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Abstract: Many scholars have attempted to use an encryption method to resolve the problem of data
leakage in data outsourcing storage. However, encryption methods reduce data availability and are
inefficient. Vertical fragmentation perfectly solves this problem. It was first used to improve the
access performance of the relational database, and nowadays some researchers employ it for privacy
protection. However, there are some problems that remain to be solved with the vertical fragmentation
method for privacy protection in the relational database. First, current vertical fragmentation methods
for privacy protection require the user to manually define privacy constraints, which is difficult
to achieve in practice. Second, there are many vertical fragmentation solutions that can meet
privacy constraints; however, there are currently no quantitative evaluation criteria evaluating
how effectively solutions can protect privacy more effectively. In this article, we introduce the
concept of information entropy to quantify privacy in vertical fragmentation, so we can automatically
discover privacy constraints. Based on this, we propose a privacy protection model with a minimum
entropy fragmentation algorithm to achieve minimal privacy disclosure of vertical fragmentation.
Experimental results show that our method is suitable for privacy protection with a lower overhead.

Keywords: privacy protection; vertical fragmentation; information entropy; quantify privacy;
relational database

1. Introduction

With the increase of human activities, more and more personal data needs to be stored.
Some enterprises and individuals outsource their data to storage service providers. However,
outsourcing storage gives rise to new security risks. A major problem is that the data is stored
on external storage providers, so owners lose control over their data, potentially exposing them to
improper access and dissemination. For example, in 2007, the well-known cloud service provider
Salesforce [1] leaked a large amount of data due to security issues.

A current issue is how to ensure that outsourced data does not suffer from private leakage,
even if the intruders obtain the original data. Currently, the most widely used method to protect
outsourced data is encryption. At the same time, in order to ensure the availability of data, in the field
of encryption technology, there are homomorphic encryption techniques [2], searchable encryption
techniques [3,4] and the like. However, from the user’s point of view, the use of encryption technology

Symmetry 2018, 10, 637; doi:10.3390/sym10110637 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/11/637?type=check_update&version=1
http://dx.doi.org/10.3390/sym10110637
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 637 2 of 18

is a huge burden. Encryption technology is very inefficient in operations such as database queries.
Other commonly used data outsourcing methods include anonymization such as k-anonymity [5,6],
l-diversity [7], and t-closeness [8]. Still, these methods limit the availability of the outsourced data.

An interesting method used to ensure both the availability and privacy of outsourced data is
vertical fragmentation. Vertical fragmentation is not specifically designed to protect data security.
It is primarily used in relational databases to improve database access performance and optimize
storage. It splits a large table into multiple small tables and stores the information on multiple
different servers. When the user submits a query request, the system will translate it into multiple
requests which are executed concurrently on different servers. In this way, the efficiency of database
querying is greatly improved. The vertical fragmentation method assumes that privacy is generated
by the associations among data. For example, if the name and phone number in a database are
leaked separately, the attacker could not obtain the knowledge of which number belongs to whom.
However, if the name and phone number are leaked together, the attacker will obtain accurate privacy
information. Vertical fragmentation splits the database into different servers, greatly reducing the
risk of leaking the entire database. Thus, we can use vertical fragmentation to protect the privacy
of an outsourced database. In addition, vertical fragmentation has a big advantage of maintaining
outsourced data availability compared to the use of encryption and anonymization techniques, as these
latter methods do not store the original data.

However, there are some problems with vertical fragmentation concerning privacy protection.
First, it is very difficult for users to specify privacy constraints. In practice, users need to understand
the semantics of each attribute and then determine if there are privacy constraints. Some weakly
related privacy constraints are difficult for users to find, especially when there are many attributes in
the database. Second, there are many vertical fragmentation methods that satisfy privacy constraints.
In order to evaluate which method is better, De Capitani di Vimercat’s approach simulates the frequency
of access to all attributes and ultimately chooses the method with the best access efficiency to perform
the vertical fragmentation. In fact, the access data for attributes are impossible to know in advance.

