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Abstract: The position synchronous control of multi-axis gantry-type feed stage is crucial in
precision machine tools. Industrial position control which aims to widen the bandwidth and
improve disturbance rejection of single axis is not enough to achieve precise synchronization in
a dual-driving feed stage. The characteristics diversity, transmission-mechanism deformation,
and mechanical coupling effect between dual axes will degrade the control accuracy. Hence,
the novel two-degree-of-freedom (2-DOF) dynamic model-based terminal sliding mode control
(TSMC) with disturbance and state observer is proposed in this paper for the synchronous control
of a 2-DOF dual-driving feed stage. The 2-DOF dynamic model, based on Lagrange equation, is
established along with the parameters identification method. The predictive natural frequencies and
vibration modes frequencies by the proposed dynamic model are compared by a modal experiment.
Then, the 2-DOF dynamic model-based TSMC is provided to satisfy the tracking and synchronization
control. In order to reduce the chattering and to increase the robustness against the mechanical
coupling, the disturbance and state observer is designed. Moreover, Lyapunov stability criterion is
used to analyze the stability of the proposed control scheme. Finally, an industrial application of
2-DOF dual-driving feed stage is utilized to validate the effectiveness of the proposed control scheme.
The proposed 2-DOF dynamic model-based TSMC with observer has been effectively demonstrated
to improve synchronous performance and tracking accuracy.

Keywords: two-degree-of-freedom dual-driving feed stage; dynamic model; synchronous control;
terminal sliding mode control; disturbance observer

1. Introduction

With the increasing demand for higher precision and greater productivity, modern manufacturing
techniques have been in rapid development. Many advanced manufacturing machines such as gantry
machine, computer numerical control (CNC) engraving machine, coordinate measurement machine
and robotic arms are required to have multi-axis synchronous or coordinated motion [1]. In the
configuration of the two-degree-of-freedom (2-DOF) dual-driving feed stage, dual ball-screws and
motors are mounted parallel to each other in each feed direction of a planar motion. Since the joint
force is provided by double motors and screws, the dual-driving structure can significantly increase the
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feed rigidity and overall thrust. An innovative industrial implication of 2-DOF dual-driving feed stage
is proposed by Mori Seiki [2]. The stage which is moved by dual motors in its systematic configuration
can generate higher acceleration and precision, as shown in Figure 1.
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Figure 1. (a) Machine tool with 2-DOF dual-driving frame (Mori Seiki CO., LTD.); (b) configuration of
2-DOF dual-driving stage.

However, the dual-driving synchronous feed mechanism has also brought some additional
concerns. Although the dual axes have the same mechanical structure, the synchronous error is
unavoidable due to the unbalanced forces, characteristics diversities, and mechanical coupling of
dual axes [3,4]. In addition, the damage may even occur when significant desynchronization takes
place. The normal industrial motion control is usually performed by widening the bandwidth and
improving the resistance capacity against disturbance independently on the single axis, which cannot
guarantee the synchronization performance of dual axes. To overcome the drawback, the appropriate
control scheme along with the dynamic characteristics analysis is required to satisfy the tracking and
synchronization accuracy as the dual-driving stage traces a complex trajectory [5].

Many researches have explored the errors modelling and compensation methods of machine tools.
Some scholars provide the methodology for the estimation of the geometrical errors of the multi-axis
machine, based on the Denavit and Hartenberg’s formulation. In this method, the elemental error in
each joint has been defined for a multitasking machine and calculated by homogenous matrix [6,7].
These error modelling methods are often used in the serial multi-axis machine tool, and can be helpful
to the research for error compensation in the dual-driving feed system.

As for the synchronous control, the most recent tandem approach is mechanical rigid coupling.
Both axes are joint feeds based on the mechanical line-shaft or connection rods [8]. However, the
performance of mechanical rigid synchronization is heavily dependent on the machining and assembly
accuracy and has a poor flexibility when the structure or application changed for its complex structure.

With the development of electrical technology, the master-slave control which follows the tandem
structure becomes a potential solution. In master-slave control, the position or velocity signal
of the master motor is used as reference command to the slave. For its convenient application,
the master-slave control has been adopted widely in industry, such as FANUC Ltd. and speed/torque
coupling control in SIEMENS [9,10]. In addition, the electronic virtual main shaft control has been
developed to eliminate the unbalanced problem based on the master-slave theory [11]. Nevertheless,
the tandem structure generates an unavoidable delay between the dual axes and the load disturbance
imposed on the slave axis cannot be fed back to the master, which leads to a poor dynamic
synchronization performance.

The cross-coupled control was initially proposed for contour processes and has been extended
by many scholars. In cross-coupled control, each axis has its own reference command and feedback.
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This arrangement allows reflecting any load disturbances presented in both axes by using the additional
signal as an additional tracking signal via weighted gains [12,13]. However, cross-coupled control is
achieved by a synchronous controller. The controller will calculate the position error of dual axis in the
closed-loop, which fundamentally makes the dual axis follow and move against each other in high
frequency, which is defined by the controller and sampling rate. The following process of dual-driving
axes inevitably generates an oscillation of the dual-driving system [14,15].

