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Abstract: We study the cosmic evolution of non-minimally coupled f (R, T) gravity in the presence of
matter fluids consisting of collisional self-interacting dark matter and radiation. We study the
cosmic evolution in the presence of collisional matter, and we compare the results with those
corresponding to non-collisional matter and the Λ-cold-dark-matter (ΛCDM) model. Particularly,
for a flat Friedmann–Lemaître–Robertson–Walker Universe, we study two non-minimally coupled
f (R, T) gravity models and we focus our study on the late-time dynamical evolution of the model.
Our study is focused on the late-time behavior of the effective equation of the state parameter ωe f f
and of the deceleration parameter q as functions of the redshift for a Universe containing collisional
and non-collisional dark matter fluids, and we compare both models with the ΛCDM model. As we
demonstrate, the resulting picture is well accommodated to the latest observational data on the basis
of physical parameters.
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1. Introduction

Recent observations of the accelerated cosmic expansion [1,2] coming from Type Ia supernovae,
and the confirmation of the B-mode power spectrum during the early-time inflationary era [3], have
utterly changed the perspective of theoretical cosmologists with regard to the evolution of the Universe.
The main aim and challenge is to find a unified description of the early and late-time eras, within
the same theoretical framework. Modified gravity in general has provided several models that can
consistently harbor the early- and late-time evolution of our Universe [4] (see also the reviews [5,6]).
With regard to the late-time era, observations support a flat universe formed from pressureless matter
with a non-zero cosmological constant Lambda Λ with equation of state (EoS) parameter ω = −1 [7].
Additionally, the latest Planck data [8] favor the Λ-cold-dark-matter (ΛCDM) model for our present
epoch, and it seems that the so-called dark energy dominates the evolution of the Universe at the
present epoch at a percentage of 69.8% and the luminous matter contributes to the total energy
density of our Universe only 4.9% while the remaining 26.8% is controlled by dark matter. The
confirmation of the late-time acceleration is further supported by the temperature anisotropies in
baryon acoustic oscillations (BAO) [9] and cosmic microwave background (CMB) [10]. As we already
mentioned, a consistent way to model the dark energy and the early-time acceleration era is to use the
modified gravity theoretical framework [5,6,11–16]. However, alternative approaches can also describe
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these acceleration epochs [17–19]. Modified gravity models are generally modifications of the general
relativity (GR) picture. In the context of GR, one needs a negative pressure fluid to describe the dark
energy era. However, without the use of the modified gravity theoretical framework, one frequently
needs phantom fluids to describe an accelerated expansion. There are various modified gravity models
in the literature, such as f (R) gravity [20], f (R, T) gravity [21–37], and f (R, T, RµνTµν) gravity [38–41],
where R, T, Rµν, and Tµν stand for the Ricci scalar, the trace of the “energy momentum tensor”(EMT),
and the Ricci tensor, respectively.

In this paper we use the f (R, T) gravity framework to study the late-time evolution of several
cosmological models, in the presence of a collisional matter fluid. We focus our study on the behavior
of the EoS parameter ωe f f and the deceleration parameter q, as functions of the redshift z. From the
latest observational data, we know that the Universe made the deceleration to acceleration transition at
a low redshift value zt = 0.46± 0.13 [42]. This transition from a decelerated era to an accelerated one is
usually achieved in modified gravity models (e.g., [4,43–47]), and the aim in this paper is to investigate
if a viable late-time phenomenology can be achieved for f (R, T) models of gravity in the presence of
collisional matter. Similar studies in the context of f (R) gravity have been performed in [48,49], so
in this paper we extend these in the context of f (R, T) gravity. Also, in Ref. [50–52], the dark energy
dominance and the deceleration to acceleration transition was studied in the presence of cold dark
matter for f (T) models. In addition, in Ref. [53] the late-time behavior of f (R, T) gravity models was
compared to the ΛCDM model, with good agreement (see also Refs. [28,54–61] for additional studies
in the field). In this work, the collisional matter fluid mainly refers to the presence of a logarithmic
term in the EoS parameter of the dark matter fluid. The f (R, T) gravity part will drive the late-time
acceleration, so we mainly aim to see whether the presence of collisional matter alters the late-time
behavior of the f (R, T) model, and to which extent the model can be comparable to the ΛCDM.