Compared with De Capitani di Vimercat’s method, our research focuses on optimizing vertical
fragmentation to eliminate user-defined privacy constraints and evaluate the effectiveness of privacy
protection. We propose a new approach to vertically fragment a relational database to ensure the
privacy and availability of the outsourced data. The approach consists of an entropy-based method
to quantify the privacy of outsourcing data and a greedy algorithm to achieve privacy protection.
In summary, we make the following contributions:

(1) We introduce the concept of information entropy and give an example of entropy calculation
for a sample database, thus avoiding the need for the user to manually define privacy constraints in
vertical fragmentation. We can calculate the entropy value of any number of attributes to determine
which attributes together have a greater probability of having privacy constraints.

(2) We implement a vertical fragmentation method based on a greedy algorithm to minimize
entropy. There are many solutions for vertically fragmenting databases. In order to minimize the risk of
privacy leakage per fragmentation, we need to make the entropy of each fragment as small as possible.
We propose a greedy algorithm to minimize the entropy for vertical fragmentation, which also works
with low overhead.

The rest of this paper is structured as follows. Section 2 introduces related works. Section 3
describes the problem statement. We introduce our approach in Section 4. The experimental results
are discussed in Section 5. In Section 6, we discuss the limitations and extensibility of our work.
Conclusions are given in Section 7.

2. Related Work

In this section, we first introduce related work on vertical fragmentation with a focus on privacy
protection (Section 2.1), and then we describe the research on information entropy (Section 2.2).
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2.1. Vertical Fragmentation for Privacy Protection

With the development of encryption technology, encryption technology has been considered
the greatest method for privacy protection. Encryption technology is inefficienct at performing
queries. To perform the query on encrypted data, researchers proposed the indexing methods.
Hacigumus et al. [9] proposed the bucket-based index methods. Hore et al. [10] present an efficient
bucket-based index method. Wang et al. [11] proposed a hash-based index method. However,
the indexing methods can’t resist inference attacks [12], and Order Preserving Encryption (OPE) [13]
methods solve this problem by performing range query.

These encryption methods to protect privacy do not solve the problem of how to efficiently
execute queries. There is no doubt that querying on encrypted data is very inefficient. An interesting
method to achieve the goal of privacy protection and efficiently query is vertical fragmentation. Vertical
fragmentation is mainly used to improve database access performance, since vertical fragmentation
stores attributes together that are frequently accessed by queries. De Capitani di Vimercat et al.
were the first to use vertical fragmentation for privacy protection. As reported in Refs. [14–20],
De Capitani di Vimercat et al. used vertical fragmentation to protect the privacy of a relational
database. They employed the user defined privacy constraints to complete the vertical fragmentation.
Considering that there are many solutions to satisfy privacy constraints, they employed the user’s query
load to compute the query efficient optimal solution. Xiang et al. [21] suggested that the user’s query
load on the outsourced data was dynamically changing, so they proposed an adaptive partitioning
strategy. Biskup et al. [22] used vertical fragmentation to protect confidentiality. Their model consists
of two domains: one for storing encrypted data and one for trusted local domains which store
fragments containing highly sensitive data without encrypting them. However, this method is
not efficient. In order to solve the overhead in the query processing of data encryption methods,
Ganapathy et al. [23] proposed distributing data storage for secure database services, in which data is
stored on multiple servers. They also used the concept of privacy constraints to achieve a heuristic
greedy algorithm for the distribution problem. Partitioning the queries for the servers was achieved
using a bottom-up state-based algorithm. For multi-relational databases, Bkakria et al. [24] defined an
approach for the privacy protection of sensitive information in outsourced data, based on a combination
of fragmentation and encryption.

