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Abstract: Single valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for
describing complex information, because of their advantage in describing the information completely,
accurately and comprehensively for decision-making problems. In the paper, a method based on
SVTNNs is proposed for dealing with multi-criteria group decision-making (MCGDM) problems.
Firstly, the new operations SVTNNs are developed for avoiding evaluation information aggregation
loss and distortion. Then the possibility degrees and comparison of SVTNNs are proposed from
the probability viewpoint for ranking and comparing the single valued trapezoidal neutrosophic
information reasonably and accurately. Based on the new operations and possibility degrees
of SVTNNs, the single valued trapezoidal neutrosophic power average (SVTNPA) and single
valued trapezoidal neutrosophic power geometric (SVTNPG) operators are proposed to aggregate
the single valued trapezoidal neutrosophic information. Furthermore, based on the developed
aggregation operators, a single valued trapezoidal neutrosophic MCGDM method is developed.
Finally, the proposed method is applied to solve the practical problem of the most appropriate
green supplier selection and the rank results compared with the previous approach demonstrate the
proposed method’s effectiveness.

Keywords: single valued trapezoidal neutrosophic number; multi-criteria group decision making;
possibility degree; power aggregation operators

1. Introduction

Multi-criteria decision-making (MCDM) problems are important issues in practice and many
MCDM methods have been proposed to deal with such issues. Due to the vagueness of human being
thinking and the increased complexity of the objects, there are always much uncertainty, incomplete,
indeterminate and inconsistent information in evaluating objects. Traditionally, vagueness information
is always described by fuzzy sets (FSs) [1] using the membership function, intuitionistic fuzzy sets
(IFSs) [2] using membership and non-membership functions and hesitant fuzzy sets (HFSs) [3] using
one/several possible membership degrees. Many fuzzy methods are proposed, for example, Medina [4]
extends the fuzzy soft set by Multi-adjoint concept lattices, Pozna & Precup [5] proposed the operator
and application to a fuzzy model, Jane et al. [6] proposed fuzzy S-tree for medical image retrieval
and Kumar & Jarial [7] proposed a hybrid clustering method based on an improved artificial bee
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colony and fuzzy c-means algorithm. However, fuzzy sets cannot deal with the indeterminate
information and inconsistent information which exists commonly in complex MCDM problems.
As a generalization of the IFSs [2], neutrosophic sets (NSs) [8–10] are proposed to deal with the
uncertainty, incomplete, indeterminate and inconsistent information by using the truth-membership,
indeterminacy-membership and falsity-membership functions.

Due to the advantages of handling uncertainty, imprecise, incomplete, indeterminate and
inconsistent information existing in real world, NSs have attracted many researchers’ attentions
However NSs are proposed from the philosophical point of view, it is difficult to be directly applied in
real scientific and engineering areas without specific descriptions. Therefore, in accordance with the real
demand difference, three main subsets of NSs were proposed, namely single valued neutrosophic sets
(SVNSs) [11], interval neutrosophic sets (INSs) [12] and multi-valued neutrosophic set (MVNSs) [13].
Based on the aforementioned sets by specifying the NSs, many MCDM methods were developed,
which can be classified as three main aspects: aggregation operators, measures and the extension of
classic decision-making methods. These methods have been successfully applied in many areas, such as
medical diagnosis [14,15], medical treatment [16], neural networks [17], supplier selection [18,19] and
green product development [20].

With regard to aggregation operators of SVNSs, Liu and Wang [21] proposed a single-valued
neutrosophic normalized weighted Bonferroni mean operator, Liu et al. [22] proposed the generalized
neutrosophic operators, Sahin [23] developed the neutrosophic weighted operators. Considering real
situations, INSs is more suitable and flexible for describing incomplete information than SVNs.
Sun et al. [24] introduced the interval neutrosophic number Choquet integral operator, Ye [25]
proposed the interval neutrosophic number ordered weighted operators, Zhang et al. [26] proposed the
interval neutrosophic number weighted operators. All of these methods demonstrate the effectiveness.

In respect of measures, Sahin and Kucuk [27] proposed the subset-hood measure for SVNSs,
Ye [28–30] and Wu et al. [31] developed some measures of SVNSs including the weighted correlation
coefficient [28], cross-entropy [29,31], similarity measure [30]. Broumi and Smarandache proposed the
correlation coefficient [32] and cosine similarity measure [33] distance [34] of INSs, Ye [35] proposed
the similarity measures between INSs, Sahin and Karabacak [36] developed the inclusion measure for
INSs. All of these measures are verified by real cases and demonstrate the effectiveness as well.

In respect of the extension of classic decision-making methods, Zhang and Wu [19] developed an
extended TOPSIS method for the MCDM with incomplete weight information under a single valued
neutrosophic environment; Biswas et al. [37] developed the entropy based grey relational analysis
method to deal with MCDM problems in which all the criteria weight information described by
SVNSs is unknown; Peng et al. [38] developed the outranking approach for MCDM problems based
on ELECTRE method; and Sahin and Yigider [39] developed a MCGDM method based on the TOPSIS
method for dealing with supplier selection problems. Chi and Liu [40] developed the extended TOPSIS
method for deal MCDM problems based on INSs.

Peng et al. [13] firstly defined MVN and developed the approach for solving MCGDM problems
based on the multi-valued neutrosophic power weighted operators. Wang and Li [41] proposed the
Hamming distance between multi-valued neutrosophic numbers (MVNN) and the extended TODIM
method for dealing with MCDM problems. Wu et al. [42] proposed the novel MCDM methods based
on several cross-entropy measures of MVNSs.

However, these subsets of NSs cannot describe the assessment information with different
dimensions. For overcoming the shortcomings and improving the flexibility and practicality of these
sets, by extending the concept of trapezoidal intuitionistic fuzzy numbers (TrIFNs) [43], single valued
trapezoidal neutrosophic numbers (SVTNNs) [44] are proposed for improving the ability to describe
complex indeterminate and inconsistent information. Then, SVTNNs attract the attention of some
researchers on them as very useful tools on describing evaluation information. Based on SVTNNs,
Ye [44] developed the MCDM method on the basis of trapezoidal neutrosophic weighted arithmetic
averaging (TNWAA) operator or trapezoidal neutrosophic weighted geometric averaging (TNWGA)
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operator. However, the correlation of trapezoidal numbers and three membership degrees has been
ignored and the indeterminate-membership degree is regarded to be equal to falsity-membership
degree in these operators, which will lead to information distortion and loss. Meanwhile, it does
not take into account the information about the relationships among the assessment information
being aggregated, which always exists in the process of solving MCDM problems. To overcome
this shortcoming, motivated by the ideal of power aggregation operators [45,46], considering the
relationship among the information being aggregated and the possibility degree widely used as
a very useful tool to aggregate and rank uncertain data from the probability viewpoint, in this
paper we propose the possibility degrees of SVTNNs, single trapezoidal neutrosophic power average
(SVTNPA) and single valued trapezoidal neutrosophic power geometric (SVTNPG) operators to deal
with MCGDM problems. The prominent characteristics of these proposed operators are taking into
account relationship among the aggregation information and overcome the drawbacks of the existing
operator of SVTNNs. Then, we utilize these operators and possibility degrees to develop a novel single
valued trapezoidal neutrosophic MCGDM method.

The motivation and main attribution of the paper are presented as below:

(1) The novel operation laws of SVTNNs are conducted to overcome the lack of operation laws of
SVTNNs appeared in previous paper.

(2) Based on the novel operations of SVTNNs, the SVTNPA and SVTNPG operators are developed.
(3) Based on the concept of the possibility degree, the possibility degree of SVTNNs is defined

and presented.
(4) Based on possibility degree of SVTNNs, SVTNPA and SVTNPG operators, a novel method for

solving MCGDM problems under single trapezoidal neutrosophic environment is developed.

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts and
operators related to subsets of NS. In Section 3, we propose new operations, possibility degrees and
comparison of SVTNNs. SVTNPA and SVTNPG operators are developed in Section 4. The method
for solving MCGDM problems under single trapezoidal neutrosophic environment is developed in
Section 5. An illustrative example for selecting the most appropriate green supplier for Shanghai
General Motors Company is provided in Section 6. Meanwhile a comparison with other method
is presented to show the effectiveness of the proposed approach. Finally, conclusions are drawn
in Section 7.