This paper is organized as follows: In Section 2, we briefly review the f (R, T) theoretical
framework by presenting the general formalism of the model. In Section 3, we incorporate a collisional
matter component in the EoS of dark matter and we express the field equations as functions of the
redshift, and we study the behavior of the EoS parameter and of the deceleration parameter as functions
of the redshift parameter z, for two characteristic models of f (R, T) gravity. Finally, the conclusions
follow at the end of the paper.

2. f (R, T) Gravity: Basic Formalism

In this section, we discuss the basic formulation of f (R, T) gravity and its corresponding field
equations for a Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime in the presence of ordinary
matter. The line element of the FLRW metric is

ds2 = dt2 − a2(t)dx2, (1)

where a(t) is the scale factor and the corresponding Ricci scalar is

R = −6(2H2 + Ḣ),

where H is the Hubble parameter and “dot” denotes differentiation with respect to cosmic time t.
The action of f (R, T) gravity is [21]

S =
1
κ2

∫
f (R, T)

√
−gd4x +

∫
Lm
√
−gd4x, (2)

where f (R, T) is an arbitrary function of Ricci scalar R and of the trace of the EMT T = gµνTµν.
In addition, κ2 = 1/M2

p, where Mp is the Planck mass scale. Here Lm represents the Lagrangian
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density of ordinary matter. By varying the above action with respect to the metric tensor, we have the
following set of equations:

8πTµν − fT(R, T)Tµν − fT(R, T)Θµν = fR(R, T)Rµν − 1
2 f (R, T)gµν + (gµν2−∇µ∇ν) fR(R, T). (3)

By contracting the above equation, we acquire a relation between Ricci scalar R and the trace T of
the EMT:

8πT − fT(R, T)T − fT(R, T)Θ = fR(R, T)R + 32 fR(R, T)− 2 f (R, T). (4)

These two equations contain the covariant derivative and the d’Alembert operator denoted by ∇
and 2, respectively. Furthermore, fR(R, T) and fT(R, T) correspond to the functional derivatives of
f (R, T) with respect to R and T, respectively. Additionally, the term Θµν is defined as follows:

Θµν =
gαβδTµν

δgµν = −2Tµν + gµνLm − 2gαβ ∂2Lm

∂gµν∂gαβ
.

The EMT for an isotropic perfect fluid is given by,

Tµν = (ρm + Pm)uµuν − Pmgµν,

where uµ is the four-velocity of the fluid. Here, we choose Lm = −Pm, which leads to following
expression for Θµν:

Θµν = −2Tµν − Pmgµν. (5)

With the help of Equation (5), the field Equation (3) can be written in the following form:

Rµν −
1
2

Rgµν = k2
e f f Te f f

µν , (6)

where k2
e f f =

k2+ fT
fR

is the effective gravitational constant, and

Te f f
µν = Tµν +

1
k2 + fT

[
1
2

gµν( f − R fR) + fT Pmgµν − (gµν −∇µ∇ν) fR

]
(7)

is the effective EMT.
Applying the covariant divergence to the field Equation (3), one can find [62]:

∇αTαβ =
fT

κ2 − fT

[
(Tαβ + Θαβ)∇α ln fT +∇αΘαβ −

1
2

gαβ∇αT
]

. (8)

It is important to see that any modified theory which involves non-minimal coupling between
geometry and matter does not obey the ideal continuity equation. f (R, T) also involves this type
of non-minimal coupling, so it also deviates from standard behavior of continuity equations. Here,
non-minimal coupling between matter and geometry induces extra force acting on massive particles,
whose equation of motion is given by [62]:

d2xλ

ds2 + Γλ
µνuµuν = f λ,

where

f λ =
8π∇ν p− 1

2 fT(R, T)∇νT
(ρ + p)(8π + fT(R, T))

(gµν − uµuν).
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The matter energy density ρm satisfies the following continuity equation:

˙ρm + 3H(ρm + Pm) =
−1

κ2 + fT

[
(ρm + Pm)Ṫ fTT + Ṗm fT +

1
2

Ṫ fT

]
. (9)

To obtain the standard continuity equation, we need to have an additional constraint by setting the
right side of the above equation equal to zero. For the EoS Pm = ωρm, Equation (9) becomes:

˙ρm + 3Hρm(1 + ω) = 0, (10)

with constraint
(1 + ω)T fTT +

1
2
(1−ω) fT = 0. (11)

