1, x) ID(G2, x),

Thus, the equality holds.

Theorem 7. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the join G1 + G2 satisfies

H(G1 + G2) ≥
4

3(2n2 + 1)
H(G1) +

4
3(2n1 + 1)

H(G2) +
4

n1 + n2 + 2
ID(G1) ID(G2),

H(G1 + G2) ≤
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
+

2
3

( 2m2

2n1 + 1
H(G2)

)1/2

+
( 1

n1 + n2 + 2
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

Proof. We have seen in the proof of Theorem 5 that

4
3(2n2 + 1)

H(G1) ≤
∫ 1

0
2x2n2 H(G1, x) dx ≤ 2

3

( 2m1

2n2 + 1
H(G1)

)1/2
.

Similarly, we obtain

4
3(2n1 + 1)

H(G2) ≤
∫ 1

0
2x2n1 H(G2, x) dx ≤ 2

3

( 2m2

2n1 + 1
H(G2)

)1/2
.

Lemma 1 gives

∫ 1

0
2xn1+n2+1 ID(G1, x) ID(G2, x) dx ≥ 8

4

∫ 1

0
2xn1+n2+1dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

=
4

n1 + n2 + 2
ID(G1) ID(G2).

Lemma 2 and Proposition 5 give

∫ 1

0
2xn1+n2+1 ID(G1, x) ID(G2, x) dx ≤ 2

4
2
(∫ 1

0
xn1+n2+1dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
(ID(G1, 1) + ID(G1, 0))(ID(G2, 1) + ID(G2, 0))

)2/3

=
( 1

n1 + n2 + 2
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

These inequalities, Theorem 6 and H(G1 + G2) = 2
∫ 1

0 H(G1 + G2, x) dx give the bounds.

Theorem 8. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the Cartesian sum G1 ⊕ G2 is

H(G1 ⊕ G2, x) = x2n1+n2−1H(G1, xn2) ID2(G2, xn1) + xn1+2n2−1H(G2, xn1) ID2(G1, xn2)

− xn1+n2−1H(G1, xn2) H(G2, xn1).
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Proof. Note that if (ui, vj) ∈ V(G1 ⊕ G2), then d(ui ,vj)
= n2dui + n1dvj .

If (ui, vj)(uk, vl) ∈ E(G1 ⊕ G2), then the corresponding monomial of the harmonic polynomial is

xn2dui+n1dvj+n2duk+n1dvl−1
= x2n1+n2−1(xn2)dui+duk−1(xn1)

dvj−1
(xn1)dvl−1

= xn1+n2−1(xn2)dui+duk−1(xn1)
dvj+dvl−1.

Hence, the sum of the corresponding monomials with uiuk ∈ E(G1) is

n2

∑
j,l=1

∑
uiuk∈E(G1)

x2n1+n2−1(xn2)dui+duk−1(xn1)
dvj−1

(xn1)dvl−1

= x2n1+n2−1
n2

∑
j=1

(xn1)
dvj−1

n2

∑
l=1

(xn1)dvl−1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1

= x2n1+n2−1H(G1, xn2) ID2(G2, xn1).

Similarly, the sum of the corresponding monomials with vjvl ∈ E(G2) is

xn1+2n2−1H(G2, xn1) ID2(G1, xn2).

If we add these two terms, then we take into account twice the corresponding monomials with
uiuk ∈ E(G1) and vjvl ∈ E(G2):

∑
uiuk∈E(G1)

∑
vjvl∈E(G2)

xn1+n2−1(xn2)dui+duk−1(xn1)
dvj+dvl−1

= xn1+n2−1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1 ∑
vjvl∈E(G2)

(xn1)
dvj+dvl−1

= xn1+n2−1H(G1, xn2) H(G2, xn1).

Hence, the equality holds.

Theorem 9. Given two graphs G1 and G2 with n1 and n2 vertices, and m1 and m2 edges, respectively,
the harmonic index of the Cartesian sum G1 ⊕ G2 satisfies

H(G1 ⊕ G2) ≥
16

15n2
1n2

H(G1) ID2(G2) +
16

15n1n2
2

H(G2) ID2(G1)

− 2
3

(m1m2

n1n2
H(G1) H(G2)

)1/2
,

H(G1 ⊕ G2) ≤
n2

2

(4m2
1

n2
1

H(G1) ID2(G2)
)1/3

+
n1

2

(4m2
2

n2
2

H(G2) ID2(G1)
)1/3

− 1
2n1n2

H(G1) H(G2).

Proof. Lemma 1 gives

∫ 1

0
2x2n1+n2−1H(G1, xn2) ID2(G2, xn1) dx ≥ 16

5

∫ 1

0
x2dx

∫ 1

0
2xn2−1H(G1, xn2) dx

·
∫ 1

0
xn1−1 ID(G2, xn1) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

=
16

15n2
1n2

H(G1) ID2(G2),
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∫ 1

0
2xn1+n2−1H(G1, xn2) H(G2, xn1) dx ≥ 8

4

∫ 1

0
x dx

∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
xn1−1H(G2, xn1) dx

=
1

2n1n2
H(G1) H(G2).

The same argument gives

∫ 1

0
2xn1+2n2−1H(G2, xn1) ID2(G1, xn2) dx ≥ 16

15n1n2
2

H(G2) ID2(G1).

Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2n1+n2−1H(G1, xn2) ID2(G2, xn1) dx ≤

∫ 1

0
2xn2−1H(G1, xn2) x2n1−2 ID2(G2, xn1) dx

≤ 2
4

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

)1/3

·
(
2H(G1, 1) ID(G2, 1) ID(G2, 1)

)2/3
=

1
2

( 1
n2n2

1
H(G1) ID2(G2)

)1/3(
2m1n2

2
)2/3

=
n2

2

(4m2
1

n2
1

H(G1) ID2(G2)
)1/3

.