2. Preliminaries

In this section, some basic concepts, definitions of SVTNNs and two aggregation operators are
introduced, which are laying groundwork of latter analysis.

2.1. NS and SVNS

Definition 1 ([14]). Let X be a space of points (objects), with a generic element in X denoted by x.
A NS A in X is characterized by three membership functions, namely truth-membership function TA(x),
indeterminacy-membership function IA(x) and falsity-membership function FA(x), where TA(x), IA(x) and
FA(x) are real standard or nonstandard subsets of ]−0, 1+[, i.e., TA(x) : X →]−0, 1+[ , IA(x) : X →]−0, 1+[
and FA(x) : X →]−0, 1+[ . Therefore, it is no restriction on the sum of TA(x), IA(x) and FA(x) and
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

The neutrosophic set needs to be specified from a technical point of view, otherwise it is difficult to
apply in the real scientific and engineering areas. Therefore, Wang et al. [13] proposed the concept SVNS
as an instance of neutrosophic set for easily operating and conveniently applying in practical issues.
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Definition 2 ([13]). Let X be a space of points (objects). A SVNS A in X can be expressed as follows:

A = {x, 〈TA(x), IA(x), FA(x)〉|x ∈ X},

where TA(x) ∈ [0, 1], IA(x) ∈ [0, 1] and FA(x) ∈ [0, 1].

Obviously, the sum of TA(x), IA(x) and FA(x) satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

2.2. The Trapezoidal Fuzzy Number and SVTNNs

Definition 3 ([43,47]). Let ã be a trapezoidal fuzzy number ã = (a1, a2, a3, a4) and a1 ≤ a2 ≤ a3 ≤ a4.
Then its membership function µã(x) : R→ [0, 1] can be defined as follows:

µã(x) =


(x− a1)µã/(a2 − a1), a1 ≤ x < a2;
µã, a2 ≤ x ≤ a3;
(a4 − x)µã/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

Because of the great validity and feasibility of trapezoidal fuzzy numbers and SVNSs in
decision-making problems, Ye [44] developed the SVTNNs by combining the two concepts.

Definition 4 ([44]). Let U be a space of points (objects). Then a SVTNN α can be represented as

α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉

whose truth-membership T(α), indeterminacy-membership I(α) and falsity-membership F(α) can be described
as follows:

T(α) =


(x− a1)T(α)/(a2 − a1), a1 ≤ x < a2;
T(α), a2 ≤ x ≤ a3;
(a4 − x)T(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

I(α) =


(x− a1)I(α)/(a2 − a1), a1 ≤ x < a2;
I(α), a2 ≤ x ≤ a3;
(a4 − x)I(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

F(α) =


(x− a1)F(α)/(a2 − a1), a1 ≤ x < a2;
F(α), a2 ≤ x ≤ a3;
(a4 − x)F(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

Especially, if a1 ≥ 0 and a4 > 0, then α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 becomes a positive
SVTNN. If I(α) = 1− T(α)− F(α), then the SVTNN is a TrIFN. And if I(α) = 0, F(α) = 0, then the
SVTNN becomes a trapezoidal fuzzy number, that is α = 〈[a1, a2, a3, a4], T(α)〉.
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Example 1. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉 be a SVTNN. Then its truth-membership T(α1),
indeterminacy-membership I(α1) and falsity-membership F(α1) can be obtained, respectively, as follows:

T(α1) =


8(x− 0.3), 0.3 ≤ x < 0.4;
0.8, 0.4 ≤ x ≤ 0.7;
8(0.8− x), 0.7 < x ≤ 0.8;
0, otherwise.

I(α1) =


2(x− 0.3), 0.3 ≤ x < 0.4;
0.2, 0.4 ≤ x ≤ 0.7;
2(0.8− x), 0.7 < x ≤ 0.8;
0, otherwise.

F(α1) =


4(x− 0.3), 0.3 ≤ x < 0.4;
0.4, 0.4 ≤ x ≤ 0.7;
4(0.8− x), 0.7 < x ≤ 0.8;
0, otherwise.

2.3. PA and PG Operators

The power average (PA) operator was firstly proposed by Yager [45]; then, based on PA operator,
Xu and Yager [46] developed the power geometric (PG) operator.

Definition 5 ([45,46]). Let h̃ = {h1, h2, · · ·, hn} a collection of positive real numbers, then PA operator and
PG operator can be defined, respectively, as follows:

PA(h1, h2, · · ·, hn) =
n

∑
i=1

(1 + G(hi))hi

∑n
i=1(1 + G(hi))

PG(h1, h2, · · ·, hn) =
n

∏
i=1

(
hi

((1+G(hi))/∑n
i=1 (1+G(hi)))

)
where G(hi) = ∑n

j=1,j 6=i Sup(hi, hj), i = 1, 2, · · ·, n. Sup(hi, hj) is the support for hi from hj, satisfying the
following properties:

(1) Sup(hi, hj) ∈ [0, 1].

(2) Sup(hi, hj) = Sup(hj, hi).

(3) If
∣∣hi − hj

∣∣ ≤ |a− b|, then Sup(hi, hj) ≥ Sup(a, b), where a and b are two positive real numbers.

3. New Operations and Comparison of SVTNNs

In this section, new operations and comparison method of SVTNNs are proposed for overcoming
the limitations in Reference [44] which can avoid information loss and distortion effectively.

3.1. The New Operations of SVTNNs

In order to aggregate different SVTNNs in decision-making process, Ye [44] defined the operations
of SVTNNs.

Definition 6 ([44]). Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β =

〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1,
0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, ζ ≥ 0. Then the operations of SVTNNs can be defined as follows:
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(1) α + β = 〈[a1 + b1, a2 + b2, a3 + b3, a4 + b4], (T(α) + T(β)− T(α)T(β), I(α)I(β), F(α)F(β))〉;
(2) αβ = 〈[a1b1, a2b2, a3b3, a4b4], (T(α)T(β), I(α) + I(β)− I(α)I(β), F(α) + F(β)− F(α)F(β))〉;
(3) ζα =

〈
[ζa1, ζa2, ζa3, ζa4],

(
1− (1− T(α))ζ , (I(α))ζ , (F(α))ζ

)〉
;

(4) αζ =
〈[

a1
ζ , a2

ζ , a3
ζ , a4

ζ
]
,
(
(T(α))ζ , 1− (1− I(α))ζ , 1− (1− F(α))ζ

)〉
;

However, there are some shortcomings in Definition 7.

(1) The trapezoidal fuzzy numbers and three membership degrees of SVTNNs are considered as two
separate parts and operated individually in the operation α + β, which ignore the correlation
among them and cannot reflect the actual results.

Example 2. Let α1 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 be two SVTNNs.

α1 + α2 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉+ 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 = 〈[0.7, 0.9, 1.1, 1.3], (1, 0, 0)〉;

This result is inaccurate since the falsity-membership of α1, the correlations among trapezoidal
fuzzy numbers and the membership degrees of α1 and α2 are not considered. Thus, the operations
would be unreasonable.

(2) The three membership degrees of SVTNNs are also operated as the trapezoidal fuzzy numbers in
the operation ζα, which can produce the repeat operation and make the result bias.

Example 3. Let α1 = 〈[0.03, 0.05, 0.07, 0.09], (0.3, 0.5, 0.5)〉 be a SVTNN, ζ = 10. Then the result ζα1 can
be obtained by using Definition 6.

10α1 = 〈[0.3, 0.5, 0.7, 0.9], (0.9718, 0.001, 0.001)〉

The three membership degrees of these SVTNNs are operated repeatedly which make the result
distort significantly and conflict with common sense.

For overcoming the limitations existing in the operations proposed by Ye [44], motivated by the
operations on triangular intuitionistic fuzzy numbers proposed by Wang et al. [48], new operations of
SVTNNs are defined as below.

