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Abstract: The goal of this paper is to solve the computational problem of one kind rational
polynomials of classical Gauss sums, applying the analytic means and the properties of the character
sums. Finally, we will calculate a meaningful recursive formula for it.
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1. Introduction

Let q ≥ 3 be an integer. For any Dirichlet character χ mod q, according to the definition of classical
Gauss sums τ(χ), we can write

τ(χ) =
q

∑
a=1

χ(a)e
(

a
q

)
,

where e(y) = e2πiy.
Since this sum appears in numerous classical number theory problems, and it has a close

connection with the trigonometric sums, we believe that classical Gauss sums play a crucial part
in analytic number theory. Because of this phenomenon, plenty of experts have researched Gauss
sums. Meanwhile, more conclusions have been obtained as regards their arithmetic properties. Such
as the following results provided by Chen and Zhang [1]:

Let p be an odd prime with p ≡ 1 mod 4, λ be any fourth-order character mod p. Then one has
the identity

τ2(λ) + τ2 (λ) = √p ·
p−1

∑
a=1

(
a + a

p

)
= 2
√

p · α,

where
(
∗
p

)
= χ2 denotes the the Legendre’s symbol mod p (please see Reference [1,2] for its definition

and related properties), and α =

p− 1
2
∑
a=1

(
a + a

p

)
.

If p is a prime with p ≡ 1 mod 3, ψ is any third-order character mod p, then Zhang and Hu [3]
had already obtained an analogous result (see Lemma 1). However, perhaps the most beautiful and
important property of Gauss sums τ(χ) is that |τ(χ)| = √q, for any primitive character χ mod q.
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Reference [2] and References [4–13] have a good deal of various elementary properties of Gauss
sums. In this paper, the following rational polynomials of Gauss sums attract our attention.

Uk(p, χ) =
τ3k (χ)

τ3k (χ)
+

τ3k (χ)

τ3k (χ)
, (1)

where p is an odd prime, k is a non-negative integer, χ is any non-principal character mod p.
Observing the basic properties of Equation (1), we noticed that hardly anyone had published

research in any academic papers to date. We consider that the question is significant. In addition, the
regularity of the value distribution of classical Gauss sums could be better revealed. Presently, we will
explain certain properties discovered in our investigation. See that Uk(p, χ) has some good properties.
In fact, for some special character χ mod p, the second-order linear recurrence formula for Uk(p, χ) for
all integers k ≥ 0 may be found similarly.

The goal of this paper is to use the analytic method and the properties of the character sums to
solve the computational problem of Uk(p, χ), and to calculate two recursive formulae, which are listed
hereafter:

Theorem 1. Let p be a prime with p ≡ 1 mod 12, ψ be any third-order character mod p. Then, for any
positive integer k, we can deduce the following second-order linear recursive formulae

Uk+1(p, ψ) =
d2 − 2p

p
·Uk(p, ψ)−Uk−1(p, ψ),

where the initial values U0(p, ψ) = 2 and U1(p, ψ) = d2−2p
p , d is uniquely determined by 4p = d2 + 27b2 and

d ≡ 1 mod 3.

So we can deduce the general term

Uk(p, ψ) =

(
d2 − 2p + 3dbi

√
3

2p

)k

+

(
d2 − 2p− 3dbi

√
3

2p

)k

, i2 = −1.

Theorem 2. Let p be a prime with p ≡ 7 mod 12, ψ be any third-order character mod p. Then, for any
positive integer k, we will obtain the second-order linear recursive formulae

Uk+1(p, ψ) =
i
(
2p− d2)

p
·Uk(p, ψ)−Uk−1(p, ψ),

where the initial values U0(p, ψ) = 2, U1(p, ψ) =
i(2p−d2)

p and i2 = −1.

Similarly, we can also deduce the general term

Uk(p, ψ) = ik

(
2p− d2 +

√
8p2 − 4pd2 + d4

2p

)k

+ ik

(
2p− d2 −

√
8p2 − 4pd2 + d4

2p

)k

.

2. Several Lemmas

We have used five simple and necessary lemmas to prove our theorems. Hereafter, we will apply
relevant properties of classical Gauss sums and the third-order character mod p, all of which can be
found in books concerning elementary and analytic number theory, such as in References [2,10], so we
will not duplicate the related contents.
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Lemma 1. If p is any prime with p ≡ 1 mod 3, ψ is any third-order character mod p, then, we have
the equation

τ3 (ψ) + τ3 (ψ) = dp,

where τ (ψ) denotes the classical Gauss sums, d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. See References [3] or [8].