In [61], authors reconstructed some well-known models of f (R, T) theory of gravity corresponding
to cosmological evolution including ΛCDM, phantom or non-phantom eras and possible phase
transition from accelerating to decelerating by keeping the energy momentum tensor covariantly
conserved. They utilized the additional constraint (11) in the comprehensive reconstruction scheme.
We opted to follow two generic models of the form

• f (R, T) = α1Rγ1 Tγ2 + α2T,

• f (R, T) = β1Rµ + β2Rν + 2k2

−1+3ω T + β3T
1
2−
√
−1+ω(3+ω−3ω2)
(1+ω)

√
−2+6ω + β4T

1
2+

√
−1+ω(3+ω−3ω2)
(1+ω)

√
−2+6ω .

The significant aspects of this choice: these models represent the non-minimal coupling of
curvature R and matter components T (as compared to previous studies [53]), and are reconstructed
for the conserved energy momentum tensor. In the next section we will consider effective fluid to
develop a generic equation involving the role of collisional fluid.

3. Collisional Matter Model within f (R, T) Theory and Late-Time Dynamics

The analytical results of high-energy particle detectors such as ATIC, PAMELA, and WMAP
indicate that the production of the electron–positron in the Universe is larger compared to that
observed by cosmic ray collisions and by supernova SNIa explosions [63]. This issue helps us to find
the total destruction rate of weakly interacting matter particles, and this process is collisional [64].
The effects of collisional matter in the Universe’s evolution were considered in Ref. [65] in the context
of Einstein–Hilbert gravity, and the same problem was considered in Refs. [48,49] in the context of f (R)
gravity. As was shown in Refs. [48,49], a transition from deceleration to acceleration can be achieved,
and in this paper we shall investigate whether this transition can occur in the context of f (R, T) gravity,
and whether the resulting picture can be comparable with the ΛCDM model. Mostly, self-interacting
collisional matter models are quantified in terms of a perfect fluid in which total mass-energy density
denoted by εm depends on two terms, as follows:

εm = ρm + ρmΠ , (12)

where Π stands for
Π = Π0 + ωln(

ρm

ρm0

) , (13)

where ρm0 and Π0 are present day values. In this case, the pressure of the collisional matter fluid is

Pm = ωρm, (14)
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where the EoS parameter of the collisional dark matter fluid is represented by ω and 0 < ω < 1. Using
Equations (12) and (13), we obtain the following relation of the total energy density of the Universe:

εm = ρm(1 + Π0 + ωln(
ρm

ρm0

)). (15)

The energy momentum conservation is quantified by the following equation:

∇νTµν = 0 , (16)

and the EMT becomes as follows:

Tµν = (εm + Pm)uµuν − Pmgµν, (17)

where uµ =
dxµ

ds is the four-velocity and satisfies the equation uµuµ = 1. Using the FLRW line element
given in (1), the energy–momentum conservation equation has the following form:

˙εm + 3
ȧ
a
(εm + Pm) = 0 . (18)

Combining Equations (14) and (15), we obtain the following result:

ρm = ρm0

( a0

a

)3
, (19)

where a0 is the current value of the scale factor. Here we can see that collisional matter can be described
by Equations (15) and (19). In addition, Π0 has the value

Π0 =

(
1

ΩM
− 1
)

, (20)

and its numerical value is Π0 = 2.14169. There is an important case that needs to be discussed, related
to the fact that our Universe is filled with both matter and radiation. To this end, we assume that apart
from collisional matter, the Universe is also filled with radiation, so the total energy density of the
matter fluids is:

ρmatt = εm + ρr0a−4, (21)

where ρr0 represents the present energy density for the radiation fluid. The total pressure in this case is
given by

Pmatt = pm + pr, (22)

where pm is the pressure for collisional matter and pr is the pressure from radiation. By using
Equations (15) and (19), we can rewrite Equation (21) in the following form:

ρmatt = ρm0a−3(1 + Π0 − 3ωln(a)) + ρr0a−4. (23)

We can also rewrite Equation (23) as follows:

ρmatt = ρm0(g(a) + χa−4), (24)

where χ is defined as χ = ρr0
ρm0

, its numerical value is χ = 3.1× 10−4. In addition, g(a) is defined
as follows:

g(a) = a−3(1 + Π0 − 3ωln(a)) . (25)



Symmetry 2018, 10, 463 6 of 14

In the above cases, if we set ω = 0, Π0 = 0, we recover the standard cold dark matter case,
and in addition if we take χ = 0, the radiation fluid makes no contribution to the energy density of
our Universe.