Definition 7. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be
two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, ζ ≥ 0. Then the new
operations of SVTNNs can be defined as follows:

(1) neg(α) = 〈[1− a4, 1− a3, 1− a2, 1− a1], (T(α), I(α), F(α))〉;
(2) α ⊕ β =

〈
[a1 + b1, a2 + b2, a3 + b3, a4 + b4],

(
ϕ(α)T(α)+ϕ(β)T(β)

ϕ(α)+ϕ(β)
, ϕ(α)I(α)+ϕ(β)I(β)

ϕ(α)+ϕ(β)
,

ϕ(α)F(α)+ϕ(β)F(β)
ϕ(α)+ϕ(β)

)〉
, where ϕ(α) = a1+2a2+2a3+a4

6 , ϕ(β) = b1+2b2+2b3+b4
6 ;

(3) α⊗ β = 〈[a1b1, a2b2, a3b3, a4b4], (T(α)T(β), I(α) + I(β)− I(α)I(β), F(α) + F(β)− F(α)F(β))〉;
(4) ζα = 〈[ζa1, ζa2, ζa3, ζa4], (T(α), I(α), F(α))〉;
(5) αζ =

〈[
a1

ζ , a2
ζ , a3

ζ , a4
ζ
]
,
(
(T(α))ζ , 1− (1− I(α))ζ , 1− (1− F(α))ζ

)〉
;

ζα, α⊕ β, α⊗ β and αζ do not appear alone in application due to the meaninglessness of their
results. Only in the aggregation process do α⊕ β and/or α⊗ β being combined with ζα and/or αζ

make sense.
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Example 4. Let α1 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 be two SVTNNs,
ζ = 2, the following results can be obtained based on Definition 7.

(1) neg(α1) = 〈[0.5, 0.6, 0.8, 0.9], (0.4, 0.1, 0.5)〉;
(2) α1 ⊕ α2 = 〈[0.3, 0.5, 1.0, 1.2], (0.64, 0.22, 0.26)〉;
(3) α1 ⊗ α2 = 〈[0.02, 0.06, 0.24, 0.35], (0.32, 0.37, 0.55)〉;
(4) 2α1 = 〈[0.2, 0.4, 0.8, 1.0], (0.4, 0.1, 0.5)〉;
(5) α1

2 = 〈[0.04, 0.09, 0.25, 0.36], (0.16, 0.19, 0.75)〉.

Compared with the operations proposed by Ye [44], the new operations of SVTNNs have some
excellent advantages on reflecting the effect of all truth, indeterminacy and falsity membership
degrees of SVTNNs on aggregation results and taking into account the correlation of the trapezoidal
fuzzy numbers and three membership degrees of SVTNNs, which can avoid information loss and
distortion effectively.

In terms of the corresponding operations of SVTNNs, the following theorem can be easily proved.

Theorem 1. Let α1 , α2, α3 be three SVTNNs and ζ ≥ 0. Then the following equations must be true and easy
to proof.

(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) (α1 ⊕ α2)⊕ α3 = α1 ⊕ (α2 ⊕ α3);
(3) α1 ⊗ α2 = α2 ⊗ α1;
(4) (α1 ⊗ α2)⊗ α3 = α1 ⊗ (α2 ⊗ α3);
(5) ζα1 ⊕ ζα2 = ζ(α2 ⊕ α1) ;
(6) (α2 ⊗ α1)

τ = α1
τ ⊗ α2

τ .

3.2. The Possibility Degree

The possibility degree, which is proposed from the probability viewpoint, is a very useful tool to
rank uncertain data reasonably and accurately.

Definition 8 ([49,50]). Let y = [y1, y2] ⊆ [0, 1] and z = [z1, z2] ⊆ [0, 1] be two real number intervals
with uniform probability distribution, the probability y ≥ z can be represented as p(y ≥ z), which exists the
following properties:

(1) 0 ≤ p(y ≥ z) ≤ 1.
(2) p(y ≥ z) + p(z ≥ y) = 1.
(3) If y = z, then p(y ≥ z) = p(z ≥ y) = 0.5.
(4) If ξ is an arbitrary interval or number, p(y ≥ z) ≥ 0.5, p(z ≥ ξ) ≥ 0.5, then p(y ≥ ξ) ≥ 0.5.
(5) If min(y) > max(z), then p(y ≥ z) = 1.

Based on the concept of the possibility degree, the possibility degree of two arbitrary positive
SVTNNs is presented.
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Definition 9. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be
two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. Then the possibility degree
of α � β p(α � β) can be defined as follows:

p(α � β) = 1
2+γ

(
max

{
1−max

[
∑4

i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| , 0
]

, 0
}

+γmax
{

1−max
[

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(I(β)−I(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|I(β)−I(α)| , 0
]

, 0
}

+1−max
{

1−max
[

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(F(β)−F(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|F(β)−F(α)| , 0
]

, 0
})

,

where the value of γ ∈ [0, 1] is the coefficient that can reflect the attitudes of decision-makers. γ > 0.5, γ = 0.5
and γ < 0.5 denotes, respectively, the decision-makers’ attitude of optimism, compromise and pessimism.

Example 5. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉 and α2 = 〈[0.2, 0.5, 0.6, 0.7], (0.6, 0.1, 0.3)〉 be two
SVTNNs, γ = 0.5. The result of p(α1 � α2) can be obtained as follows.

Because

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(α2)−T(α1),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(α2)−T(α1)|

= max(0.2−0.3,0)+max(0.5−0.4,0)+max(0.6−0.7,0)+max(0.7−0.8,0)+(0.7−0.4)+2max(0.6−0.8,0)
|0.2−0.3|+|0.5−0.4|+|0.6−0.7|+|0.7−0.8|+(0.7−0.2)+(0.8−0.3)+2|0.6−0.8|

= 0.4
1.8 = 0.222;

∑4
i=1 max(bi − ai, 0) + (b4 − a1) + 2max(I(α2)− I(α1), 0)

∑4
i=1|bi − ai|+ (b4 − b1) + (a4 − a1) + 2|I(α2)− I(α1)|

=
0.4
1.6

= 0.25;

∑4
i=1 max(bi − ai, 0) + (b4 − a1) + 2max(F(α2)− F(α1), 0)

∑4
i=1|bi − ai|+ (b4 − b1) + (a4 − a1) + 2|F(α2)− F(α1)|

=
0.4
1.6

= 0.25

Therefore, we can obtain

p(α1 � α2) = 1
2.5 (max{1−max[0.222, 0], 0} + 0.5×max{1−max[0.25, 0], 0}+1−max{1−max[0.25, 0], 0})

= 1
2.5 (0.778 + 0.5× 0.75 + 0.25)

= 0.561.

Theorem 2. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two
positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. Then the following properties
must be true.

(1) 0 ≤ p(α � β) ≤ 1.
(2) p(α � β) + p(β � α) = 1.
(3) If ai = bi, i = 1, 2, 3, 4, T(α) = T(β), I(α) = I(β) and F(α) = F(β), then p(α � β) = p(β � α) = 0.5.
(4) If ξ is an arbitrary positive SVTNN, p(α � β) ≥ 0.5, p(β � ξ) ≥ 0.5, then p(α ≥ ξ) ≥ 0.5.
(5) If a1 ≥ b4, T(α) ≥ T(β), I(α) ≥ I(β) and F(α) ≤ F(β), then p(α � β) = 1.

Now we prove the property (2), the proofs of other properties are similar to the proof the
property (2), thus, they are omitted.

Proof. Let x(α, β) = ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| , y(α, β) =

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(I(β)−I(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|I(β)−I(α)| , z(α, β) = ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(F(β)−F(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|F(β)−F(α)| .
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Then

p(α � β) = 1
3 (max{1−max[x(α, β), 0], 0}+ γmax{1−max[y(α, β), 0], 0}+ 1−max{1−max[z(α, β), 0], 0}).

Because

x(α, β) + x(β, α)

= ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| + ∑4
i=1 max(ai−bi ,0)+(a4−b1)+2max(T(α)−T(β),0)
∑4

i=1|ai−bi |+(a4−a1)+(b4−b1)+2|T(α)−T(β)|

= ∑4
i=1|ai−bi |+(a4−b1)+(b4−a1)+2|T(α)−T(β)|

∑4
i=1|ai−bi |+(a4−a1)+(b4−b1)+2|T(α)−T(β)| = 1;

y(α, β) + y(β, α) = 1; z(α, β) + z(β, α) = 1.

We can obtain max{1−max[x(α, β), 0], 0} + max{1−max[x(β, α), 0], 0} = 1;
max{1−max[y(α, β), 0], 0}+max{1−max[y(β, α), 0], 0} = 1; 1 − max{1−max[z(α, β), 0], 0} +
1−max{1−max[z(β, α), 0], 0} = 1.

Therefore,

p(α � β) + P(β � α)

= 1
2+λ (max{1−max[x(α, β), 0], 0}+ λmax{1−max[y(α, β), 0], 0}+1−max{1−max[z(α, β), 0], 0})
+ 1

2+λ (max{1−max[x(β, α), 0], 0}+ λmax{1−max[y(β, α), 0], 0} +1−max{1−max[z(β, α), 0], 0})
= 1

2+λ (1 + λ + 1) = 1.

