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Abstract: It is very well known that real-life applications of fixed point theory are restricted with the
transformation of the problem in the form of f (x) = x. (1) The Knaster–Tarski fixed point theorem
underlies various approaches of checking the correctness of programs. (2) The Brouwer fixed point
theorem is used to prove the existence of Nash equilibria in games. (3) Dlala et al. proposed a solution
for magnetic field problems via the fixed point approach.
In this paper, by obtaining the fixed point results in an extended b-metric space, we are able to
consider real-life applications in a very general frame such as a simple and efficient solution for
a Fredholm integral equation by using the technique of a fixed point in the consideration of a new
abstract space: the extended b-metric space. Moreover, to address conceptual depth within this
approach, we supply illustrative examples of usage where necessary.

Keywords: extended b-metric space; extended cyclic orbital contraction; extended cyclic
orbital-F -contraction and Fredholm integral equation

1. Introduction

In 1903, Erik Ivar Fredholm [1] introduced a revolutionary result in the theory of nonlinear integral
equations, and it was defined by the fixed limits of integration of the expression:

κ(x) = Λ(x) + λ
∫ q

p
Ξ(x, t)u(t)dt,

where the terms p and q are denoted as constants, λ is a parameter, Λ(x) is the data function, Ξ(x, t) is
called the kernel function and κ(x) is the unknown function.

Fredholm integral equations appear widely in many scientific areas like physical mathematics,
computational mathematics and approximation theory.

Recently, several authors have extensively studied the solution of the Fredholm integral equation
via the fixed point approach (see, e.g., [2–5]).

The Banach contraction principle is a one of the superior results in non-linear analysis and has
always been at the forefront of creating and supplying outstanding generalizations for its researchers.
Many authors have generalized and utilized the Banach contraction principle in their pertinent research.
Thus, we can easily conclude that the largest part of the fixed point theory has been occupied by
various generalizations of the Banach contraction principle.
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Throughout the paper, R,R+,N stand for the reals, positive reals and natural numbers, accordingly.
Moreover, we employ the symbols R+

0 = R+ ∪ {0} = [0, ∞) and N0 = N∪ {0}. Below are some of the
standard extensions of the Banach contraction principle.

Cyclic contraction by Kirk et al. [6] ⇔ There exists k ∈ (0, 1) such that:

d(Zx,Zy) ≤ kd(x, y)for allx ∈ S1andy ∈ S2.

(Note that, a mapping Z : S1 ∪ S2 → S1 ∪ S2 is called cyclic if Z(S1) ⊆ S2 and Z(S2) ⊆ S1,
where S1,S2 are nonempty subsets of a metric space (M, d).)

Cyclic orbital contraction by Karpagam et al. [7] ⇔ d(Z2nx,Zy) ≤ γd(Z2n−1x, y);
for all x ∈ S1, γ ∈ (0, 1); where S1 and S2 are non-empty closed subsets of M and Z : S1 ∪ S2 →
S1 ∪ S2 is a cyclic map.

F -contraction by Wardowski [8] ⇔ There is a τ > 0 such that for all x, y ∈ M,

d(Zx,Zy) > 0⇒ τ + F(d(Zx,Zy)) ≤ F(d(x, y)), (1)

where F : R+
0 → R is a mapping satisfying

(F1). F is strictly increasing, which claims, for all t1, t2 ∈ R+
0 such that if t1 < t2,

then F(t1) < F(t2);
(F2). For each sequence {t1n}n∈N of positive numbers:

lim
n→∞

t1n = 0 iff lim
n→∞

F(t1n) = −∞,

(F3), there exists k ∈ (0, 1) such that lim
t1→0+

tk
1F(t1) = 0.

We represent by F the set of all functions satisfying the above mentioned conditions.

For more literature pertinent to above, the reader can refer to [6–19].
Recently, a new kind of generalized metric space was introduced by T.Kamran et al. [14],

announced as the Eb-metric space.