Traditional algorithms such as P, PI, and PID or more robust ones such as adaptive and H-infinity
controller can be used in combination with the master-slave and cross-coupled control structure [16,17].
The sliding mode control (SMC) is particularly suited to dual-driving systems for its lesser sensitivity to
the external disturbances and modeling accuracy. The fuzzy neural network SMC system is proposed
to achieve both tracking accuracy and synchronous motion control for dual linear motor motion control
system. The fuzzy logic control is presented in some researches to eliminate the unknown dynamics,
and the adaptive fuzzy SMC is also proposed to achieve a better performance [18,19]. Compared to
normal SMC, the terminal sliding mode control (TSMC) guarantees state convergence to sliding surface
in finite time. Therefore, the TSMC is suitable for high synchronization performance dual-driving
applications [20]. In our previous work, the cross-coupled fuzzy SMC scheme was designed, while the
flexible mechanical driver body model was not taken into consideration [21].

Many researches have been provided to analyze the forces and disturbances in processing [22,23].
Some scholars designed the data acquisition system to simultaneously record the cutting forces and
cutting tool positions [24]. However, to control the dual-driving system, the transmission system
is usually developed by the simplified screw transmission ratio, and the mechanical coupling is
ignored [6,9–12]. Some scholars studied the dynamic modelling in order to deal with the mechanical
coupling disturbance that exists in various dual-driving stages. However, the model usually only
takes into account the mass and inertia of the components, and ignores the flexible deformation
and vibration of the transmission-mechanism [13,14]. Considering the system identification test to
obtain the dynamic characteristics of the dual-driving mechanical structure, some scholars develop the
lumped parameter model for ball screw system, and design the acceleration feedforward controller
based on the transfer function of the overall drive system. The screw system is taken as a rigid body,
and the coupling effect due to mechanical linking can be identified as a first-order inertial transfer
function [25,26], which degrades the accuracy of the dynamic model.

Hence, there are two main problems restricting the development of the dual-driving feed
system. Firstly, the synchronization precision is affected by the diversities of system characteristics,
transmission features, and vibration. Secondly, the mechanical-coupling can give rise to the
desynchronization or even mechanism damage in industry application. Especially in the sudden
change of acceleration, the mismatch disturbances between the unbalanced driving force and dynamic
characteristics of dual axes will cause a fluctuation of synchronous error. Hence, the characteristics
diversity, flexible deformation, and mechanical coupling should be taken into account for dynamic
modeling. Based on it, the strategy of the synchronous control should be robust against the coupling
between two drives and penalize synchronous errors that are generated due to disturbances, as well as
parameter diversities, when performing the TSMC and observer design.

This paper is organized as follows: Section 2 presents the modelling and analysis of the 2-DOF
dual-driving feed stage. The dynamics model is verified by the modal test. Section 3 proposes
the dynamic model-based TSMC, and the disturbance and state observer is developed to deal
with the mechanical coupling disturbance. Then, the Lyapunov stability analysis of the proposed
synchronous control scheme is provided to guarantee closed-loop tracking stability. In Section 4,
the tracking and synchronization performance of the proposed 2-DOF dynamic model-based TSMC
with observer control scheme is compared with the other two synchronous control schemes by
experiment. The experimental results show the effectiveness of the proposed control scheme.
Conclusions are drawn in Section 5.
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2. Modelling and Analysis of 2-DOF Dual-Driving Feed Stage

2.1. 2-DOF Dual-Driving Dynamic Model

The 2-DOF dual-driving feed stage and coordinate are shown in Figure 2. It consists of a gantry
stage which is moved by twin parallel actuators on the X-axis and also twin actuators on the Y-axis.
To provide high synchronization and tracking accuracy, Permanent Magnet Synchronous Motors
(PMSM) and ball screws are equipped on each feed direction. The feed process is accomplished by
two-layer dual-driving moving. The lower layer dual-driving motors which take charge of the X-axis
motion are mounted on the base. The upper layer in Y-axis holding the workpiece is mounted on
the moving stage, which is also driven by two parallel motors and screws. The workpiece is usually
installed on the slider according to customers’ requirements. In practice, the dual displacements
in each degree of freedom are different because of the unbalanced forces, characteristics diversities,
and mechanical coupling of the dual axes. The displacements difference is defined as a synchronous
error which should be eliminated. The central point O of the stage is constrained to move along the
center line of two DOF, the displacements are denoted by x and y. Furthermore, the sliding stages may
also rotate due to the desynchronization between x1 and x2, and y1 and y2. The rotational angles are
denoted by θ1 and θ2, respectively.
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To proceed with the dynamic model of the 2-DOF dual-driving stage, two sets of coordinates can
be used to describe the geometrical relationship of the gantry stage. One set is given by coordinates
(X1, X2, Y1, Y2), which are the measured positions of each actuators in two dimension. The second set
is given by the equivalent coordinates (X, θ1, Y, θ2), which express the relationship between linear and
rotational angle displacements of the stage.

m1 and m2 denote the mass of the lower layer and the upper layer stage, respectively. The moment
of inertia of the lower layer and the upper layer stage are expressed as

I1 =
m1

12

(
l2
x + a2

x

)
I21 = m1y2 (1)

I22 = m2

(
l2
y + a2

y

)
(2)

The translational and rotational kinetic energy of the gantry stage and slider are expressed as