�

The proof of the property (2) is completed now.

3.3. The Comparison Method of SVTNNs

In this subsection, based on the concept of the possibility degree of two arbitrary positive SVTNNs
defined in Definition 9, the new comparison method for two SVTNNs is presented.

For comparing different SVTNNs in decision-making process, Ye [44] defined the score function
and comparison of SVTNNs.

Definition 10 [44]. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β =

〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two SVTNNs. Then the score degree of α S(α) can be defined
as follows:

S(α) =
1
12

(a1 + a2 + a3 + a4)× (2 + T(α)− I(α)− F(α)).

If S(α) > S(β), then α � β; if S(α) < S(β), then α ≺ β; if S(α) = S(β), then α ∼ β.
However, the score function is operated by assuming that the parameters of trapezoidal fuzzy

numbers own same weight, which cannot reflect the different importance for the four parameters of a
trapezoidal fuzzy number and make aggregating result bias.

Example 6. Let α1 = 〈[0.1, 0.3, 0.5, 0.6], (0.6, 0, 0.4)〉 and α2 = 〈[0, 0.4, 0.5, 0.6], (0.6, 0, 0.4)〉 be two
SVTNNs.

S(α1) =
1
12

(0.1 + 0.3 + 0.5 + 0.6)× (2 + 0.6− 0− 0.4) = 0.275; S(α2) = 0.275.

We cannot compare these two SVTNNs using the above function but it is easy to know that α1 is
superior to α2.

Meanwhile, the function operates the indeterminacy-membership degree as like the
false-membership degree, which does not take the preference of decision-makers into consideration.
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Example 7. Let α1 = 〈[0.2, 0.3, 0.4, 0.5], (0.6, 0, 0.4)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (0.6, 0.4, 0)〉 be two
SVTNNs.

S(α1) =
1
12

(0.2 + 0.3 + 0.4 + 0.5)× (2 + 0.6− 0− 0.4) = 0.257; S(α2) = 0.257.

S(α1) = S(α2) indicates that α1 is equal to α2. However, it is obvious that α2 is superior to α1.
These shortcomings existing in the score function given in Definition 10 may make the comparison

results of SVTNNs unacceptable. For overcoming the limitations of Definition 10, based on the concept
of the possibility degree of two arbitrary positive SVTNNs defined in Definition 9, we propose a new
comparison method.

Definition 11. Let α and β be two positive SVTNNs, γ be an arbitrary positive SVTNN and then the
comparison method can be defined as follows.

(1) If p(α � γ) > p(β � γ), then α � β, i.e., α is superior to β.
(2) If p(α � γ) = p(β � γ), then α ∼ β, i.e., α is equal to β.
(3) If p(α � γ) < p(β � γ), then α ≺ β, i.e., β is superior to α.

Example 8. Let λ = 0.5. When using the data of Example 4 and the following can be obtained.

p(α1 � α2) = 0.508; p(α2 � α1) = 0.492, so α1 � α2.

When using the data of Example 5 and the following can be obtained.

p(α1 � α2) = 0.329; p(α2 � α1) = 0.671, so α2 � α1.

Thus, the results of the above two examples are consistent with our common sense. Because the
score function can overcome the shortcoming existing in Reference [44] by calculating the
indeterminacy-membership degree by taking into account the preference of decision-makers, the results
are more grounded in reality than the results obtained by using the score degree proposed by Ye [44].

4. Single Valued Trapezoidal Neutrosophic Power Aggregation Operators

In this section, the SVTNPA and SVTNPG operators based on the new operations of SVTNNs
are developed.

Definition 12. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉 be a collection of positive SVTNNs. Then the
single valued trapezoidal neutrosophic power average (SVTNPA) operator can be defined as follows:

SVTNPA(α1, α2, · · ·, αn) = 1+G(α1)
∑n

i=1(1+G(αi))
α1 ⊕ 1+G(α2)

∑n
i=1(1+G(αi))

α2 ⊕ · · · ⊕ 1+G(αn)
∑n

i=1(1+G(αi))
αn

= ⊕n
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
,

where G(αi) = ∑n
j=1,j 6=i Sup(αi, αj), Sup(αi, αj) is the support for αi from αj, satisfying the

following properties.

(1) Sup(αi, αj) ∈ [0, 1].

(2) Sup(αi, αj) = Sup(αj, αi).

(3) If
∣∣p(αi � αj)− p(αj � αi)

∣∣ < |p(π � ν)− p(ν � π)|, then Sup(αi, αj) > Sup(π, ν), where π and
ν are two positive SVTNNs, p(αi � αj), p(αj � αi), p(π � ν) and p(ν � π) are the possibility degree
of αi � αj, αj � αi, π � ν and ν � π.
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The support for αi from αj can be obtained using the function Sup(αi, αj) = 1 −∣∣p(αi � αj)− p(αj � αi)
∣∣. Obviously, the closer the values of the score of αi and αj, the more they

support each other.

Theorem 3. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. The aggregated result, obtained by using the SVTNPA operator, is also a positive SVTNN, and

SVTNPA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
= 〈([∑n

i=1(τ(αi)ai1), ∑n
i=1(τ(αi)ai2), ∑n

i=1(τ(αi)ai3), ∑n
i=1(τ(αi)ai4)] ,(

∑n
i=1(ϕ(αi)T(αi))

∑n
i=1 ϕ(αi)

, ∑n
i=1(ϕ(αi)I(αi))

∑n
i=1 ϕ(αi)

, ∑n
i=1(ϕ(αi)F(αi))

∑n
i=1 ϕ(αi)

)〉
,

where G(αi) = ∑n
j=1,j 6=i Sup(αi, αj), Sup(αi, αj) = 1 −

∣∣p(αi � αj)− p(αj � αi)
∣∣ is the support for αi

from αj, τ(αi) = 1+G(αi)
∑n

i=1(1+G(αi))
, ϕ(αi) = 1

6 (τ(αi)ai1 + 2τ(αi)ai2 + 2τ(αi)ai3 + τ(αi)ai4), p(αi � αj) and
p(αj � αi) are the score functions of αi � αj, αj � αi.

Proof. According to Definition 8, the aggregated result is also a positive SVTNN. Therefore, Theorem
3 can be easily proven by using a mathematical induction on n.

(1) For n = 2, since

1 + G(α1)1

∑2
i=1(1 + G(αi))

α1 = 〈[τ(α1)a11, τ(α1)a12, τ(α1)a13, τ(α1)a14], (T(α1), I(α1), F(α1))〉;

1 + G(α2)

∑2
i=1(1 + G(αi))

α2 = 〈[τ(α2)a21, τ(α2)a22, τ(α2)a23, τ(α2)a24], (T(α2), I(α2), F(α2))〉.

Then

SVTNPA(α1, α2) =
1+G(α1)

∑2
i=1(1+G(αi))

α1 ⊕ 1+G(α2)

∑2
i=1(1+G(αi))

α2

= 〈([τ(α1)a11 + τ(α2)a21, τ(α1)a12 + τ(α2)a22, τ(α1)a13 + τ(α2)a23, τ(α1)a14 + τ(α2)a24] ,(
ϕ(α1)T(α1)+ϕ(α2)T(α2)

ϕ(α1)+ϕ(α2)
, ϕ(α1)I(α1)+ϕ(α2)I(α2)

ϕ(α1)+ϕ(α2)
, ϕ(α1)I(α1)+ϕ(α2)I(α2)

ϕ(α1)+ϕ(α2)

)〉
.

�

(2) If we hold n = k, then

SVTNPA(α1, α2, · · ·, αn) = ⊕k
i=1

(
1+G(αi)

∑k
i=1(1+G(αi))

αi

)
=

〈([
∑k

i=1(τ(αi)ai1), ∑k
i=1(τ(αi)ai2), ∑k

i=1(τ(αi)ai3), ∑k
i=1(τ(αi)ai4)

]
,(

∑k
i=1(ϕ(αi)T(αi))

∑k
i=1 ϕ(αi)

, ∑k
i=1(ϕ(αi)I(αi))

∑k
i=1 ϕ(αi)

, ∑k
i=1(ϕ(αi)F(αi))

∑k
i=1 ϕ(αi)

)〉
.