Definition 1. Let M be a non-empty set and s : M×M → [1, ∞). A function Eb : M×M → [0, ∞) is
called an Eb-metric if, for all x, y, z ∈ M, it satisfies:

(i) Eb(x, y) = 0 if and only ifx = y;
(ii) Eb(x, y) = Eb(y, x);
(iii) Eb(x, y) ≤ s(x, y)[Eb(x, z) + Eb(z, y)].

The pair (M, Eb) is called an Eb-metric space.

It is clear that if s(x, y), in Definition 1, is constant in [1, ∞), the pair (M, Eb) coincides with the
b-metric space.

Example 1. Let M = {1, 2, 3}. Define s : M×M→ [1, ∞) and Eb : M×M→ [0, ∞) as s(x, y) = 1+ xy and:

Eb(1, 1) = Eb(2, 2) = Eb(3, 3) = 0;

Eb(1, 2) = Eb(2, 1) = 2;

Eb(1, 3) = Eb(3, 1) = 100;

Eb(2, 3) = Eb(3, 2) = 50.

Clearly, (i) and (ii) hold. For (iii), we have:

Eb(1, 2) = 2; s(1, 2)[Eb(1, 3) + Eb(3, 2)] = 450.
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Thus,
Eb(1, 2) ≤ s(1, 2)[Eb(1, 3) + Eb(3, 2)].

Eb(1, 3) = 100; s(1, 3)[Eb(1, 2) + Eb(2, 3)] = 208.

Then,
Eb(1, 3) ≤ s(1, 3)[Eb(1, 2) + Eb(2, 3)].

Eb(2, 3) = 50; s(2, 3)[Eb(2, 1) + Eb(1, 3)] = 714.

Therefore,
Eb(2, 3) ≤ s(2, 3)[Eb(2, 1) + Eb(1, 3)].

Hence, for all x, y, z ∈ M, we have Eb(x, z) ≤ s(x, z)[Eb(x, y) + Eb(y, z)]. Consequently, the pair
(M, Eb) forms an Eb-metric space.

Definition 2. (See, e.g., [14]) Let (M, Eb) be an Eb-metric space, and a sequence {xn} in M is said:

(a) to converge to x if and only if for every ε > 0, there exists N = N(ε) ∈ N such that Eb(xn, x) < ε, for all
n ≥ N. For this particular case, we write lim

n→∞
xn = x.

(b) to be Cauchy if and only if for every ε > 0, there exists N = N(ε) ∈ N such that Eb(xm, xn) < ε, for all
m, n ≥ N.

Definition 3. (See [14]) An Eb-metric space (M, Eb) is complete if and only if every Cauchy sequence in M
is convergent.

Observe that usually, a b-metric is not a continuous functional. Analogously, the functional,
Eb-metric, is also not necessarily a continuous functional (see, e.g., [15–17]).

Motivated by the above facts, we introduce and establish various approaches to cyclic orbital
contraction using new sorts of contractions, named as extended cyclic orbital contraction and extended
cyclic orbital-F -contraction in the setting of an Eb-metric space. Thereafter, we propose a simple and
efficient solution for a Fredholm integral equation by using the technique of the fixed point in the
setting of the Eb-metric space. Moreover, to address conceptual depth within this approach, we supply
illustrative examples of usage where necessary.

2. An Extended Cyclic Orbital Contraction

We start this section by introducing the notion of an extended cyclic orbital contraction.

Definition 4. Let us take two non-empty subsets S1 and S2 of a Eb-metric space (M, Eb), and letZ : S1∪S2 →
S1 ∪ S2 be a cyclic map such that for some x ∈ S1, there exists a kx ∈ (0, 1) such that:

Eb(Z2nx,Zy) ≤ kxEb(Z2n−1x, y), (2)

where n ∈ N, y ∈ S1. Then, Z is called an extended cyclic orbital contraction.