Lemma 2. Let p be a prime with p ≡ 1 mod 3, ψ be any third-order character mod p, χ2 =
(
∗
p

)
denotes the

Legendre’s symbol mod p. The following identity holds

τ2 (ψ) = (−1
p

)
ψ(4)τ(χ2)τ(ψχ2).

Proof. Firstly, using the properties of Gauss sums, we get

∑
p−1
a=1 ψ (a(a + 1)) = 1

τ(ψ) ∑
p−1
b=1 ψ(b)∑

p−1
a=1 ψ(a)e

(
b(a+1)

p

)
=

τ2(ψ)
τ(ψ)

=
τ3(ψ)

p .
(2)

On the other side, we get the sums

∑
p−1
a=1 ψ (a(a + 1)) = ψ(4)∑

p−1
a=0 ψ

(
4a2 + 4a

)
= ψ(4)∑

p−1
a=0 ψ

(
(2a + 1)2 − 1

)
= ψ(4)∑

p−1
a=0 ψ

(
a2 − 1

)
= ψ(4)

τ(ψ) ∑
p−1
b=1 ψ(b)∑

p−1
a=0 e

(
b(a2−1)

p

)
= ψ(4)

τ(ψ) ∑
p−1
b=1 ψ(b)e

(
−b
p

)
∑

p−1
a=0 e

(
ba2

p

)
= ψ(4)τ(χ2)

τ(ψ) ∑
p−1
b=1 ψ(b)χ2(b)e

(
−b
p

)
= ψ(4)χ2(−1)τ(χ2)τ(ψχ2)

τ(ψ)
.

(3)

Combining Equations (2) and (3), we obtain

τ2 (ψ) = (−1
p

)
ψ(4)τ(χ2)τ(ψχ2).

Now, Lemma 2 has been proved.

Lemma 3. Let p be a prime with p ≡ 1 mod 6, χ be any sixth-order character mod p. Then, about classical
Gauss sums τ(χ), the following holds:

τ3(χ) + τ3 (χ) =

 p
1
2

(
d2 − 2p

)
i f p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7,

where i2 = −1, d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. Since p ≡ 1 mod 6, ψ is a third-order character mod p. Any sixth-order character χ mod p can
be denoted as χ = ψχ2 or χ = ψχ2. Note that ψ3(4) = 1, ψ

3
(4) = 1 and χ3

2 = χ2, from Lemma 2
we deduce

τ6 (ψ) = (−1
p

)
τ3(χ2)τ

3(ψχ2) (4)
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and

τ6 (ψ) =

(
−1
p

)
τ3(χ2)τ

3 (ψχ2
)

. (5)

Adding Equations (4) and (5), and then applying Lemma 1 we have(
−1
p

)
τ3(χ2)

(
τ3(ψχ2) + τ3 (ψχ2

))
= τ6 (ψ)+ τ6 (ψ)

=
(
τ3 (ψ)+ τ3 (ψ)

)2 − 2p3 = d2 p2 − 2p3.
(6)

Note that χ2 is a real character mod p, ψχ2 = ψχ2, and τ(χ2) =
√

p. If p ≡ 1 mod 4;
τ(χ2) = i · √p, i2 = −1, if p ≡ 3 mod 4. From Equation (6) we may immediately prove the sum

τ3(ψχ2) + τ3 (ψχ2
)
=

 p
1
2

(
d2 − 2p

)
if p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7.

(7)

Let χ = ψχ2, then χ is a sixth-order character mod p and ψχ2 = χ. From Equation (7) we can
deduce the sum term

τ3(χ) + τ3 (χ) =

 p
1
2

(
d2 − 2p

)
if p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7.

The proof of Lemma 3 has been completed.

Lemma 4. Let p be a prime with p ≡ 7 mod 12, ψ be any three-order character mod p. Then, we compute the
sum term

τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

i · (2p− d2)

p
.

Proof. Let ψ be a three-order character mod p. Then, for any six-order character χ mod p, we must
have χ = ψχ2 or χ = χχ2. Without loss of generality we suppose that χ = ψχ2, then note that
ψ(−1) = 1, χ2(−1) = −1 and Theorem 7.5.4 in Reference [10], we acquire

p−1

∑
a=0

e
(

ba2

p

)
= χ2(b) ·

√
p, (p, b) = 1.