K =
1
2

m1vT
m1vm1 +

1
2

m2vT
m2vm2 +

1
2
(I1 + I21)

.
θ

2
1 +

1
2

I22
.
θ

2
2 (3)
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Equation (3) can be rewritten as

K =
1
2

PT DP (4)

where P = (x, y, θ1, θ2)
T and D is the simplified inertia matrix

D =


m1 + m2 −m2 sin θ1 0 0
−m2 sin θ1 m2 0 0

0 0 I1 + I21 0
0 0 0 I22

 (5)

Moreover, the total kinetic energy can be computed as

V = 1
2 kex

[
(xd − x1)

2 + (xd − x2)
2
]
+ 1

2 key

[
(yd − y1)

2 + (yd − y2)
2
]

+ 1
2 kbx

4
∑

i=1
x2

i +
1
2 kby

4
∑

i=1
y2

i

(6)

kbx and kby are the lateral stiffness’ of the slider on the X-axis and Y-axis. According to the
configuration in Figure 1, θ1 and θ2 are the small angular displacements.

Two sets of geometric relationships on the X-axis and Y-axis can be used to specify the
displacements of slide blocks. Then, the displacements of each axis can be expressed as{

xi = xd ± lxi sin θ1

yi = yd ± lyi sin θ2
(7)

where xi and yi are the displacements of the nuts of each axis, and x and y are the displacements of the
gantry stage and slider in X and Y directions. From (7) we can see that the synchronous errors between
the displacements xi and yi are affected by the yaw errors θi, which means that the research of yaw error
is necessary to improve the feed accuracy. The yaw errors θi are reflected in the synchronous errors.

As can be seen in Figure 3, the diagram of lateral deformation of slide blocks in the lower layer
along the direction of the Y-axis is expressed. The lateral deformation of slide blocks of the upper layer
along the direction of the X-axis can be derived by approximate approach. The relationship between
the lateral deformations of the slide blocks and torsion angles is given by{

xbi =
ax
2 sin θ1

ybi =
ay
2 sin θ2

(8)
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According to the Lagrange method, the system dynamics can be defined as

d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
= Fd + U (9)

where
q1 = x, q2 = y, q3 = θ1, q4 = θ2 (10)

L = K−V (11)

Finally, the dynamic model of 2-DOF dual-driving feed stage can be rewritten as

D
..
q + Cq = G(Fd + U) (12)

where D and C are the simplified inertia (5) and stiffness (13) matrices; Fd is the force vector (14)

C =


kex 0 lxkex 0
0 key 0 lykey

lxkex 0
(
l2
x1 + l2

x2
)
kex + a2

xkbx 0

0 lykey 0
(

l2
y1 + l2

y2

)
key + a2

ykby

 (13)

Fd =


Fx1

Fx2

Fy1

Fy2




Fx1 = kex(x1 − xd)− cx1 sign(
.
x1)

Fx2 = kex(x2 − xd)− cx2 sign(
.
x2)

Fy1 = key(y1 − yd)− cy1 sign(
.
y1)

Fy2 = key(y2 − yd)− cy2 sign(
.
y2)

(14)

G =


1 1 0 0
0 0 1 1

lx1 cos θ1 lx2 cos θ2 0 0
0 0 ly1 cos θ1 ly2 cos θ2

 (15)

The stiffness matrix C points out the mechanical coupling between the dual-driving axes y1

and y2 in the multi-degree of freedom, which is affected by equivalent stiffness kex, key, kbx, kby and
different location positions of nuts lxi and lyi on each axis. The simplified inertia and damping matrices
show the non-uniform load and friction distribution. F is the force vector which is affected by the
displacements xi and yi in X-axis and Y-axis. In each feed direction, the displacements of the dual
axis should be equal, implying x1 = x2, y1 = y2, and θ1 = θ2 = 0. However, in practice, due to the
different mechanical and servo characteristics of dual-axis, and the mechanical coupling effect, perfect
2-DOF dual-driving is hard to be achieved.

2.2. Comparison between Experimental and Model Simulated Results

In order to verify the 2-DOF dynamic model, experimental and model simulated results are
compared in this section. The industry milling machine that has a 2-DOF dual-driving stage is used as
experimental set-up. The modal analyzer is used to conduct the modal test. The pulse hammer is used
to actuate the excitation force of frequency with finite width. The response of the stage is detected by
the acceleration sensors which are arranged at four corners of the stage. The data filtering and A/D
conversion are processed by the amplifier and frequency analyzer. The model test block diagram is
shown in Figure 4. According to the sampling theorem, the sampling frequency is designed to be
1000 Hz, which can ensure the reliability of measured vibration data.
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Different frictional characteristics will generate the unbalanced forces in double axes. So the
frictions model should be built accurately. The non-linearity friction model is described according to
the Stribeck model [27]

cy(v) = FC + (FS − FC)e−|v/vσ |δσ
+ Fvv (v 6= 0) (16)

where vσ is the Stribeck velocity, FC is Coulumb friction and FS is the maximum static friction.
The friction can be identified by measuring the output torque when the stage is displaced at various
constant velocities. The variation of velocity is 5 mm/s∼14 m/min. The measured data can be
processed by nonlinear fitting function of MATLAB. The friction model of X-axis is expressed in
Figure 5, and the parameters of the Stribeck model are shown in Table 1.
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Table 1. Parameters of Stribeck friction model.