Theorem 1. Let Eb be a continuous functional in complete Eb-metric space (M, Eb). Let S1 and S2 be
non-empty subsets of an Eb-metric space (M, Eb) and Z : S1 ∪ S2 → S1 ∪ S2 be an extended cyclic orbital

contraction. Suppose that for each x0 ∈ S1, lim
n,m→∞

s(xn, xm) <
1

kx0

; here, xn = Znx0; n = 1, 2, 3....

Then, S1 ∩ S2 is non-empty, and Z has a unique fixed point.

Proof. Suppose there exists an x (say x0),∈ S1 satisfying (2). Define an iterative sequence {xn} starting
by x0, as follows:

Zx0 = x1, x2 = Zx1 = Z(Zx0) = Z2(x0).....xn = Zn(x0)....
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On account of (2), we find that Eb(Z2x,Zx) ≤ kxEb(Zx, x).
Recursively, we derive that:

Eb(Z3x,Z2x) ≤ kxEb(Z2x,Zx)

≤ k2
xEb(Zx, x).

Since for any n ∈ N, there is a possibility that either n or n + 1 is even, we have:

Eb(Zn+1x,Znx) ≤ kn
xEb(Zx, x),

that is,
Eb(xn+1, xn) ≤ kn

xEb(x1, x0). (3)

By the triangle inequality and (2), for m > n, we have:

Eb(Znx,Zmx) = Eb(xn, xm)

≤ s(xn, xm)kn
xEb(x0, x1) + s(xn, xm)s(xn+1, xm)kn+1

x Eb(x0, x1)

+ s(xn, xm)s(xn+1, xm)s(xn+2, xm).....s(xm−2, xm)s(xm−1, xm)km−1
x Eb(x0, x1)

≤ Eb(x0, x1)[s(x1, xm)s(x2, xm)...s(xn−1, xm)s(xn, xm)kn
x

+ s(x1, xm)s(x2, xm)...s(xn, xm)s(xn+1, xm)kn+1
x

...

+ s(x1, xm)s(x2, xm)...s(xm−2, xm)s(xm−1, xm)km−1
x .

Since lim
n,m→∞

s(xn+1, xm)kx < 1, the series:

∞

∑
n=1

kn
x

n

∏
i=1

s(xi, xm)

converges as per the ratio test for each m ∈ N.

Let:

S =
∞

∑
n=1

kn
x

n

∏
i=1

s(xi, xm) and Sn =
n

∑
j=1

kj
x

j

∏
i=1

s(xi, xm).

Thus, for m > n, the above inequality implies:

Eb(Znx,Zmx) = Eb(xn, xm)

≤ Eb(x0, x1)[Sm−1 − Sn−1]

Letting n → ∞, we conclude that {Znx} is a Cauchy sequence, and as a result, there exists
a ρ ∈ S1 ∪ S2 such that Znx → ρ. Now, note that {Z2nx} is a sequence in S1, {Z2n−1x} is a sequence
in S2 and both converge to ρ, since the sets S1 and S2 are closed in M and ρ ∈ S1 ∩ S2. Hence, S1 ∩ S2

is non-empty.
To prove ρ = Zρ, consider:

Eb(ρ,Zρ) = lim
n→∞

Eb(Z2nx,Zρ)

≤ kx lim
n→∞

Eb(Z2n−1x, ρ)

= 0



Symmetry 2018, 10, 512 5 of 13

Thus, ρ is a fixed point of Z . In order to get the uniqueness of ρ, assume there exists an $ ∈
S1 ∪ S2, ρ 6= $ such that Z$ = $.

Now,

Eb(ρ, $) = Eb(ρ,Z$)

= lim
n→∞

Eb(Z2nx,Z$)

≤ kx lim
n→∞

Eb(Z2n−1x, $)

= kxEb(ρ, $)

< Eb(ρ, $)

Therefore, ρ = $. Thus, ρ is the unique fixed point of Z . This completes the proof.