Now, let us proceed in the calculation of the total EoS parameter of the f (R, T) model and of the
deceleration parameter q(z) as functions of the redshift parameter defined in terms of the scale factor
as follows 1 + z = 1/a. The field equations are rewritten as follows:

3H2 =
1 + fT

fR
εm +

1
fR
[
1
2
( f − R fR)− 3ṘH fRR + Pm fT ], (26)

−2Ḣ − 3H2 =
1 + fT

fR
Pm +

1
fR
[2ṘH fRR + R̈ fRR + Ṙ2 fRRR −

1
2
( f − R fR)− Pm fT ] , (27)

where H = ȧ
a is the Hubble parameter. We rewrite the right hand side of Equations (26) and (27) in

terms of effective energy density ρe f f and of the effective pressure Pe f f as follows:

3H2 = k2
e f f ρe f f , (28)

−2Ḣ − 3H2 = k2
e f f Pe f f . (29)

Here k2
e f f =

1+ fT
fR

and ρe f f , Pe f f have the following form:

ρe f f = εm +
1

1 + fT
[
1
2
( f − R fR)− 3ṘH fRR + Pm fT ], (30)

Pe f f = Pm +
1

1 + fT
[2ṘH fRR + R̈ fRR + Ṙ2 fRRR −

1
2
( f − R fR)− Pm fT ]. (31)

The energy density of dark energy is equal to ρDE = ρe f f − εm, and the corresponding pressure is
PDE = Pe f f − Pm. The energy momentum conservation is

d(k2
e f f ρe f f )

dt
+ 3Hk2

e f f (ρe f f + Pe f f ) = 0. (32)

Using Equations (28) and (29), the above equation takes the form

18
fRR
fR

H(Ḧ + 4HḢ) + 3(Ḣ + H2) +
1 + fT

fR
εm + Pm

fT
fR

+
f

2 fR
= 0. (33)

Using the redshift parameter z = 1
a − 1, the above equation can be written as follows:

d2H
dz2 =

3
1 + z

dH
dz
− 1

H
(

dH
dz

)2 −
3 fR(H2 − (1 + z)H dH

dz ) +
f
2 + Pm fT + (1 + fT)εm

18H3 fRR(1 + z)2 . (34)

In the rest of this section, we will study the late-time evolution of the Universe filled with
collisional matter and radiation, for two characteristic models of f (R, T) gravity. To this end we will
numerically solve the differential Equation (34) for H(z), and we shall calculate the corresponding total
equation of state parameter and deceleration parameter as functions of the redshift z. With regards to
the deceleration parameter as a function of the redshift, we shall use the following formula:

q(z) =
1 + z
H(z)

dH(z)
dz

− 1 . (35)

Accordingly, we shall compare the collisional matter f (R, T) gravity with the non-collisional
matter late-time evolution. We shall consider two different values for the EoS parameter of the
collisional matter, namely ω = 0.5 and ω = 0.8. Moreover, the observational value for present Hubble
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parameter is taken H0 = 68.3, and finally the fractional energy density of dark matter at present day is
Ωm0 = 0.24.

3.1. f (R, T) Model I

Let us first consider a pure non-minimally coupled f (R, T) model gravity of the form
f (R, T) = α1Rγ1 Tγ2 + α2T. In Ref. [61], the authors reconstructed this model and investigated
the instability of the model against density matter perturbations and the Dolgov–Kawasaki
instability criterion.

In order for this model to be viable, the following condition must hold true:

fRR = α1γ1(γ1 − 1)Rγ1−2Tγ2 ≥ 0 , (36)

so we need to have γ1 > 1 and α1 > 0. For the numerical analysis, we choose the free parameters
values as follows: α1 = 20, α2 = 15, H0 = 68.3, and Ωm = 0.3183. We employ the numerical approach
to find H(z) by solving Equation (34). We investigate the behavior of the total EoS parameter, ωe f f ,
and of ωDE for non-collisional matter and collisional matter. We present two different cases depending
on the exponents of R and T in the above model. For the first model, we set γ1 = 10 and γ2 = −0.7, so
that f (R, T) takes the form

• α1R10T−4/5 + α2T .