Axis FC (N) FS (N) vσ (mm/min) Fv (Ns/m)

x1 15.1008 58.3671 73.2533 0.0027
x2 13.4760 51.0637 109.3258 0.0030
y1 10.0224 46.8655 57.1537 0.0019
y2 9.0956 39.7762 48.3761 0.0013

The detailed parameters identification method, such as the equivalent mass and stiffness, which
can be found in Reference [28], is described by measuring the motor output torque when the stage is
displaced at various constant velocities. The physical parameters of the 2-DOF dual-driving feed stage
are listed in Table 2.

Table 2. Physical parameters of 2-DOF dual-driving stage.

Name Value Description

m1 16.77 kg Mass of the lower layer stage
m2 10.53 kg Mass of the upper layer stage
I1 1.18 kg·m2 Moment of inertia of the lower layer stage
I22 5.48 kg·m2 Moment of inertia of the upper layer stage
kex 1631.8 N·m/rad Equivalent stiffness of X-axis
key 1347.6 N·m/rad Equivalent stiffness of Y-axis
kbx 3.0146e6 N·m/rad Lateral stiffness of slider in X-axis
kby 2.8734e6 N·m/rad Lateral stiffness of slider in Y-axis
lx 0.8 m Distance between dual screws in X-axis
ly 0.6 m Distance between dual screws in Y-axis
ax 0.45 m Axial distance of the sliders in X-axis
ay 0.4 m Axial distance of the sliders in Y-axis
rg 5 mm Screw lead
Fs1 117.7352 N Maximum static friction of y1
Fs2 102.1365 N Maximum static friction of y2
Fc1 30.2017 N Coulumb friction of axis y1
Fc2 26.8520 N Coulumb friction of axis y2
Fv1 0.0052 Ns/m Viscosity coefficient of axis y1
Fv2 0.0060 Ns/m Viscosity coefficient of axis y2
vσ1 73.2533 mm/min Stribeck velocity of axis y1
vσ2 109.3258 mm/min Stribeck velocity of axis y2

Solving the dynamic equation by substituting the physical parameters in (12)–(15), the eigenvalues
and eigenvectors of the system can be obtained. The eigenvalues correspond to the natural frequencies
of each order, and the eigenvector can be normalized to analyze the vibration mode.

In fact, the vibration energy of the high order mode only accounts for a small proportion of the
total vibration energy in the mechanical system. Hence, due to the existence of high order modal
damping, it is difficult to stimulate the high order resonance in the actual working condition. Moreover,
the bandwidth of the servo system is about 200–500 Hz in practical engineering. Therefore, the first four
order natural frequencies that will affect the feed performance are detected and analyzed. Through
the modal test, the acceleration time domain signal that is detected by the acceleration sensor is
shown in Figure 6a. The acceleration time domain signal fluctuates around zero in steady state,
which is the amplitude of vibration in one test. In order to analyse the natural frequency of the stage,
the acceleration time domain signal is processed by Fourier transformation. The frequency response
can be obtained as shown in Figure 6b. As shown in Figure 6b, the natural frequencies from the first
order to the fourth order of 2-DOF feed stage are: 33.82 Hz, 112.4 Hz, 356.3 Hz, and 407.1 Hz. The first
two order natural frequencies have large amplitude, which means the observable resonance of stage
will be produced when the working frequency is closed to 33.82 Hz and 112.4 Hz.
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Then the simulated and experimental natural characteristics are compared to validate the dynamic
model. The simulated natural frequencies and modes are obtained as shown in Table 3. The comparison
of natural frequencies between the modal test and simulation are shown in Table 4. As can be seen
in Table 4, the relative errors between model simulation and modal experiment are within 10.2 %.
Due to the effect of damping, the simulated natural frequencies will be slightly higher than the actual
test frequencies.

Table 3. Model simulated natural frequencies and modes of vibration.

Eigenvalue Natural Frequency Vector Mode of Vibration

w1 0 Hz [0, 0, 0, 0]T Axial
w2 36.95 Hz [0.55, −0.55, 1, −1]T Low–order torsion
w3 121.7 Hz [0.35, 0.15, 1, −0.15]T Axial and torsion
w4 390.1 Hz [0.75, −0.75, 1, −1]T High-order torsion
w5 448.6 Hz [0.5, 0.35, 1, 0.3] High-order Axial and torsion

Table 4. Comparison of simulation and modal experiment.

Mode of Vibration Prediction Natural Frequency Experiment Natural Frequency Relative Error

Axial - - -
Low-order torsion 35.95 Hz 33.82 Hz 6.3 %
Axial and torsion 121.7 Hz 112.4 Hz 8.3 %

High-order torsion 390.1 Hz 356.3 Hz 9.5 %
High-order Axial and torsion 448.6 Hz 407.1 Hz 10.2 %
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3. Two-Degree-Of-Freedom Dynamic Model-Based Sliding Mode Control

The 2-DOF dynamic model-based TSMC is proposed in this section. The diagram of the control
scheme is shown in Figure 7.
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3.1. Terminal Sliding Mode Control Design

In the practical scenario, the displacements of each axis x1, x2, y1, and y2 are measurable.