Example 2. Let M = R. Define Eb(x, y) : M×M→ R+
0 and s : M×M→ [1, ∞) as Eb(x, y) = (x− y)2

and s(x, y) = x + y + 1. Then, Eb is a complete Eb-metric on M.
Let S1 = {0, 1},S2 = {0, 13

3 }. Define Z : S1 ∪ S2 → S1 ∪ S2 by Z0 = Z1 = 0; Z 13
3 = 1.

We have ZS1 ⊆ S2 and ZS2 ⊆ S1. Thus, Z is a cyclic map.
Fix x = 1.
Zx = 0,Z2x = Z(0) = 0,Z3 = Z(0) = 0, .....Zn(x) = 0. Therefore, Z2n(x) = 0 = Z2n−1(x).

Case I. If y = 0, then Zy = 0.
Thus,

Eb(Z2nx,Zy) = Eb(0, 0)

= 0

≤ kxEb(Z2n−1x, y)

Case II. If y = 1, then Zy = 0.

Eb(Z2nx,Zy) = Eb(0, 0) = 0 and Eb(Z2n−1x, y) = Eb(0, 1) = 1.

Hence, Eb(Z2nx,Zy) ≤ kxEb(Z2n−1x, y). As a result, all the conditions of the above theorem are
satisfied, and ‘0’ is the unique fixed point where 0 ∈ S1 ∪ S2.

Example 3. Let M = R. Define Eb(x, y) : M×M→ R+
0 and s : M×M→ [1, ∞) as Eb(x, y) = (x− y)2

and s(x, y) = x + y + 1. Then, Eb is a complete Eb-metric on M.
Let S1 = [0, 1

2 ],S2 = [ 1
3 , 1]. Define Z : S1 ∪ S2 → S1 ∪ S2 by:

Zx =

{
2
5 , if 0 ≤ x ≤ 1

3
2
3 (1− x), if 1

3 < x ≤ 1

Initially, we have to prove that Z is a cyclic map.
If x = 0 ∈ S1, then Z0 = 2

5 ∈ S2.
If x = 1

2 ∈ S1, then Z 1
2 = 2

3 (1−
1
2 ) =

1
3 ∈ S2.

Similarly, if x = 1
3 ∈ S2, then Z 1

3 = 2
5 ∈ S1.

If x = 1 ∈ S2, then Z1 = 2
3 (1− 1) = 0 ∈ S1.

Hence, Z(S1) ⊆ S2 and Z(S2) ⊆ S1. Thus, Z is a cyclic map.
Fix any x ∈ [0, 1

2 ]. Let x = 0, then, we find that:

Zx =
2
5

,
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Z2x = Z(Zx) = Z(2
5
) =

2
5

,

Z3x = Z(Z2x) = Z(2
5
) =

2
5

,

...

Thus, Znx = 2
5 . Therefore, Z2nx = Z2n−1x = 2

5 .

Case I. If y = 0.

Zy =
2
5

,

Eb(Z2nx,Zy) = Eb(
2
5

,
2
5
) = 0,

Eb(Z2n−1x, y) = Eb(
2
5

, 0) =
4

25
.

Therefore, for kx ∈ (0, 1),

Eb(Z2nx,Zy) ≤ kxEb(Z2n−1x, y).

Case II. If y = 1
2 .

Zy =
2
3
(1− 1

2
) =

1
3

,

Eb(Z2nx,Zy) = Eb(
2
5

,
1
3
) =

1
225

= 0.004,

Eb(Z2n−1x, y) = Eb(
2
5

,
1
2
) =

1
100

= 0.01.

Therefore, for kx = 1
2 ∈ (0, 1),

Eb(Z2nx,Zy) ≤ kxEb(Z2n−1x, y).

Case III. If 0 < y < 1
2 .

Subcase A. If 0 < y ≤ 1
3 .

Zy =
2
5

,

Eb(Z2nx,Zy) = Eb(
2
5

,
2
5
) = 0,

Eb(Z2n−1x, y) = Eb(
2
5

, y) = (
2
5
− y)2,

Thus, Eb(Z2nx,Zy) ≤ kxEb(Z2n−1x, y), for kx ∈ (0, 1).