In the left plot of Figure 1 we present the evolution of the deceleration parameter for four different
cases in terms of the redshift z. The blue curve represents the standard ΛCDM model, the green curve
is for non-collisional matter, the black curve represents collisional matter, and the red curve represents
collisional matter in the presence of radiation. We can clearly see from Figure 1 that the behavior of
the green curve and red curve correspond to the ΛCDM, but the black curve is lower than the blue
curve and changes its behavior. We can also observe the deceleration to acceleration transition point in
the left plot of Figure 1 for the aforementioned cases. In the case of non-collisional matter, collisional
matter, the transition from deceleration to acceleration is almost equal to the one corresponding to
the ΛCDM model, and it is equal to zt = 1.9. For the collisional matter case, the transition point is at
zt = 7.6 and this is larger than observations. In the right plot of Figure 1, we present the evolution
of the total EoS parameter for non-collisional matter, collisional matter, and for collisional matter
plus radiation. In all cases, the total EoS parameter ωe f f approaches the phantom divide line value
ωe f f = −1 but it does not cross it, for all the models, at least up to the present value of the redshift
(which is (z = 0). Also in Figure 2, we present the behavior of the Hubble rate as a function of the
redshift (left plot) and of the dark energy density as a function of the redshift (right plot). As can be
seen in both figures, the collisional matter phenomenology is qualitatively viable.
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Figure 1. The evolution of deceleration parameter versus redshift z (left) plot and the evolution of total
effective equation of state (EoS) parameter versus the redshift z (right) plot. The free parameter values
were chosen to be α1 = 20, α2 = 15, γ1 = 10, γ2 = −0.7, and Ωm = 0.3183.
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Figure 2. The evolution of H(z) versus redshift z (left) and the evolution of the dark energy EoS
parameter versus the redshift z (right). The free parameter values are α1 = 20, α2 = 15, γ1 = 10,
γ2 = −0.7, and Ωm = 0.3183.

3.2. f (R, T) Model II

Let us now consider the following f (R, T) model:

f (R, T) = β1Rµ + β2Rν +
2k2

−1 + 3ω
T + β3T

1
2−
√
−1+ω(3+ω−3ω2)
(1+ω)

√
−2+6ω + β4T

1
2+

√
−1+ω(3+ω−3ω2)
(1+ω)

√
−2+6ω . (37)

This model is of the form f (R, T) = f (R) + f (T), and the second derivative of this model with
respect to the Ricci scalar is

fRR = β1µ(µ− 1)Rµ−2 + β2ν(ν− 1)Rν−2 ≥ 0. (38)

The validity of this model crucially depends on second-derivative fRR which should be greater
than zero, which means µ > 1, ν > 1, β1 > 0, and β2 > 0. We chose the free variables values as follows:
(β1, β2, β3, β4, µ, ν) = (5, 10, 15, 20, 25, 30), and Ωm = 0.3183. We numerically study this f (R, T) model
by solving the differential Equation (34). In Figure 3 we present the results of our study, and specifically
in the left plot we present the deceleration parameter as a function of the redshift and in the right
plot we present the total EoS parameter as a function of the redshift. The conventions for the colored
curves are the same as in the previous model—that is, the blue curve represents the results for the
ΛCDM model, the green curve represents the non-collisional matter, and the black curve stands for
the collisional matter. Finally, the red curve represents the collisional matter when radiation is also
considered. As can be seen, this model is in better agreement with the ΛCDM model, and also the
transition point from deceleration to acceleration for all cases containing collisional matter are closer to
the ΛCDM model. Moreover, in Figure 4 we plot the Hubble rate as a function of the redshift (left plot)
and the EoS parameter for the dark energy sector. As can be seen, the results are in good qualitative
agreement with the late-time phenomenological picture. In addition, the value of the Hubble rate
today was calculated to be 68.4, which is a very good approximation of the actual present day value
H0 = 68.3.