The state variables are defined as X1 =

(
dx
dy

)
, X2 =

( .
dx
.
dy

)
; and the measurement variables

are Y1 =

(
dx
dy

)
, Y2 =

( ..
dx
..
dy

)
. Thus the dynamic model of the 2-DOF dual-driving gantry stage

can be rearranged as
.
X = −D−1CX + D−1G(u + Fd) = AX + Bu + BFd (17)

Considering the parameters variation and unknown dynamics of the gantry position stage,
(17) can be rewritten as

.
X = (A + ∆A)X + (B + ∆B)(u + Fd) = AX + B(u + Fd) + H (18)

Y1 = C1X (19)

Y2 = C2X + D2(u + Fd) (20)

where H = ∆AX +∆B(u + Fd) is the lumped uncertainty, A1 =

(
0 1
0 −D−1C

)
, B1 =

(
0

−D−1C

)
,

C1 = (1 0), C2 =
(
−D−1C 0

)
, and D2 = D−1B. In (18), the mechanical coupling is modeled

as disturbances.
For the 2-DOF dual-driving feed system, in each feed direction, the control scheme can be

separated in two components at the same time: The first one is to eliminate the tracking error according
to a given position signal; and the second one is to preserve the synchronous position with the other
motor. According to the hybrid question, in this paper, the individual SMC with an extra cross-coupled
synchronous controller is proposed to handle with the dual-driving hybrid error simultaneously to
eliminate the complementary synchronous error and achieve the quick and accurate tracking of the
given position signal.
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As for the single axis, the position tracking error can be described as follows

e =

(
exi
eyi

)
=

(
xre f − xi
yre f − yi

)
= Xre f − X1 (21)

The second derivative of (21) can be found as

..
e =

[ ..
exi
..
eyi

]
=

..
Xre f −

(
−D−1C

.
X + D−1B(F + U)

)
(22)

where xre f and yre f are the reference position command in X and Y directions, xi and yi are the actual
displacements of ith axis in X and Y direction, exi and eyi are the errors between actual displacements
and reference positions of the ith axis in X and Y directions.

The synchronous errors between dual axes in X and Y directions can be expressed as

ε =

(
εx

εy

)
=

(
ex1 − ex2

ey1 − ey2

)
(23)

The control objective of the 2-DOF feed stage is to guarantee the tracking error and the
synchronous error to be zero simultaneously. The individual SMC is adopted as a class of nonlinear
control approach in the drive dynamics, to eliminate the tracking errors exi and eyi. What is more,
to eliminate the synchronous error, a synchronous controller should be designed to generate the
relationship between the input ui and the actual synchronous error ε, caused by displacement y1 and
y2. Then the comprehensive error can be rewritten as

E =



1 0 0 0
0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1
0 0 1 −1




ex1

ex2

ey1

ey2

 = B3


ex1

ex2

ey1

ey2

 (24)

For its advantages of being completely insensitive to system parameter variations and modeling
inaccuracies, SMC is particularly suited for a nonlinear system. A SMC is designed based on the
dual-driving model, the control objective is to generate a robust sliding mode controller to force the
actual motion position to track the given bounded desired reference trajectory, this can guarantee the
comprehensive error E converges asymptotically to zero.

Sliding surface is the first step to design a sliding mode controller, the terminal sliding variable is
defined as

S =
.
E + λEq/p (25)

where λ is the sliding surface constant to be designed, which should be a positive constant like a
transmission gain to determine the convergence speed of the dynamic error on the sliding surface.
q and p are odd integers satisfying 2q > p > q.

Taking the derivative of (25), we have

.
S =

..
E +

d
dt

(
λEq/p

)
(26)

Considering the stability of the overall system using the proposed TSMC, defining the following
Lyapunov function

V =
1
2

STS (27)
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Take the derivative of (27), one can obtain

.
V = S

(
..
E + λ

d
dt

Eq/p
)

(28)

Evaluating the derivative of the Lyaponov function along the dynamics of the system in (28),
we have

.
V = S

[
B3

( ..
Xre f + A

.
X1 − B(Fd + U)

)
+ λ

d
dt

(
Eq/p

)]
(29)

The negative sufficient condition of (29) can be designed as

B3

( ..
Xre f + A

.
X1 − B(Fd + U)

)
+ λ

d
dt

(
Eq/p

)
= −B3(η + ξ)sgn

(
Ŝ
)

(30)

where η > 0.
Considering the 2-DOF dynamic model as shown in (17), the model-based TSMC control law can

be designed as follows

UTSMC = B−1
..
Xre f + B−1 A

.
X1 + B−1(η + ξ)sgn

(
Ŝ
)

+B−1B−1
3 λ d

dt

(
Eq/p

)
− F̂d

(31)

Since Fd is the bounded total force which satisfies |BFd| ≤ ξ, where ξ > 0. Considering the
definition of sliding surface function, the estimation of error S̃ can be derived as

S̃ = S− Ŝ
= E− Ê = X̃2

(32)

Then the Lyapunov function can be found as

.
V = S

[
−B3(η + ξ)sgn

(
Ŝ
)
− B3B

(
Fd − F̂d

)]
=
(
S− Ŝ + Ŝ

)[
−B3(η + ξ)sgn

(
Ŝ
)
− B3B

(
Fd − F̂d

)]
≤ −B3(η + ξ)

∣∣∣X̃2

∣∣∣− B3(η + ξ)
∣∣Ŝ∣∣+ X̃2B3ξ + ŜB3ξ

= −B3η
∣∣∣X̃2

∣∣∣− B3η
∣∣Ŝ∣∣ ≤ 0

(33)

Apparently,
.