Subcase B. If 1
3 ≤ y < 1

2 .

Zy =
2
3
(1− y).
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Eb(Z2nx,Zy) = Eb(
2
5

,
2
3
(1− y)),

=

(
2
5
− 2

3
(1− y)

)2

,

=

(
2
5
− 2

3
+

2
3

y
)2

,

=

(
−4
15

+
2
3

y
)2

,

=
4
9

(
y− 2

5

)2

.

(4)

Eb(Z2n−1x, y) = Eb(
2
5

, y) = (
2
5
− y)2.

Thus,
4
9

(
y− 2

5

)2

≤ kx

(
y− 2

5

)2

for kx =
1
2
∈ (0, 1).

Hence, in all cases, the extended cyclic orbital condition is satisfied, and 2
5 is the unique fixed point

of Z.
Special cases: If we take,

1. s(x, y) = k for k > 1, then the above theorem reduces to the b-metric space.
2. s(x, y) = k for k = 1, then the above theorem reduces to the main result of Karpagam et al. [7].

3. An Extended Cyclic Orbital F -Contraction

In this section, we join and build a connection betweenF -contraction and cyclic orbital contraction.
Thereby, we build unique fixed point theorems in the setting of Eb-metric space (M, Eb).

Definition 5. Let Eb be a continuous functional in complete Eb-metric space (M, Eb), and suppose that S1 and
S2 are non-empty subsets of an Eb-metric space (M, Eb). Let Z : S1 ∪ S2 → S1 ∪ S2 be a cyclic map such that
for some x ∈ S1, there exists τ > 0 such that ∀x, y ∈ M satisfying Eb(Zx,Zy) > 0, the following holds:

τ + F(Eb(Z2nx,Zy)) ≤ F(Eb(Z2n−1x, y)), (5)

where n ∈ N, y ∈ S1 such that for each x0 ∈ M, lim
n,m→∞

s(xn, xm) < 1; here, xn = Znx0, n = 1, 2, 3....

Then, Z is called an extended cyclic orbital F -contraction.

Theorem 2. Let Eb be a continuous functional in complete Eb-metric space (M, Eb). LetZ : S1∪S2 → S1∪S2

be an extended cyclic orbital F -contraction. Then, S1 ∩ S2 is non-empty and Z has a unique fixed point in
S1 ∩ S2.

Proof. Suppose there exists an x ∈ S1 (say x0 satisfying (5)).
Since for any n ∈ N, there is the possibility that either n or n + 1 is even, we have:

F(Eb(Znx0,Zn+1x0)) ≤ F(Eb(x0, x1))− nτ. (6)

Therefore:
lim

n→∞
F(Eb(xn, xn+1)) = −∞. (7)

Since F ∈ F ,

lim
n→∞

Eb(xn, xn+1) = 0. (8)
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By (6) for all n ∈ N, we obtain:

Eb(xn, xn+1)
kF((Eb(xn, xn+1)))− F(Eb(x0, x1)) ≤ −(Eb(xn, xn+1))

knτ.

≤ 0
(9)

Considering (7) and (8) and letting n→ ∞ in (9), we have:

lim
n→∞

(nEb(xn, xn+1))
k) = 0. (10)

Since (10) holds, there exists n1 ∈ N, such that n(Eb(xn, xn+1))
k ≤ 1 for all n ≥ n1 or:

Eb(xn, xn+1) ≤
1

n
1
k

, (11)

for all n ≥ n1. Using (11) and the triangular inequality, we get from m > n > n1,

Eb(xn, xm) ≤ s(xn, xm)[Eb(xn, xn+1) + Eb(xn+1, xm)]

≤ s(xn, xm)Eb(xn, xn+1) + s(xn, xm)s(xn+1, xm)[Eb(xn+1, xn+2) + Eb(xn+2, xm)]

≤ s(xn, xm)Eb(xn, xn+1) + s(xn, xm)s(xn+1, xm)Eb(xn+1, xn+2) + ...