Using the properties of Gauss sums we can write

∑
p−1
a=0 χ

(
a2 − 1

)
= 1

τ(χ) ∑
p−1
b=1 χ(b)∑

p−1
a=0 e

(
b(a2−1)

p

)
= 1

τ(χ) ∑
p−1
b=1 χ(b)e

(
−b
p

)
∑

p−1
a=0 e

(
ba2

p

)
=
√

p
τ(χ) ∑

p−1
b=1 χ(b)χ2(b)e

(
−b
p

)
=

χ(−1)χ2(−1)
√

p τ(χχ2)
τ(χ)

=
√

p τ(χχ2)
τ(χ)

.

(8)

Noting that χ2 = ψ
2
= ψ, we can deduce

∑
p−1
a=0 χ

(
a2 − 1

)
= ∑

p−1
a=0 χ

(
(a + 1)2 − 1

)
= ∑

p−1
a=1 χ(a)χ(a + 2)

= 1
τ(χ) ∑

p−1
b=1 χ(b)∑

p−1
a=1 χ(a)e

(
b(a+2)

p

)
= τ(χ)

τ(χ) ∑
p−1
b=1 χ2(b)e

(
2b
p

)
= ψ(2)τ(χ)τ(ψ)

τ(χ)
.

(9)
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Obviously, χχ2 = ψ and ψ3(2) = 1, applying Equations (8) and (9) we have

τ3(χ) = p
3
2 ·

τ3 (ψ)
τ3 (ψ)

. (10)

Similarly, we can see

τ3 (χ) = p
3
2 · τ3 (ψ)

τ3
(
ψ
) . (11)

Combining Equation (10), Equation (11) and Lemma 3 we compute

τ3 (ψ)

τ3
(
ψ
) + τ3 (ψ)

τ3 (ψ)
=

1

p
3
2

(
τ3(χ) + τ3 (χ)

)
=

i · (2p− d2)

p
.

This completes the proof of Lemma 4.

Lemma 5. Let p be a prime with p ≡ 1 mod 12, ψ be any three-order character mod p. Then, we obtain the
sum term

τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

d2 − 2p
p

.

Proof. From Lemma 3 and the method of proving Lemma 4 we can easily deduce Lemma 5.

3. Proofs of the Theorems

In this section, we prove our two theorems. For Theorem 1, since p ≡ 1 mod 12, ψ is a third-order
character mod p, then for any positive integer k, let

Uk(p) =
τ3k (ψ)

τ3k
(
ψ
) + τ3k (ψ)

τ3k (ψ)
.

From Lemma 5 we have

U1(p) =
τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

d2 − 2p
p

(12)

and
d2−2p

p ·Uk(p) = Uk(p)U1(p) =
(

τ3k(ψ)

τ3k(ψ)
+

τ3k(ψ)
τ3k(ψ)

)
·
(

τ3(ψ)
τ3(ψ)

+ τ3(ψ)

τ3(ψ)

)
=

τ3k+3(ψ)
τ3k+3(ψ)

+ τ3k+3(ψ)

τ3k+3(ψ)
+

τ3k−3(ψ)
τ3k−3(ψ)

+ τ3k−3(ψ)

τ3k−3(ψ)
= Uk+1(p) + Uk−1(p).

(13)

Combining Equations (12) and (13) we may immediately compute the second-order linear
recursive formula

Uk+1(p) =
d2 − 2p

p
·Uk(p)−Uk−1(p) (14)

with initial values U0(p) = 2 and U1(p) = d2−2p
p .

Note that the two roots of the equation λ2 − d2−2p
p λ + 1 = 0 are

λ1 =
d2 − 2p + 3dbi

√
3

2p
and λ2 =

d2 − 2p− 3dbi
√

3
2p

.
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So from Equation (14) and its initial values we may immediately deduce the general term

Uk(p, ψ) =

(
d2 − 2p + 3dbi

√
3

2p

)k

+

(
d2 − 2p− 3dbi

√
3

2p

)k

,

where i2 = −1. Now Theorem 1 has been finished.
Similarly, from Lemma 4 and the method of proving Theorem 1 we can easily obtain Theorem 2.

Now, we have completed all the proofs of our Theorems.

4. Conclusions

The main results of this paper are Theorem 1 and 2. They give a new second-order linear
recurrence formula for Equation (1) with the third-order character ψ mod p. Therefore, we can
calculate the exact value of Equation (1). Note that |τ

(
ψ
)

/τ (ψ) | = 1, so τ
(
ψ
)

/τ (ψ) is a unit root,
thus, the results in this paper profoundly reveal the distributional properties of two different Gauss
sums quotients on the unit circle.

For the other mod p characters, for example, the fifth-order character χ mod p with p ≡ 1 mod 5,
we naturally ask whether there exists a similar formula as presented in our theorems. This is still an
open problem. It will be the content of our future investigations.
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