V is negative semidefinite.

3.2. Disturbance Observer and State Observer Design

As can be seen from model (12)–(15), the disturbance Fd is composed of disturbances and coupled
force of 2-DOF dual-driving axes. In the conventional sliding mode control, the switching parameter
is required to be larger than the bound of the disturbance D2Fd. Therefore, if Fd is estimated and
compensated by a disturbance observer in the TSMC, a small switching parameter can be designed
and can reduce the risk of chattering.

The following disturbance estimation error is defined, which penalizes deviation of errors from
the sliding surface.

F̃d = Fd − F̂d =
1

D2
(x2 − x̂2)−

1
D2

(
Y2 − Ŷ2

)
(34)

where x̂2 and Ŷ2 = C2X̂ + D2
(
u + F̂d

)
, because x2 is required in the calculation of Ŷ2, X̂ = x̂2 can

be induced.
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Since the disturbance observer is postulated to penalize deviation of error dynamics from the
sliding surface, therefore, the disturbance observer can be designed as

.
F̂d = L1(Y2 − Ŷ) = L1D2 F̃d (35)

.
Fd = 0 can be assumed because the dynamics of the disturbance observer are much higher

than the actual disturbance with interested frequency components. The dynamics of the disturbance
estimation error can be expressed as

.
F̃d =

.
Fd −

.
F̂d = L1D2 F̃d (36)

Moreover, the dynamic expression of the state observer can be modeled by system model (17)

.
X̂ = AX + B1

(
u + F̂d

)
+ H + L2

(
Y1 − Ŷ1

)
(37)

The estimation error of state variables is defined as

X̃ = X− X̂ (38)

Replacing the state variables given in (18)–(20), the dynamics of the state observer are obtained

.
X̃ =

.
X−

.
X̂ = (A− L2C1)X̃− B1 F̃d + ∆H (39)

where ∆H = B2H.
The error dynamics of the observer (36) and (39) can be combined as

.
e = Ae + B2H (40)

where e =

(
X̃
F̃d

)
, and A =

(
A− L2C1 B1

0 L1D2

)
.

The following Lyapunov function is chosen to derive stability of the observer

V =
1
2

eT Pe (41)

where P =

(
P1 0
0 P2

)
is a positive definite matrix, and P1 and P2 are the parameters that need to be

designed. The derivative of the Lyapunov function can be given as [29]

.
V − λ2HT H =

(
X̃
H

)T(
AT P + PA B2

∗ −η2 I

)(
X̃
H

)
(42)

The parameters are designed to guarantee the convergence of the observers, which means the
Lyapunov function of observer need to be a negative definite matrix. Hence, the parameters can be
obtained by solving the linear matrix inequality (LMI)(

AT P + PA B2

∗ −η2 I

)
+

(
αP 0
0 0

)
< 0 (43)



Symmetry 2018, 10, 488 14 of 22

For solving the LMI, (43) can be rewritten as
P1 A− P1L2C1

+(P1 A− P1L2C)T + α1P1 −B1
T P1 B2

T P1

−B1
T P1 P2L1D2 + (P2L1D2)

T + α2P2 0
B2

T P1 0 −η2 I

 < 0 (44)

Therefore, the main idea behind the design of the proposed model-based TSMC scheme is that
the control variables are errors calculated by the dynamic model instead of linear errors measured by
the grating scale. Moreover, the disturbances due to the mechanical coupling of 2-DOF dual-driving
feed stage can be compensated by the disturbance and state observer, while the effect associated with
the acceleration and force of the stage is compensated by the TSMC control.

4. Experimental Validations

4.1. Experimental Set-Up

In order to verify the proposed dynamic model-based TSMC scheme, the comparison experiments
are carried out on the industry milling machine tool in this section. The experimental set-up is sketched
in Figures 8 and 9, including 2-DOF dual-driving feed stage, control card, drive and control panel.
In each motion direction, there are twin motors and screws arranged in parallel. Each motor is
controlled by a servo driver in current mode. The feed velocity of each motor can be set from 5 mm/s
to 250 mm/s. For the high precision implementation of the 2-DOF dual-driving feed stage, each motor
is installed with a linear encoder as the position sensor, and the linear optical scales with a resolution
of 0.1 µm.
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Figure 8. Diagram of the 2-DOF dual-driving control system.
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The implementation diagram of the closed loop synchronous control system is shown in Figure 8.
An embedded control card is used as the motion controller in the control system. The real-time
control scheme is applied to the servo system by using “C” and MATLAB/SIMULINK language.
All the programs, such as motion control, NC tasks, and PLC program, are developed in the PC
under Windows environment and then can be called by the control card in the DSP for real-time
implementation. The overall system is formed with EtherCAT Bus technique with the scan cycle of
0.1 ms. The PMSMs are driven in current control mode, and the current loop which exists inherently in
the drive has been tuned properly. After the input command is set, the tracking and synchronization
errors can be calculated by the position feedback of an absolute grating ruler at 10 KHZ sampling
frequency. The proposed control algorithm which is called by motion control card can transfer the
errors to proper voltage command. Finally, the motion and error compensation of PMSMs are executed
by the desired voltage which is amplified by the servo drive.