When n = k + 1, by the operations described in Definition 10, we have

SVTNPA(α1, α2, · · ·, αn) = ⊕k
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
⊕ 1+G(αk+1)

∑n
i=1(1+G(αi))

αk+1

=
〈([

∑k+1
i=1 (τ(αi)ai1), ∑k+1

i=1 (τ(αi)ai2), ∑k+1
i=1 (τ(αi)ai3), ∑k+1

i=1 (τ(αi)ai4)
]

,(
∑k+1

i=1 (ϕ(αi)T(αi))

∑k+1
i=1 ϕ(αi)

, ∑k+1
i=1 (ϕ(αi)I(αi))

∑k+1
i=1 ϕ(αi)

, ∑k+1
i=1 (ϕ(αi)F(αi))

∑k+1
i=1 ϕ(αi)

)〉
.

�

So, n = k + 1, Theorem 2 is also right.
According to (1) and (2), we can get Theorem 3 hold for any n.
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Example 9. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉, α2 = 〈[0.2, 0.5, 0.6, 0.7], (0.6, 0.1, 0.3)〉,
α3 = 〈[0.3, 0.4, 0.5, 0.6], (0.7, 0.3, 0.3)〉 and α4 = 〈[0.3, 0.5, 0.5, 0.7], (0.6, 0.2, 0.3)〉 be four positive
SVTNNs, λ = 0.8. Then SVTNPA(α1, α2, α3, α4) can be calculated as follows.

Because p(α1 � α2) = 0.566, p(α1 � α3) = 0.541, p(α1 � α4) = 0.547, p(α2 � α3) = 0.452,
p(α2 � α4) = 0.467, p(α3 � α4) = 0.530, we can obtain the following results.

G(α1) = ∑3
j=1,j 6=i Sup(α1, αj)

= ∑4
j=2
(
1−

∣∣p(α1 � αj)− p(αj � α1)
∣∣)

= (1− |0.566− 0.434|) + (1− |0.541− 0.459|) + (1− |0.547− 0.453|)
= 2.692,

G(α2) = 2.707, G(α3) = 2.762, G(α4) = 2.779.

τ(α1) =
1+G(α1)

∑4
i=1(1+G(αi))

= 1+2.692
(1+2.692)+(1+2.707)+(1+2.762)+(1+2.779) = 0.247,

τ(α2) = 0.248, τ(α3) = 0.252, τ(α4) = 0.253.

ϕ(α1) =
1
6 (τ(α1)a11 + 2τ(α1)a12 + 2τ(α1)a13 + τ(α1)a14) =

1
6 × 0.247× (0.3 + 2× 0.4 + 2× 0.7 + 0.8) = 0.136,

ϕ(α2) = 0.128, ϕ(α3) = 0.113, ϕ(α4) = 0.127.

Therefore, SVTNPA(α1, α2, α3, α4) = 〈[0.275, 0.450, 0.574, 0.699], (0.676, 0.197, 0.327)〉.

Theorem 4. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. If Sup(αi, αj) = c (c ∈ [0, 1], i 6= j, j = 1, 2, · · ·, n), then SVTNPA operator reduces to single
valued trapezoidal neutrosophic average (SVTNA) operator as follows:

SVTNPA(α1, α2, · · ·, αn) = SVTNA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1
n

αi

)

Proof. Because Sup(αi, αj) = c (c ∈ [0, 1], i 6= j, j = 1, 2, · · ·, n), we have G(αi) = ∑n
j=1,j 6=i Sup(αi, αj) =

(n− 1)c.
Therefore,

SVTNPA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1+G(αi)i

∑n
i=1(1+G(αi))

αi

)
= ⊕n

i=1

(
1+(n−1)c

∑n
i=1(1+(n−1)c)αi

)
= ⊕n

i=1

(
1
n αi

)
.

�

Finally, we can get SVTNPA(α1, α2, · · ·, αn) = SVTNA(α1, α2, · · ·, αn) = ⊕n
i=1(αi) and the proof

of Theorem 4 is completed now.

Definition 13. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. Then the single valued trapezoidal neutrosophic power geometric (SVTNPG) operator can be defined
as follows:

SVTNPG(α1, α2, · · ·, αn) = α1

1+G(α1)
∑n

i=1 (1+G(αi)) ⊗ α2

1+G(α2)
∑n

i=1 (1+G(αi)) ⊗· · ·⊗ αn

1+G(αn)
∑n

i=1 (1+G(αi)) = ⊗n
i=1

(
αi

1+G(αi)
∑n

i=1 (1+G(αi))

)
,

where G(αi) = ∑n
j=1,j 6=i Sup(αi, αj), Sup(αi, αj) is the support for αi from αj.
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Theorem 5. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. The aggregated result, obtained by using the SVTNPG operator, is also a positive SVTNN, and

SVTNPG(α1, α2, · · ·, αn) = ⊗n
i=1

(
αi

τ(αi)
)

=
〈[

∏n
i=1 ai1

τ(αi),∏n
i=1 ai2

τ(αi), ∏n
i=1 ai3

τ(αi), ∏n
i=1 ai4

τ(αi)
]

,
(

∏n
i=1 (T(αi))

τ(αi), 1−∏n
i=1

(
(1− I(αi))

τ(αi)
)

,

1−∏n
i=1

(
(1− F(αi))

τ(αi)
))〉

,

where τ(αi) = 1+G(αi)
∑n

i=1(1+G(αi))
, G(αi) = ∑n

j=1,j 6=i Sup(αi, αj), Sup(αi, αj) = 1−
∣∣p(αi � αj)− p(αj � αi)

∣∣
is the support for αi from αj, p(αi � αj) and p(αj � αi) are the score functions of αi � αj, αj � αi.

The proof of Theorem 5 can refer to Theorem 3.

Example 10. Use the data of Example 9. Then SVTNPG(α1, α2, α3) can be calculated as follows.
According to Example 9, we can get τ(α1) = 0.247, τ(α2) = 0.248, τ(α3) = 0.252, τ(α4) = 0.253;

So SVTNPG(α1, α2, α3, α4) = 〈[0.271, 0.447, 0.569, 0.696], (0.669, 0.204, 0.326)〉.

Theorem 6. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. If Sup(αi, αj) = c (c ∈ [0, 1], i 6= j, j = 1, 2, · · ·, n) , then SVTNPG operator reduces to single
valued trapezoidal neutrosophic geometric (SVTNG) operator as follows:

SVTNPG(α1, α2, · · ·, αn) = SVTNG(α1, α2, · · ·, αn) = ⊕n
i=1

(
αi

1/n
)

.

The proof of Theorem 6 can refer to Theorem 4.

5. A MCGDM Method Based on Possibility Degree and Power Aggregation Operators under
Single Valued Trapezoidal Neutrosophic Environment

In this section, the possibility degrees of SVTNNs, single trapezoidal neutrosophic power
weighted aggregation operators are applied to MCGDM problems single valued trapezoidal
neutrosophic information.

For a MCGDM problems with single valued trapezoidal neutrosophic information, assume that
the set of alternatives is B = {B1, B2, · · ·, Bm}, D = {D1, D2, · · ·, Dt} is the set of decision-makers who
evaluate the alternatives according to the criteria C = {C1, C2, · · ·, Cn}. The evaluation information
α

y
ij(i = 1, 2, · · ·, m; j = 1, 2, · · ·, n; y = 1, 2, · · ·, t) which is described by positive SVTNNs, can be given

by decision-makers Dy(y = 1, 2, · · ·, t) when they assess the alternatives Bi(i = 1, 2, · · ·, m) with respect
to the criteria Cj(j = 1, 2, · · ·, n) and then the decision matrices Ry = (α

y
ij)m×n

are obtained. A method
of determining the ranking of the alternatives is introduced here and the decision-making procedures
are shown as follows.

Step 1. Normalize the decision matrices.

Normalize the decision-making information α
y
ij in the matrices Ry = (α

y
ij)m×n

. The criteria can
be classified into the benefit type and the cost type. For the benefit-type criterion, the form of the
evaluation information needs no change; but for the cost-type criterion, the negation operator is used.

The normalization of the decision matrices can be represented as follows:{
α̃

y
ij = α

y
ij , Cj ∈ BT

α̃
y
ij = neg(αy

ij) , Cj ∈ CT
,

where BT is the set of benefit-type criteria and CT is the set of cost-type criteria.
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The normalized decision matrices are denoted as Ry = (α̃
y
ij)m×n

.