The same argument gives

∫ 1

0
2xn1+2n2−1H(G2, xn1) ID2(G1, xn2) dx ≤ n1

2

(4m2
2

n2
2

H(G2) ID2(G1)
)1/3

.

In addition, Lemma 2 and Proposition 3 give

∫ 1

0
2xn1+n2−1H(G1, xn2) H(G2, xn1) dx ≤ 1

2

∫ 1

0
2xn2−1H(G1, xn2) 2xn1−1H(G2, xn1) dx

≤ 1
2

2
3

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
2xn1−1H(G2, xn1) dx

)1/2(
2H(G1, 1) 2H(G2, 1)

)1/2

=
2
3

(m1m2

n1n2
H(G1) H(G2)

)1/2
.

These inequalities, Theorem 8 and H(G1 ⊕ G2) = 2
∫ 1

0 H(G1 ⊕ G2, x) dx give the
desired bounds.

Theorem 10. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the lexicographic product G1 � G2 is

H(G1 � G2, x) = x2n2 ID(G1, x2n2) H(G2, x) + xn2+1H(G1, xn2) ID2(G2, x).

Proof. Note that if (ui, vj) ∈ V(G1 � G2), then d(ui ,vj)
= n2dui + dvj .

If (ui, vj)(ui, vk) ∈ E(G1 � G2), then the corresponding monomial of the harmonic polynomial is

xn2dui+dvj+n2dui+dvk−1
= x2n2(x2n2)dui−1xdvj+dvk−1.

Hence,

n1

∑
i=1

∑
vjvk∈E(G2)

x2n2(x2n2)dui−1xdvj+dvk−1
= x2n2

n1

∑
i=1

(x2n2)dui−1 ∑
vjvk∈E(G2)

xdvj+dvk−1

= x2n2 ID(G1, x2n2) H(G2, x).
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If (ui, vj)(uk, vl) ∈ E(G1 � G2) with uiuk ∈ E(G1), then the corresponding monomial of the
harmonic polynomial is

xn2dui+dvj+n2duk+dvl−1
= xn2+1(xn2)dui+duk−1xdvj−1xdvl−1.

Hence, the sum of their corresponding monomials is

∑
uiuk∈E(G1)

n2

∑
j,l=1

xn2+1(xn2)dui+duk−1xdvj−1xdvl−1

= xn2+1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1
n2

∑
j=1

xdvj−1
n2

∑
l=1

xdvl−1

= xn2+1H(G1, xn2) ID2(G2, x).

We obtain the desired equality by adding these two terms.

Theorem 11. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the lexicographic product G1 � G2 satisfies

H(G1 � G2) ≥
1

2n2
ID(G1) H(G2) +

16
15n2

H(G1) ID2(G2)

H(G1 � G2) ≤
2
3

(n1m2

n2
ID(G1) H(G2)

)1/2
+

1
2

(4m2
1

n2
H(G1) ID2(G2)(n2 + k2)

4
)1/3

.

Proof. Lemma 1 gives

∫ 1

0
2x2n2 ID(G1, x2n2) H(G2, x) dx ≥ 8

4

∫ 1

0
x dx

∫ 1

0
x2n2−1 ID(G1, x2n2) dx

∫ 1

0
2H(G2, x) dx

=
1

2n2
ID(G1) H(G2),∫ 1

0
2xn2+1H(G1, xn2) ID2(G2, x) dx ≥ 16

5

∫ 1

0
x2 dx

∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
ID(G2, x) dx

∫ 1

0
ID(G2, x) dx

=
16

15n2
H(G1) ID2(G2).

Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2n2 ID(G1, x2n2) H(G2, x) dx ≤

∫ 1

0
x2n2−1 ID(G1, x2n2) 2H(G2, x) dx

≤ 2
3

(∫ 1

0
x2n2−1 ID(G1, x2n2) dx

∫ 1

0
2H(G2, x) dx

)1/2 (
ID(G1, 1) 2H(G2, 1)

)1/2

=
2
3

(n1m2

n2
ID(G1) H(G2)

)1/2
,∫ 1

0
2xn2+1H(G1, xn2) ID2(G2, x) dx ≤

∫ 1

0
2xn2−1H(G1, xn2) ID2(G2, x) dx

≤ 2
4

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
ID(G2, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
2H(G1, 1) (ID(G2, 1) + ID(G2, 0))2)2/3

=
1
2

(4m2
1

n2
H(G1) ID2(G2)(n2 + k2)

4
)1/3

.

These inequalities, Theorem 10 and H(G1 � G2) = 2
∫ 1

0 H(G1 � G2, x) dx give the bounds.
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4. Algorithm for the Computation of the Harmonic Polynomial

The procedure shown in Algorithm 1 allows to compute the harmonic polynomial of a graph
G with n vertices. This algorithm for computing the harmonic polynomial of a graph shows a
complexity O(n2).

Algorithm 1 procedure Harmonic-Polynomial

Require: AM(G)—Adjacency matrix of G.
1: n = order(AM(G))
2: HPolynomial = [0] ∗(2 ∗ (n− 1))
3: let D be a list with the degree of each vertex
4: for all i with i ∈ {1, 2, ...n− 1} do
5: for all j with j ∈ {i + 1, i + 2, ...n} do
6: if AM[i][j] == 1 then
7: v = D[i]
8: u = D[j]
9: HPolynomial[v + u− 1] = HPolynomial [v + u− 1] + 1

10: end if
11: end for
12: end for
13: return HPolynomial
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Serbia, 2008.
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