The physical parameters of adopted PMSMs in the experiment are listed in Table 5. The parameters
of each motor are identified and selected by manual.

Table 5. Motor Parameters.

Description Name Motor x1 Motor x2 Motor y1 Motor y2

Inertia J kg·m2 0.000177 0.000176 0.000167 0.000165
Damping B kg·m2/sec 0.00025 0.00022 0.00023 0.00019

Torque coefficient kt NmA 1.37 1.37 1.37 1.37
Lead screw rg mm/rad 5 5 5 5
Amplifier ka A/V 8.8462 7.9741 8.4355 7.7686

The original TSMC system’s gain λ = (55.7, 55, 52.5, 52)T is set. This gain coefficient λ is designed
according to all the roots of S = 0 and is located in the open left half plane. The switching
gain, η + ξ = 0.5 can be designed and determines the robustness of the system under external
disturbances and parameters perturbation. A large switching gain will directly affect the dynamic
control performance, however, it will also lead to the chattering phenomenon of TSMC. Considering
p > q > 0, p = 7 and q = 4 are designed to satisfy the speed when the system approaches the sliding
surface. The comparison of control law and control force is shown in Figures 10 and 11, and the
comparison between estimated and actual disturbance is shown in Figure 12.Symmetry 2018, 10, x FOR PEER REVIEW  16 of 23 
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4.2. Experimental Results

To investigate the effectiveness of the proposed dynamic model-based control scheme with the
change of speed and acceleration, Figure 13 shows the experimental reference periodical sinusoidal
trajectory with the ±400 mm stroke. The velocity and acceleration of axes x1, x2, y1 and y2 are,
respectively, 320 mm/s and 3200 mm/s2. In the configuration of the experiment system, the initial
imbalance between the dual-drive axes at each feed direction is zero. The mechanical limit for
the desynchronization between dual-axes in each feed direction is ±2 mm. The desynchronization
limits of position and torque have been designed by program, and the system will come to a stop to
avoid damage.Symmetry 2018, 10, x FOR PEER REVIEW  17 of 23 
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Figure 13. Reference trajectory of experiment.

Figures 14–16 displays the experimental results of the command tracking due to periodical
sinusoidal trajectories of the cross-coupled PID control, cross-coupled normal TSMC, and the proposed
dynamic model-based TSMC, respectively.



Symmetry 2018, 10, 488 17 of 22

Symmetry 2018, 10, x FOR PEER REVIEW  17 of 23 

 

 
Figure 13. Reference trajectory of experiment. 

Figures 14–16 displays the experimental results of the command tracking due to periodical 
sinusoidal trajectories of the cross-coupled PID control, cross-coupled normal TSMC, and the 
proposed dynamic model-based TSMC, respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Experimental results of the cross-coupled PID control. (a) The tracking errors of the y1 and
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errors between the y1 and y2 axis; (d) the synchronous errors between the x1 and x2 axis.

The tracking errors of the y1 and y2 axis of the cross-coupled PID control are shown in Figure 14a,
and the tracking errors of the x1 and x2 axis of the cross-coupled PID control are shown in Figure 14b.
The synchronous errors between the y1 and y2 axis of the cross-coupled PID control are shown in
Figure 14c, and the synchronous errors between the x1 and x2 axis of the cross-coupled PID control are
shown in Figure 14d. The tracking errors of the y1 and y2 axis of the cross-coupled normal TSMC are
shown in Figure 15a, and the tracking errors of the x1 and x2 axis of the cross-coupled normal TSMC
are shown in Figure 15b. The synchronous errors between the y1 and y2 axis of the cross-coupled
normal TSMC are shown in Figure 15c, and the synchronous errors between the x1 and x2 axis of the
cross-coupled normal TSMC are shown in Figure 15d. The tracking errors of the y1 and y2 axis of
the proposed dynamic model-based TSMC with observer are shown in Figure 16a, and the tracking
errors of the x1 and x2 axis of the proposed dynamic model-based TSMC with observer are shown in
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Figure 16b. The synchronous errors between the y1 and y2 axis of the proposed dynamic model-based
TSMC with observer are shown in Figure 16c, and the synchronous errors between the x1 and x2 axis
of the proposed dynamic model-based TSMC with observer are shown in Figure 16d.