Step 2. Aggregate the values of alternatives on each criterion to get the collective SVTNNs.

Based on the Definitions 12 or 13, the collective SVTNNs αij or α̃ij can be gotten by SVTNPA or
SVTNPG operator, the aggregation values of decision-makers on each alternative are as follows:

αiy = SVTNPA(α̃
y
i1, α̃

y
i2, · · ·, α̃

y
in) or α̃iy = SVTNPG(α̃

y
i1, α̃

y
i2, · · ·, α̃

y
in).

Then the collective preference matrix P = (αiy)m×y or P̃ = (α̃iy)m×y can be obtained.

Step 3. Aggregate the values of alternative on each decision-maker to get the overall SVTNNs.

Based on the Definitions 12 or 13, the overall SVTNNs αij or α̃ij can be gotten by SVTNPA or
SVTNPG operator, the aggregation values of alternative on each decision-maker are as follows:

βi = SVTNPA(αi1, αi2, · · ·, αit) or β̃i = SVTNPA(α̃i1, α̃i2, · · ·, α̃it).

Then the coverall preference matrix K = (βi) or K̃ = (β̃i) can be obtained.

Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than
other alternatives’ values.

Based on Definition 9, the possibility degrees of βi � βi′(i 6= i′) or β̃i � β̃i′(i 6= i′) can be
obtained. The matrix of p(βi � βi′) or p(β̃i � β̃i′) can be represented as U = (p(βi � βi′))m×m or

Ũ =
(

p(β̃i � β̃i′)
)

m×m
.

Step 5. Calculate the collective possibility degree index of each alternative to derive the overall values
of the alternatives.

Aggregate U or Ũ to get the overall possibility degree index p(Bi) of the alternative Bi by using
the following functions:

p(Bi) =
1

m− 1∑ m
i′=1,i′ 6=i p(βi � βi′) or p̃(Bi) =

1
m− 1∑ m

i′=1,i′ 6=i p(β̃i � β̃i′).

Then the overall possibility degree index matrix Q = (p(Bi))
T or Q̃ = ( p̃(Bi))

T can be obtained.

Step 6. Rank the alternatives and select the best one.

According to the results obtained in Step 5, rank the alternatives by the overall values in
descending order and the first order alternative is the best.

6. Illustrative Example

In this section, a green supplier selection problem is used to illustrate the validity and effectiveness
of the developed method.

6.1. Background

The following case background is adapted from [51].
In recent years, more and more people pay attention the serious environmental problems caused

badly by the rapid economic development of all over the world. The green supply chain management
becomes imperative under this situation because of its advantages on the sustainable development of
economics and protection of environment. Meanwhile, it can bring tremendous economic benefit and
competitive strengthen for the enterprises.
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Motivated by the advantages of green supply chain management, Shanghai General
Motors (SGM) Company wants to select the most appropriate green supplier as its cooperative
alliance. After pre-evaluation, four suppliers become the final alternatives for further evaluation,
including Howden Hua Engineering Company (B1), Sino Trunk (B2), Taikai Electric Group Company
(B3) and Shantui construction machinery Company (B4). SGM employs four experts (Dy(y = 1, 2, 3, 4))
coming from the departments of production, purchasing, quality inspection, engineering to form a
group of decision-makers for evaluating the four suppliers Bi(i = 1, 2, 3, 4) according the product
quality (C1), technology capability (C2), pollution control (C3) and environment management (C4).
The four experts Dy(y = 1, 2, 3, 4) give their assessment information about the four green suppliers
Bi(i = 1, 2, 3, 4) according to the four criteria (Cj(j = 1, 2, 3, 4)). Assume that the four experts’ attitudes
on evaluating the four green suppliers are neutral, that is λ = 0.5. The assessment information
α

y
ij(i = 1, 2, 3, 4; j = 1, 2, 3, 4; y = 1, 2, 3, 4) is described by SVTNNs and the decision matrices are shown

in R1, R2, R3 and R4.

R1 =

C1 C2 C3 C4

B1

B2

B3

B4


〈[0.6, 0.7, 0.8, 0.9], (0.6, 0.3, 0.2)〉 〈[0.3, 0.4, 0.5, 0.6], (0.6, 0.2, 0.4)〉 〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.3, 0.4)〉 〈[0.6, 0.7, 0.8, 0.9], (0.5, 0.3, 0.3)〉
〈[0.3, 0.4, 0.5, 0.6], (0.7, 0.2, 0.3)〉 〈[0.4, 0.5, 0.6, 0.7], (0.5, 0.2, 0.3)〉 〈[0.4, 0.5, 0.6, 0.8], (0.7, 0.2, 0.3)〉 〈[0.5, 0.7, 0.8, 0.9], (0.4, 0.1, 0.6)〉
〈[0.3, 0.4, 0.5, 0.6], (0.4, 0.3, 0.2)〉 〈[0.3, 0.4, 0.5, 0.7], (0.6, 0.1, 0.3)〉 〈[0.2, 0.4, 0.5, 0.6], (0.5, 0.3, 0.3)〉 〈[0.6, 0.7, 0.8, 0.9], (0.5, 0.4, 0.2)〉
〈[0.1, 0.2, 0.4, 0.5], (0.8, 0.2, 0.1)〉 〈[0.3, 0.4, 0.6, 0.7], (0.2, 0.5, 0.4)〉 〈[0.5, 0.6, 0.7, 0.8], (0.6, 0.3, 0.1)〉 〈[0.4, 0.5, 0.6, 0.7], (0.7, 0.1, 0.2)〉



R2 =

C1 C2 C3 C4

B1

B2

B3

B4


〈[0.1, 0.3, 0.4, 0.5], (0.5, 0.2, 0.4)〉 〈[0.2, 0.4, 0.6, 0.8], (0.8, 0.1, 0.2)〉 〈[0.2, 0.5, 0.6, 0.8], (0.7, 0.3, 0.1)〉 〈[0.1, 0.4, 0.5, 0.6], (0.6, 0.2, 0.3)〉
〈[0.2, 0.4, 0.6, 0.8], (0.6, 0.1, 0.3)〉 〈[0.4, 0.6, 0.8, 1.0], (0.7, 0.2, 0.2)〉 〈[0.4, 0.6, 0.8, 1.0], (0.5, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.7], (0.8, 0.1, 0.1)〉
〈[0.2, 0.4, 0.6, 1.0], (0.6, 0.3, 0.2)〉 〈[0.2, 0.4, 0.6, 0.8], (0.8, 0.1, 0.2)〉 〈[0.1, 0.2, 0.6, 0.8], (0.6, 0.2, 0.2)〉 〈[0.1, 0.2, 0.3, 0.5], (0.6, 0.2, 0.4)〉
〈[0.2, 0.3, 0.4, 0.7], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.3, 0.5], (0.6, 0.4, 0.2)〉 〈[0.1, 0.3, 0.5, 0.7], (0.7, 0.2, 0.2)〉 〈[0.1, 0.2, 0.4, 0.5], (0.5, 0.1, 0.3)〉



R3 =

C1 C2 C3 C4

B1

B2

B3

B4


〈[0.5, 0.7, 0.8, 0.9], (0.6, 0.1, 0.3)〉 〈[0.4, 0.5, 0.6, 0.8], (0.7, 0.2, 0.3)〉 〈[0.4, 0.6, 0.7, 0.8], (0.3, 0.7, 0.1)〉 〈[0.3, 0.5, 0.6, 0.8], (0.5, 0.3, 0.3)〉
〈[0.6, 0.7, 0.8, 0.9], (0.7, 0.2, 0.2)〉 〈[0.1, 0.3, 0.5, 0.6], (0.4, 0.5, 0.2)〉 〈[0.3, 0.5, 0.6, 0.7], (0.4, 0.3, 0.3)〉 〈[0.1, 0.2, 0.4, 0.5], (0.7, 0.2, 0.1)〉
〈[0.7, 0.8, 0.9, 1.0], (0.6, 0.2, 0.2)〉 〈[0.3, 0.4, 0.6, 0.7], (0.5, 0.4, 0.2)〉 〈[0.1, 0.2, 0.6, 0.8], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.4, 0.5], (0.6, 0.2, 0.3)〉
〈[0.4, 0.5, 0.7, 0.9], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.3, 0.4], (0.4, 0.5, 0.1)〉 〈[0.1, 0.3, 0.5, 0.6], (0.6, 0.2, 0.2)〉 〈[0.1, 0.2, 0.3, 0.5], (0.5, 0.4, 0.2)〉