Symmetry 2018, 10, 463 9 of 14

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

z

q(z)

�=0.8
�=0.5
�=0

0 2 4 6 8 10

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

z

�eff

�=0.8

�=0.5

�=0

Figure 3. The evolution of deceleration parameter versus redshift z (left) and the evolution of
the total EoS parameter versus redshift z (right). The free parameter values were chosen to be
β1 = 5, β2 = 10, β3 = 15, β4 = 20, µ = 25, ν = 30, and Ω = 0.3183.
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Figure 4. The evolution of H(z) versus redshift z (left) and the evolution of the dark energy EoS
parameter versus the redshift z (right). The free parameter values were chosen to be β1 = 5, β2 = 10,
β3 = 15, β4 = 20, µ = 25, ν = 30, and Ω = 0.3183.

3.3. Another Perspective of the Late-Time Cosmological Evolution of Dark Energy with Collisional Matter Fluid

In this section we specialize the dark energy study by using appropriately chosen variables.
In this way we also discuss the issue of dark energy oscillations, which haunts several modified gravity
models (see for example [5] for a review of this issue). The field Equation (26) for the flat FLRW metric
takes the following form:

3H2 fR = (1 + fT)ρmatt +
1
2
( f − R fR)− 3ṘH fRR + Pmatt fT . (39)

Equation (39) can also be written as follows:

1
m̄2

dR
dlna = 1

H2 fRR
[ fT

3m̄2 (ρmatt + Pmatt) +
1

3m̄2 ρmatt − H2

m̄2 + 1
6m̄2 ( f − R)− (1− fR)(

H
m̄2

dH
dlna +

H2

m̄2 )]. (40)

We introduce the following variables [49] in order to make the study of the late-time cosmological
evolution of f (R, T) theory more focused:

yH ≡
ρDE
ρm0

=
H2

m̄2 − g(a)− χa−4, (41)

yR ≡
R

m̄2 −
dg(a)
dlna

. (42)
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Here ρDE denotes the energy density of the dark energy, m̄2 is the mass scale given by [48]

m̄2 =
k2ρm0

3 . Using Equations (40)–(42), we obtain the following set of differential equations:

dyH
dlna

= −1
3

yR − 4yH −
4
3

dg(a)
dlna

− 4g(a), (43)

dyR
dlna = − d2g(a)

dlna2 + 1
m̄2(yH+g(a)+χa−4) fRR

[ fT
3m̄2 (ρmatt + Pmatt)− yH + 1

6m̄2 ( f − R)

−(1− fR)(
1
2

dyH
dlna +

1
2

dg(a)
dlna + yH + g(a)− χa−4)].

(44)

The curvature scalar can also be written in the form

R = −3m̄2(4yH + 4g(a) +
dyH
dlna

+
dg(a)
dlna

). (45)

Now making use of Equations (43) and (44), we obtain

−3 d2yH
dlna2 − 12 dyH

dlna − 3 d2g(a)
dlna2 − 12 dg(a)

dlna = 1
m̄2(yH+g(a)+χa−4) fRR

[ fT
3m̄2 (ρmatt + Pmatt)− yH

+ 1
6m̄2 ( f − R)− (1− fR)(

1
2

dyH
dlna +

1
2

dg(a)
dlna + yH + g(a)− χa−4)] = 0.

(46)

Rearranging the terms, we finally obtain the following differential equation:

d2yH
dlna2 + (4− 1− fR

6m̄2(yH+g(a)+χa−4) fRR
) dyH

dlna +
fR−2

3m̄2(yH+g(a)+χa−4) fRR
yH + d2g(a)

dlna2

+(4 + fR−1
6m̄2(yH+g(a)+χa−4) fRR

) dg(a)
dlna + fR−1

3m̄2(yH+g(a)+χa−4) fRR
g(a) + 1− fR

3m̄2(yH+g(a)+χa−4) fRR

χa−4 + f−R
18m̄4(yH+g(a)+χa−4) fRR

− g(a)+ωa−3+(1+ω)χa−4

3m̄2(yH+g(a)+χa−4) fRR
[ fT

3m̄2 (ρmatt + Pmatt)] = 0.