+ s(xn, xm)s(xn+1, xm)s(xn+2, xm)...s(xm−2, xm)s(xm−1, xm)Eb(xm−1, xm)

≤ s(x1, xm)s(x2, xm)....s(xn, xm)Eb(xn, xn+1)

+ s(x1, xm)s(x2, xm)....s(xn+1, xm)Eb(xn+1, xn+2) + ...

+ s(x1, xm)s(x2, xm)....s(xm−1, xm)Eb(xm−1, xm).

(12)

Note that this series:
∞

∑
n=1

Eb(xn, xn+1)
n

∏
i=1

s(xi, xm) converges.

Since,

∞

∑
n=1

Eb(xn, xn+1)
n

∏
i=1

s(xi, xm) ≤
∞

∑
n=1

1

n
1
k

n

∏
i=1

s(xi, xm)

≤
∞

∑
n=1

1

n
1
k

, which is convergent.
(13)

Let:

S =
∞

∑
n=1

Eb(xn, xn+1)
n

∏
i=1

s(xi, xm).

Sn =
n

∑
j=1

Eb(xj, xj+1)
j

∏
i=1

s(xi, xm).

Thus, for m > n, the above inequality implies:

Eb(xn, xm) ≤ Sm−1 − Sn−1.

Letting n→ ∞, we conclude that {xn} is a Cauchy sequence. Hence, {Znx} is a Cauchy sequence,
and thus, there exists a ρ ∈ S1 ∩ S2 such that {Znx} → ρ. Now, note that {Z2nx} is a sequence in
S1 and {Z2n−1x} is a sequence in S2 and both converge to ρ. Since S1 and S2 are closed, ρ ∈ S1 ∩ S2.
Hence, S1 ∩ S2 is non-empty.

To prove ρ = Zρ, suppose ρ 6= Zρ then from the triangular inequality,

Eb(ρ,Zρ) ≤ s(x, y)[Eb(ρ,Z2nx) + Eb(Z2nx,Zρ)]. (14)
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Letting n→ ∞, Eb(ρ,Z2nx)→ 0.
Since Z2n−1x → ρ and from the continuity of Z , lim

n→∞
(Z2nx,Zρ) = 0.

From (14), Eb(ρ,Zρ) = 0. Therefore, ρ = Zρ. Hence, ρ is a fixed point of Z .
To prove the uniqueness of ρ, suppose there exists an $ ∈ S1 ∩ S2, such that $ 6= ρ and such that

Z$ = $.
From (4),

τ + F(Eb(Z2$,Zρ)) ≤ F(Eb(Z$, ρ))

⇒ τ + F(Eb(Z$, ρ)) ≤ F(Eb(Z$, ρ))

⇒ τ ≤ F(Eb(Z$, ρ))− F(Eb(Z$, ρ)) = 0,

which is a contradiction. Thus, $ = ρ. This completes the proof.

Example 4. Let M = { 1
2n−1 ; n ∈ N} ∪ {0}. Define Eb : M × M → R+

0 by Eb(x, y) = (x − y)2 and
s : M×M→ [1, ∞) as s(x, y) = x + y + 1. Then, Eb is a complete Eb-metric on M.

Let S1 = { 1
22n−1 ; n ∈ N} ∪ {0} and S2 = { 1

22n ; n ∈ N} ∪ {0}. Define Z : S1 ∪ S2 → S1 ∪ S2 by:

Z(x) =

{
{ 1

2n }, if x ∈ { 1
2n−1 ; n ∈ N}

0, if x = 0.

Clearly, Z(S1) ⊆ S2 and Z(S2) ⊆ S1. Thus, Z is a cyclic map.
Fix any x ∈ S1, and let x = 1

22n−1 ; Z2nx = 1
24n−1 ; Z2n−1x = 1

24n−2 .

Case I. For every y ∈ S1 r {0, 1}.