R4 =

C1 C2 C3 C4

B1

B2

B3

B4


〈[0.4, 0.5, 0.7, 0.8], (0.4, 0.2, 0.5)〉 〈[0.4, 0.5, 0.6, 0.7], (0.6, 0.1, 0.4)〉 〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.4, 0.4)〉 〈[0.4, 0.7, 0.8, 1.0], (0.3, 0.1, 0.6)〉
〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.3, 0.5)〉 〈[0.5, 0.6, 0.7, 0.8], (0.4, 0.3, 0.3)〉 〈[0.4, 0.6, 0.7, 0.8], (0.7, 0.1, 0.3)〉 〈[0.5, 0.6, 0.8, 0.9], (0.5, 0.3, 0.4)〉
〈[0.3, 0.5, 0.6, 0.8], (0.4, 0.2, 0.2)〉 〈[0.2, 0.4, 0.5, 0.8], (0.6, 0.3, 0.2)〉 〈[0.2, 0.4, 0.5, 0.6], (0.5, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.8], (0.4, 0.3, 0.2)〉
〈[0.1, 0.2, 0.4, 0.6], (0.6, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.7], (0.5, 0.5, 0.1)〉 〈[0.5, 0.6, 0.7, 0.8], (0.4, 0.2, 0.3)〉 〈[0.2, 0.4, 0.6, 0.7], (0.5, 0.4, 0.1)〉



6.2. The Procedures of Single Valued Trapezoidal Neutrosophic MCGDM Method

The proposed MCGDM method is used for determining the ranking of the green suppliers.

Step 1. Normalize the decision matrices.

The four criteria Cj(j = 1, 2, 3, 4) are regarded as the benefit-type criterion, so the decision matrices
change nothing.

Step 2. Aggregate the values of the four alternatives on each criterion to get the collective SVTNNs.

Use the SVTNPA or SVTNPG operator to aggregate the values of four alternatives on each
criterion, the collective SVTNNs are obtained shown in P and P̃.

P =

B1

B2

B3

B4

D1 D2 D3 D4
〈[0.50, 0.60, 0.70, 0.82], (0.49, 0.28, 0.32)〉 〈[0.15, 0.40, 0.53, 0.68], (0.67, 0.20, 0.23)〉 〈[0.40, 0.58, 0.68, 0.83], (0.53, 0.32, 0.25)〉 〈[0.42, 0.58, 0.70, 0.85], (0.39, 0.20, 0.48)〉
〈[0.40, 0.53, 0.63, 0.75], (0.55, 0.17, 0.40)〉 〈[0.33, 0.53, 0.70, 0.88], (0.64, 0.16, 0.23)〉 〈[0.27, 0.42, 0.57, 0.67], (0.56, 0.29, 0.21)〉 〈[0.47, 0.60, 0.73, 0.85], (0.47, 0.25, 0.38)〉
〈[0.34, 0.47, 0.57, 0.70], (0.50, 0.29, 0.24)〉 〈[0.15, 0.30, 0.53, 0.78], (0.66, 0.20, 0.23)〉 〈[0.30, 0.40, 0.62, 0.75], (0.55, 0.25, 0.24)〉 〈[0.25, 0.45, 0.55, 0.75], (0.47, 0.25, 0.22)〉
〈[0.32, 0.42, 0.57, 0.67], (0.57, 0.27, 0.20)〉 〈[0.13, 0.25, 0.40, 0.60], (0.58, 0.22, 0.25)〉 〈[0.17, 0.30, 0.45, 0.60], (0.51, 0.29, 0.22)〉 〈[0.28, 0.43, 0.58, 0.70], (0.48, 0.33, 0.20)〉



P̃ =

B1

B2

B3

B4

D1 D2 D3 D4
〈[0.48, 0.58, 0.69, 0.81], (0.48, 0.28, 0.33)〉 〈[0.14, 0.39, 0.52, 0.67], (0.64, 0.20, 0.26)〉 〈[0.39, 0.57, 0.67, 0.82], (0.50, 0.38, 0.25)〉 〈[0.42, 0.57, 0.70, 0.84], (0.38, 0.21, 0.48)〉
〈[0.39, 0.51, 0.62, 0.74], (0.56, 0.18, 0.39)〉 〈[0.31, 0.52, 0.69, 0.87], (0.64, 0.15, 0.23)〉 〈[0.20, 0.38, 0.55, 0.66], (0.53, 0.31, 0.20)〉 〈[0.47, 0.60, 0.72, 0.85], (0.45, 0.25, 0.38)〉
〈[0.32, 0.46, 0.56, 0.69], (0.49, 0.28, 0.25)〉 〈[0.14, 0.29, 0.51, 0.76], (0.65, 0.20, 0.25)〉 〈[0.21, 0.33, 0.60, 0.72], (0.55, 0.26, 0.25)〉 〈[0.25, 0.45, 0.55, 0.75], (0.47, 0.25, 0.23)〉
〈[0.27, 0.39, 0.56, 0.66], (0.52, 0.29, 0.21)〉 〈[0.12, 0.25, 0.39, 0.59], (0.57, 0.24, 0.25)〉 〈[0.14, 0.28, 0.42, 0.57], (0.49, 0.34, 0.20)〉 〈[0.24, 0.40, 0.57, 0.70], (0.49, 0.34, 0.21)〉



Step 3. Aggregate the values of the four alternatives on each green supplier to get the overall SVTNNs
by using the SVTNPA or SVTNPG operator.
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The coverall preference matrix shown in K or K̃.

K =

B1

B2

B3

B4


[0.36, 0.54, 0.65, 0.79], (0.51, 0.25, 0.32)
[0.37, 0.52, 0.66, 0.79], (0.55, 0.22, 0.31)
[0.26, 0.40, 0.57, 0.74], (0.54, 0.25, 0.23)
[0.22, 0.35, 0.50, 0.64], (0.53, 0.28, 0.21)



K̃ =

B1

B2

B3

B4


[0.32, 0.52, 0.64, 0.78], (0.50, 0.27, 0.34)
[0.33, 0.50, 0.64, 0.77], (0.54, 0.23, 0.31)
[0.22, 0.37, 0.55, 0.73], (0.54, 0.25, 0.25)
[0.18, 0.32, 0.48, 0.63], (0.52, 0.30, 0.22)


Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than

other alternatives’ values to get the possibility degrees matrix U or Ũ.

U =

B1

B2

B3

B4

B1 B2 B3 B4
− 0.48 0.51 0.54

0.52 − 0.52 0.54
0.48 0.48 − 0.53
0.47 0.46 0.47 −



Ũ =

B1

B2

B3

B4


− 0.48 0.51 0.53

0.52 − 0.53 0.54
0.49 0.47 − 0.52
0.47 0.46 0.48 −


Step 5. Calculate the collective possibility degree index of each alternative to derive the overall values

of the alternatives.

Aggregate U or Ũ to get the overall possibility degree index and the overall possibility degree
index matrix Q or Q̃.

B1 B2 B3 B4

Q =
(

0.512 0.526 0.497 0.465
) B1 B2 B3 B4

Q =
(

0.510 0.528 0.494 0.468
)

Step 6. Rank the green suppliers and select the best one.

The ranking of the four green suppliers is B2 � B1 � B3 � B4. Therefore, SGM Company will
choose Sino Trunk as its cooperative alliance.

The rankings of green suppliers using the SVTNPA operators for different values of λ are shown
in Figure 1. In general, larger values of λ are associated with relatively pessimistic decision-makers;
thus, the alternatives were associated with relatively overall possibility degree index. In contrast,
lower values of λ are associated with relatively optimistic decision-makers. When the decision-makers
do not indicate any preferences, the most commonly-used value (λ = 0.5) is used.
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6.3. Comparison Analysis and Discussion

In order to validate the accuracy of the proposed single valued trapezoidal neutrosophic MCGDM
method, a comparative study is conducted based on the illustrative example in this paper and the
method used for comparison was proposed by Ye [44].