From the quantitative analysis of the experimental results of the tracking and synchronous
errors in Table 6, it can be seen that the proposed dynamic model-based TSMC with observer and
the cross-coupled normal TSMC have obvious better control performance than cross-coupled PID
control, which is commonly used in the industry. Compared with the cross-coupled normal TSMC,
the maximum tracking errors of y1, y2, x1, and x2 axis of the proposed 2-DOF dynamic model-based
TSMC with observer have been reduced by 29.5%, 30.2%, 18.4%, and 18.5%, and the average tracking
errors have been reduced by 6.3%, 14.1%, 16.5%, and 19.3%, respectively. As for the synchronous
performance, the proposed 2-DOF dynamic model-based TSMC with observer has increased 25.7%
(from 7.0 to 5.2 µm) in Y direction, and 19.2% (from 7.8 to 6.3 µm) in X direction. The average tracking
errors of the proposed control scheme were reduced by 6.4%, 14.1%, 16.5%, and 19.3%, compared with
the cross-coupled normal TSMC. The average synchronous accuracy of the proposed control scheme
have increased 33.3% (from 5.7 to 3.8 µm) in the Y direction and 30.3% (from 6.6 to 4.6 µm) in the X
direction. It is shown that the proposed dynamic model-based TSMC with observer can effectively
improve the tracking and synchronization performance and the proposed control scheme has a certain
capacity for resisting the mechanical coupling disturbances for the dynamic model-based control
and observer.

Table 6. Quantitative analysis of 2-DOF dual-driving experimental results.

Errors Control Schemes

Tracking Errors Synchronous Errors

Cross-Coupled
PID Control

Cross-Coupled
Normal
TSMC

Cross-Coupled Dynamic
Model-Based TSMC

with Observer

Cross-Coupled
PID Control

Cross-Coupled
Normal
TSMC

Cross-Coupled Dynamic
Model-Based TSMC

with Observer

Max (µm)

Axis y1 122.4 115.6 81.5
7.6 7.0 5.2Axis y2 129.7 123.4 86.1

Axis x1 235.6 133.2 108.7
10.4 7.8 6.3Axis x2 247.1 141.3 115.2

Average
(µm)

Axis y1 33.7 26.6 24.9
6.1 5.7 3.8Axis y2 27.5 32.7 28.1

Axis x1 59.3 36.3 30.3
8.3 6.6 4.6Axis x2 51.6 43.5 35.1

Mean
Square
(µm)

Axis y1 41.7 37.1 19.4
6.7 5.5 2.7Axis y2 48.9 37.9 21.5

Axis x1 57.1 38.4 26.7
7.1 5.3 1.9Axis x2 62.8 41.6 25.1

Moreover, compared to the cross-coupled normal TSMC, the mean square error of synchronous
errors has been reduced by 50.9% (5.5–2.7 µm) and 64.2% (5.3–1.9 µm), which indicates that the
vibration of synchronous error was effectively suppressed.

5. Conclusions

A novel 2-DOF dynamic model-based TSMC with observer for a dual-driving feed stage is
proposed in this research. The main findings are summed up below:

(1) The 2-DOF dynamic model considering the mechanical coupling and torsion errors of dual-axes
is developed based on the Lagrange method. The geometric relationship and unbalanced forces
of the 2-DOF dual-driving stage are analyzed by the translation from basic coordinates (X1, X2,
Y1, Y2) to the equivalent coordinates (X, θ1, Y, θ2). Furthermore, the parameters of the dynamic
model have been identified by the acceleration signal test platform, and the dynamic model has
been validated by the modal test.

(2) The 2-DOF dynamic model-based TSMC with observer is designed in detail, considering the
mechanical coupling and diversity of mechanism characteristics between dual-axes. In order
to improve the robustness against the mechanical coupling between dual-axes in 2-DOF,
the disturbance observer is developed. The state observer is applied to estimate the unmeasurable
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state variable. Moreover, the stability of the proposed control scheme has been verified by using
Lyapunov criterion.

(3) The performance of the proposed dynamic model-based TSMC with observer is validated
experimentally on a 2-DOF dual-driving feed stage. In comparison to the cross-coupled PID
control and cross-coupled normal TSMC, the proposed control scheme leads to a significant
improvement of the tracking and synchronization accuracy. Particularly, the mean square errors
indicates that the vibration of synchronous error was effectively suppressed.

The main implication of this paper is the dynamic model-based control scheme for 2-DOF
dual-driving feed stage. The modeling method has been validated by the vibration detection system
which can be used for industry machine tools. The derivation of the dynamic model-based TSMC
with observer can be used as a base to develop the synchronous control scheme for the precision
gantry stage.

Author Contributions: Conceptualization, W.F. and H.L.; Writing-Review & Methodology X.Z.; Methodology,
Y.Z.; Software, R.Z.; Validation, W.F. and Q.L.; Writing-Original Draft Preparation, W.F.; Editing, H.L.

Acknowledgments: This work was supported by The National Natural Science Foundation of China
[No. 51675393] and the Fundamental Research Funds for the Central Universities [Program No. 2662018QD027].

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

m1 mass of the lower layer stage Fd actual disturbances of dual-driving system
m2 mass of the upper layer stage F̂d estimation of the disturbances
xi actual displacement of the ith axis in X direction F̃d estimation error of the disturbances
yi actual displacement of the ith axis in Y direction X̂ estimation of the states
θi rotation angle of the lower layer and upper layer stage X̃ estimation error of the states
xre f reference position command in X direction uTSMC output of TSMC synchronous control
yre f reference position command in Y direction S sliding surface
exi tracking errors of ith axis in X direction Ŝ estimation of sliding surface
eyi tracking errors of ith axis in Y direction S̃ estimation error of sliding surface
εx synchronous errors between dual axes in X direction λ sliding mode control gain
εy synchronous errors between dual axes in Y direction
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