Let y =
1

22m−1 ; (m > n ≥ 1)

Ty =
1

22m

Eb(Z2nx,Zy) = Eb

(
1

24n−1 ,
1

22m

)
=

(
1

24n−1 −
1

22m

)2

=

(
22m − 24n−1

24n+2m−1

)2

Eb(Z2n−1x, y) = Eb

(
1

24n−2 ,
1

22m−1

)
=

(
1

24n−2 −
1

22m−1

)2

=

(
22m−1 − 24n−2

24n+2m−3

)2
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Define the function F : R+
0 → R by F(x) = ln x, for all x ∈ R+

0 and τ > 0.

F(Eb(Z2nx,Zy))− F(Eb(Z2n−1x, y)) = 2
(

ln
22m − 24n−1

24n+2m−1 − ln
22m−1 − 24n−2

24n+2m−3

)
= 2 ln

(
22m − 24n−1

24n+2m−1 ×
24n+2m−3

22m−1 − 24n−2

)
= 2 ln

(
22m − 24n−1

22m−1 − 24n−2 × 2−2
)

= 2 ln
(

22m − 24n−1

22m+1 − 24n

)
= 2 ln

(
22m − 24n−1

2(22m − 24n−1)

)
= 2 ln

1
2

< −1

Case II. If y = 0,

Eb(Z2nx,Zy) = Eb

(
1

24n−1 , 0
)

=

(
1

24n−1

)2

Eb(Z2n−1x, y) = Eb

(
1

24n−2 , 0
)

=

(
1

24n−2

)2

Thus, we have,

F(Eb(Z2nx,Zy))− F(Eb(Z2n−1x, y)) = 2
(

ln
1

24n−1 − ln
1

24n−2

)
= 2 ln

(
1

24n−1 ×
24n−2

1

)
= 2 ln

(
2−1
)

= 2
(

ln
1
2

)
< −1

Hence, Z is an extended cyclic orbital F -contraction for τ = 1. Thus, all the conditions of the
above theorem are satisfied, and ‘0’ is the unique fixed point.

Special cases: If we take,

1. s(x, y) = k for k > 1, then the above theorem reduces to the b-metric space.
2. s(x, y) = k for k = 1, then the above theorem reduces to the metric space.

4. Applications to the Existence of Solutions for the Fredholm Integral Equation

Theorem 3. Let M be the set of C[a, b] of real continuous functions on [a, b], and let Eb : M×M→ [0, ∞) be
given by:

Eb(x, y) = supt∈[a,b]|x(t)− y(t)|2, with s(x, y) = |x(t)|+ |y(t)|+ 1,
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where s : M×M→ [1, ∞).
Easily, we can prove that M is a complete Eb-metric space. Consider the Fredholm integral equation as,

x(t) =
∫ b

a
N(t, p, x(p))dp + f (t) for all t, p ∈ [a, b]; (15)

where f : [a, b]→ R and N : [a, b]× [a, b]×R→ R are continuous functions.
Let S1 = S2 = M = C([a, b],R). It is clear that S1 and S2 are closed subsets of (M, Eb).
Define Z : S1 ∪ S2 → S1 ∪ S2 by:

Zx(t) =
∫ b

a
N(t, p, x(p))dp + f (t) for all t, p ∈ [a, b]; (16)

where the function f : [a, b]→ R and N : [a, b]× [a, b]×R→ R are continuous.
Clearly, Z(S1) ⊂ S2 and Z(S2) ⊂ S1. Thus, Z is a cyclic map on S1 ∪ S2.
Next, assume that the following condition holds well.

|N(t, p, x(p))− N(t, p,Zx(p))| ≤ 1
2
|x(p)−Zx(p)| for each t, p ∈ [a, b] and x ∈ M.