When resolving the above example using the approach described in Reference [44], which involves
the use of t trapezoidal neutrosophic weighted arithmetic averaging (TNWAA) operator or
trapezoidal neutrosophic weighted geometric averaging (TNWGA) operator with known weights
to comprehensively analyze green suppliers, the weights of the decision-makers and criteria can be

generated using the PA operator (wij =
1+G(αij)

∑n
j=1(1+G(αij))

, G(αij) = ∑n
j=1,j 6=j′

(
1−

∣∣∣S(αij)− S(αij′)
∣∣∣)) and

S(αij) [44] is the score function value of the SVTNN aij. The overall values of four alternatives on each
criterion obtained by using TNWAA operator are shown as the matrix M, the matrix M̃ got by using
TNWGA operator.

M =

B1

B2

B3

B4

D1 D2 D3 D4
〈[0.52, 0.62, 0.72, 0.85], (0.51, 0.27, 0.32)〉 〈[0.15, 0.40, 0.53, 0.68], (0.68, 0.18, 0.22)〉 〈[0.40, 0.57, 0.67, 0.82], (0.50, 0.26, 0.22)〉 〈[0.43, 0.58, 0.70, 0.85], (0.42, 0.17, 0.47)〉
〈[0.40, 0.53, 0.63, 0.75], (0.54, 0.17, 0.36)〉 〈[0.32, 0.52, 0.70, 0.87], (0.67, 0.14, 0.21)〉 〈[0.27, 0.42, 0.57, 0.67], (0.57, 0.28, 0.19)〉 〈[0.47, 0.60, 0.73, 0.85], (0.50, 0.23, 0.37)〉
〈[0.34, 0.46, 0.57, 0.69], (0.51, 0.24, 0.25)〉 〈[0.15, 0.30, 0.53, 0.78], (0.66, 0.19, 0.24)〉 〈[0.28, 0.38, 0.62, 0.74], (0.55, 0.24, 0.25)〉 〈[0.25, 0.45, 0.55, 0.75], (0.48, 0.24, 0.22)〉
〈[0.32, 0.42, 0.57, 0.67], (0.63, 0.24, 0.17)〉 〈[0.13, 0.25, 0.40, 0.60], (0.58, 0.20, 0.24)〉 〈[0.17, 0.30, 0.45, 0.60], (0.50, 0.30, 0.18)〉 〈[0.27, 0.42, 0.57, 0.70], (0.51, 0.30, 0.17)〉



M̃ =

B1

B2

B3

B4

D1 D2 D3 D4
〈[0.51, 0.62, 0.72, 0.84], (0.48, 0.28, 0.33)〉 〈[0.14, 0.40, 0.52, 0.67], (0.65, 0.20, 0.25)〉 〈[0.39, 0.57, 0.67, 0.82], (0.50, 0.38, 0.25)〉 〈[0.42, 0.57, 0.70, 0.84], (0.38, 0.21, 0.48)〉
〈[0.39, 0.52, 0.62, 0.74], (0.47, 0.18, 0.39)〉 〈[0.31, 0.52, 0.69, 0.86], (0.64, 0.15, 0.23)〉 〈[0.21, 0.38, 0.56, 0.66], (0.53, 0.31, 0.20)〉 〈[0.47, 0.60, 0.72, 0.85], (0.45, 0.25, 0.38)〉
〈[0.31, 0.45, 0.56, 0.69], (0.50, 0.28, 0.26)〉 〈[0.14, 0.28, 0.51, 0.76], (0.65, 0.20, 0.25)〉 〈[0.20, 0.32, 0.59, 0.72], (0.54, 0.26, 0.25)〉 〈[0.24, 0.45, 0.55, 0.74], (0.47, 0.25, 0.23)〉
〈[0.27, 0.39, 0.56, 0.66], (0.50, 0.30, 0.21)〉 〈[0.12, 0.25, 0.39, 0.59], (0.57, 0.23, 0.25)〉 〈[0.14, 0.28, 0.42, 0.57], (0.49, 0.34, 0.20)〉 〈[0.23, 0.39, 0.56, 0.70], (0.50, 0.34, 0.21)〉


The collective values of the four green suppliers can also be obtained by using the TNWAA

operator as the matrix U or the matrix Ũ by using the TNWGA operator.

U =

B1

B2

B3

B4


[0.37, 0.52, 0.66, 0.78], (0.57, 0.20, 0.27)
〈[0.38, 0.54, 0.66, 0.80], (0.55, 0.22, 0.29)〉
〈[0.26, 0.40, 0.57, 0.74], (0.56, 0.23, 0.24)〉
〈[0.23, 0.35, 0.50, 0.64], (0.56, 0.26, 0.19)〉



Ũ =

B1

B2

B3

B4


〈[0.33, 0.50, 0.64, 0.77], (0.51, 0.23, 0.31)〉
〈[0.33, 0.53, 0.65, 0.79], (0.49, 0.27, 0.34)〉
〈[0.22, 0.37, 0.55, 0.73], (0.54, 0.25, 0.25)〉
〈[0.18, 0.32, 0.48, 0.63], (0.51, 0.30, 0.22)〉
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Finally, the score values si(i = 1, 2, 3, 4) of each green supplier can be obtained by using the score
degree function show in the matrix H or H̃.

B1 B2 B3 B4

H =
(

0.410 0.404 0.342 0.301
) B1 B2 B3 B4

H̃ =
(

0.371 0.362 0.317 0.267
)

So, the ranking is B1 � B2 � B3 � B4 and the best green supplier obtained by using the approach
in Reference [44] is B1. The ranking results of different methods can be shown in Table 1.

Table 1. The ranking results of different methods.

Methods Operators Ranking of Alternatives

The method in Reference [44]
NNTWA operator B1 � B2 � B4 � B3
NNTWG operator B4 � B2 � B1 � B3

The proposed method

SVTNPA operator and the
possibility degrees SVTNNs B2 � B1 � B3 � B4

SVTNPG operator and the
possibility degrees SVTNNs B2 � B1 � B4 � B3

From Table 1, it can be seen results of the ranking on the four green suppliers obtained by the
proposed single trapezoidal neutrosophic MCGDM method in this paper is quite different from that
the ranking obtained by the method introduced in Reference [44]. The main reasons are summarized
as follows.

(a) The new operations of SVTNNs defined in this paper, which take the conservative and reliable
principle, can take account of the correlation between trapezoidal fuzzy numbers and three
membership degrees of SVTNNs. However, the operations in Reference [44] divide the
trapezoidal fuzzy numbers and three membership degrees of SVTNNs into two parts and
calculate them separately, which make aggregating results deviate from the reality.

(b) The new comparison of SVTNNs proposed in this paper has some crucial advantages over
comparison of SVTNNs based on the score degree function in Reference [44], which can take the
preference of decision-makers into consideration.

(c) The relationship among the aggregation information, which exists in the aggregation process of
in practical MCDM problems, is ignored [44]. Whereas, the SVTNPA and SVTNPG operators,
which can effectively take the relationship among the assessment information being aggregated
into consideration and in this paper, the advantages of the possibility degree of SVTNNs are
combined to rank the uncertain information reasonably and accurately from the probability
viewpoint. Hence, the ranking result of this paper is more objective and reasonable than that
obtained by using the operators in Reference [44].

7. Conclusions

In order to improve the reasonability and effectiveness of the methods on dealing with single
valued trapezoidal neutrosophic MCGDM problems, also overcome the limitations of the existing
approaches. In this paper, a single valued trapezoidal neutrosophic MCGDM method is proposed form
the possibility degree of SVTNNs and the single valued trapezoidal neutrosophic power aggregation
operators. Firstly, the new operations of SVTNNs are proposed for avoiding information loss
and distortion, the possibility degrees of SVTNNs are proposed from the probability viewpoint.
Based on the proposed operations and possibility degrees, SVTNPA and SVTNPG operators are
proposed. Furthermore, a single valued trapezoidal neutrosophic MCGDM method based on SVTNPA,
SVTNPG operator and the possibility degrees of SVTNNs is developed. The prominent advantages
of the proposed method are not only its ability to effectively deal with the preference information
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expressed by SVTNNs but also the consideration of the relationship among the information being
aggregated in the process on dealing with the practical MCGDM problems and the advantage of the
possibility degrees of SVTNNs, which can avoid information loss and distortion, is combined. Thus,
the final results are more scientific and reasonable. Finally, the method is applied to a practical problem
on selecting the most appropriate green supplier for SGM Company, meanwhile, the comparison
with other method is carried on and demonstrates its feasibility and effectiveness in dealing with
MCGDM problems.

In future research, the developed method will be extended to other domains, such as personnel
selection and medical diagnosis.
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