(47)

By making use of redshift z = 1
a − 1 in conjunction with the relations

d
dlna

= −(1 + z)
d
dz

, (48)

d2

dlna2 = (1 + z)2 d2

dz2 + (1 + z)
d
dz

, (49)

we can rewrite the differential Equation (47) as follows:

(1 + z)2 d2yH
dz2 + (1 + z) dyH

dz − (1 + z)(4− 1− fR
6m̄2(yH+g(z)+χ(1+z)4) fRR

) dyH
dz + fR−2

(yH+g(z)+χ(1+z)4)
yH

3m̄2 fRR
+ (1 + z)2 d2g(z)

dz2 + (1 + z) dg(z)
dz − (1 + z)(4 + fR−1

6m̄2(yH+g(z)+χ(1+z)4) fRR
) dg(z)

dz

+ fR−1
3m̄2(yH+g(z)+χ(1+z)4) fRR

g(z) + 1− fR
3m̄2(yH+g(z)+χ(1+z)4) fRR

χ(1 + z)4 + f−R
(yH+g(z)+χ(1+z)4)

1
18m̄4 fRR

− g(z)+ω(1+z)3+(1+ω)χ(1+z)4

3m̄2(yH+g(z)+χ(1+z)4) fRR
[ fT

3m̄2 (ρmatt + Pmatt)] = 0.

(50)

The focus in this section is on numerically solving the differential Equation (50) and thus finding
the exact behavior of the function yH ≡ ρDE

ρm0
. This will make apparent the existence or not of dark

energy oscillations in any of the models. We also compare the behavior of the collisional matter f (R, T)
gravity in the presence and absence of radiation, with the non-collisional matter case. Consider first
the model I which we studied previously, and after solving the differential Equation (50), we present
the results of our study in Figure 5. Particularly, in the left plot of Figure 5, we plot the behavior
of the function yH(z) as a function of z, and in the left plot we plot the dark energy EoS parameter
ωDE(z) =

PDE
ρDE

, which in terms of yH(z) is equal to

ωDE(z) = −1 +
1
3
(1 + z)

1
yH

dyH
dz

. (51)
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Also in all the plots we assume the following values for the free parameters of the models: γ1 = 10,
γ2 = −0.7, α1 = 20, α2 = 15, H0 = 68.3, and Ωm = 0.3183. As in the previous cases, the red curves in
the plots of Figure 5 correspond to collisional matter with radiation, the green curve corresponds to
collisional matter without radiation, and the black corresponds to non-collisional matter. As can be
seen, the presence of collisional matter on the cosmological model slightly changes the quantitative
picture of the model, but the qualitative behavior is not altered. Thus, by using the formalism we
presented in this section, we demonstrated that the presence of collisional matter provides us with
qualitatively viable phenomenology.
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Figure 5. The evolution of yH(z) as a function of the redshift (left), and the evolution of the dark
energy EoS parameter as a function of the redshift (right). The free parameter values were chosen to
be, α1 = 20, α2 = 15, γ1 = 10, γ2 = −0.7, and Ωm = 0.3183.

4. Conclusions

In this paper we considered the late-time evolution of f (R, T) gravity models, with the dark matter
component of the theory being collisional. Due to the self-interaction of the dark matter component,
the dark matter fluid had non-zero pressure, and thus can potentially affect the late-time evolution.
In our study we investigated how this collisional component of dark matter can affect the late-time
evolution. We considered two characteristic f (R, T) gravity models, and by appropriately expressing
the field equations as functions of the redshift parameter, we numerically solved the resulting field
equations. As we demonstrated, the resulting picture corresponding to the collisional matter was
qualitatively similar to that of non-collisional matter case, but there are differences in the deceleration
to acceleration transition point, and also to the rate of the accelerating expansion. In all cases studied,
however, it was found that a viable phenomenological evolution could be obtained by appropriately
adjusting the free parameters of the theory. For the purposes of this study, we quantified our analysis
by using the deceleration parameter and the total EoS parameter, and we demonstrated the effect
of the collisional matter fluid by comparing the results with the ones corresponding to the ΛCDM
model. Finally, we used an appropriate formalism for the late-time evolution, and we derived the field
equations in an appropriate form for the late-time study. As we demonstrated, in this case too, a viable
phenomenology can be achieved by f (R, T) gravity in the presence of collisional matter. Notably, none
of the collisional f (R, T) gravity models crossed the phantom divide line, although the latter effect
is supported by the observational data. It is worth further extending the formalism we employed in
this paper to other theories, like Gauss–Bonnet theories of gravity, or perhaps f (T) gravity, or even
multidimensional gravity [66], and we hope to address some of these studies in a future work.
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