Then, the integral Equation (15) has a solution.
We have to prove that the operator Z satisfies the conditions of Theorem 2.2.
For x ∈ S1, consider,

|Z2x(t)−Zx(t)|2 = |Z(Z(x(t)))−Zx(t)|2

≤
(∫ b

a
|N(t, p,Zx(p))− N(t, p, x(p))|

)2

dp

≤
∫ b

a

1
2
|Zx(s)− x(s)|2dp

≤ 1
4

Eb(Zx, x)

(17)

which implies:

Eb(Z2x,Zx) ≤ 1
4

Eb(Zx, x), since kx =
1
4
∈ (0, 1).

Thus, all the conditions of Theorem.1 follow by the hypothesis. Therefore, the operator Z has a fixed point,
i.e., the Fredholm integral equation has a solution.

Theorem 4. Let M be the set of all continuous real valued functions defined on [a, b], i.e., M = C([a, b],R).
Define Eb : M × M → R by Eb(U,V) = sup |U(t) − V(t)|2, t ∈ [a, b] with s(U,V) = |U(t)| +

|V(t)|+ 1, where s : M×M→ [1, ∞).
Note that (M, Eb) is a complete Eb-metric space.
Consider the Fredholm integral equation as,

U(t) =
∫ b

a
M(t, p,U(p))dp + f (t) ∀ t, p ∈ [a, b], (18)

where f : [a, b]→ R andM : [a, b]× [a, b]×R→ R are continuous functions.
Let S1 = S2 = X = C([a, b],R). It is clear that S1 and S2 are closed subsets of (M, Eb).
Define Z : S1 ∪ S2 → S1 ∪ S2 by Z(U(t)) =

∫ b
a M(t, p,U(p))dp + f (t) ∀ t, p ∈ [a, b]; where

f : [a, b]→ R andM : [a, b]× [a, b]×R→ R are continuous functions.
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Clearly, Z(S1) ⊂ S2 and Z(S2) ⊂ S1. Thus, Z is a cyclic map on S1 ∪ S2. Hereafter, assume that the
following condition holds.

|M(t, p,U(p))−M(t, p,ZU(p))| ≤ |e−
τ
2 |U(p)−ZU(p)|

for each t, p ∈ [a, b], U ∈ M and τ > 0.
Then, the integral Equation (18) has a solution.
We will prove now that the operator Z satisfies the conditions of Theorem 3.2.
For some U(t) ∈ A, consider:

|Z2U(t)−ZU(t)|2 = |Z(Z(U(t)))−ZU(t)|2

≤
(∫ b

a
M(t, p,ZU(p))−

∫ b

a
M(t, p,U(p))

)2

dp

≤
(

e
−τ
2 |ZU(p)−U(p)|

)2

dp

≤ e−τEb(ZU(t),U(t))

(19)

which implies Eb(Z2U(t),ZU(t)) ≤ e−τEb(ZU(t),U(t)) Thus,

ln(Eb(Z2U(t),ZU(t))) ≤ ln e−τ + ln(Eb(ZU(t),U(t)))

⇒ ln(Eb(Z2U(t),ZU(t))) ≤ −τ + ln(Eb(ZU(t),U(t))),

⇒ τ + ln(Eb(Z2U(t),ZU(t))) ≤ ln(Eb(ZU(t),U(t))).

Therefore, all the conditions of Theorem.2 are satisfied for F(t1) = ln t1, t1 > 0. Therefore, the operator Z
has a fixed point. Hence, the Fredholm integral equation has a solution.

5. Conclusions

Since Wardowski’s characterization of the Banach contraction mapping theorem, many
characterizations of contraction type mapping theorems have appeared in the literature. In this
article, we introduced the concepts of extended cyclic orbital contraction and extended cyclic
orbital-F -contraction in the setting of Eb-metric space. Thereafter, we proposed a simple and efficient
solution for a Fredholm integral equation by using the technique of the fixed point in the setting of
the Eb-metric space. We hope that the results contained in this article will build new connections
for those who are working in F -contraction (or its generalizations), cyclic orbital contraction (or its
generalizations) and its applications to differential, integral and functional equations.
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