2.2. Information Entropy

Shannon’s theory of information entropy [25] solves the basic theory of quantifying and
communicating information. Earlier studies of information entropy to measure privacy are those
by Diaz [26] and Serjantov et al. [27], who proposed the use of information entropy to measure the
anonymity of anonymous communication systems. Assuming that the purpose of the attacker is to
determine the true identity of the sender (or receiver) of the message, each user in the system can
be estimated to be the true sender or receiver of the message with a certain probability. The attacker
guesses that a user is a real sender or receiver, which is expressed as a random variable X. Let p(x)
be the probability function of X, and S(X) be the set of possible values of X. In this way, we use the
entropy H(x) to quantify the system’s privacy level:

H(X) = −∑ p(x)log2 p(x). (1)

For example, when the set S(X) is {1, 2} and the probability of each is 50%, then H(X) = 1.
If the only value of the random variable X is 1, then the probability of taking the value of 1 is 100%.
Accordingly, H(X) = 0. Therefore, the greater the entropy of the random variable X, the greater the
dispersion of X. The more discrete the value, the greater the probability that a record is identified,
and the higher the risk of information being leaked. If the entropy of the attribute is 0, it means that
the value of the attribute may equally correspond to all the records equally, and thus the security is
also the highest; it is hard for an attacker to identify the message sender or receiver.
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3. Problem Statement

To provide privacy protection with vertical fragmentation, we first examine the meaning of
vertical fragmentation for privacy protection, in general. We use an example to explain it and show
that the current vertical fragmentation method is inefficient and unrealistic. Then, we introduce
automated vertical fragmentation technology, which is the approach needed to quantify the privacy.
Finally, we give the evaluation criteria of our method.

3.1. Vertical Fragmentation with Privacy Constraints

De Capitani di Vimercat et al. first proposed a vertical fragmentation strategy to protect privacy
in a relational database. In De Capitani di Vimercat’s research, privacy is defined by the user, in terms
of privacy constraints. A privacy constraint corresponds to a set of attributes of a relational database.
The attributes in the set together may lead to privacy leakage.

Definition 1. Privacy Constraints. For a simple relationship R, it consists of attributes a1, a2, a3, . . . an.
All privacy constraints are a subset of this attribute set, that is, the set of privacy constraints c ⊆ {a1, a2, . . . an}.

For example, in a medical system, a patient’s information sheet consists of their social security
number (SSN), name, date of birth (DoB), zip code, disease, and physician, as shown in Table 1.
De Capitani di Vimercat believed that some attributes together will cause the risk of a privacy leak.
For example, the SSN and disease together form a privacy constraint, as they could disclose private
information if leaked together. However, it is meaningless for only the SNN or only the disease
information to be acquired by others; this does not cause a loss of privacy.

Table 1. An example of a patient’s information sheet and the associated privacy constraints.

SSN Name DoB Zip Code Disease Physician

123-56-1234 Alice 08/03 98112 Flu M.White
234-56-7890 Bob 10/07 94778 Asthma D.Warren
345-67-8901 David 02/12 94139 Gastritis M.White
456-78-9012 Jery 08/03 94139 Flu K.Jsery
567-89-0123 Semy 03/04 94141 Angina D.Warren
678-90-1234 Fred 12/01 94142 Diabetes M.Kity

c0 = {SSN, name}, c1 = {SSN, DoB}, c2 = {SSN, zip code}, c3 = {SSN, disease}, c5 = {SSN, physician},
c6 = {name, DoB}, c7 = {name, zip code}, c8 = {name, disease}, c9 = {name, physician}, c10 = {DoB, zip code,
disease}, c11 = {DoB, zip code, physician}.

De Capitani di Vimercat reported that the SSN together with other attributes can be considered
as privacy constraints, as described by c0, . . . c5. Similarly, the name is also considered very sensitive.
Privacy constraints c6, . . . c9 show that the name paired with other attributes presents a privacy risk.
Privacy constraints c10 indicate that, with the birthday, zip code, and disease information together,
one can infer the patient’s name, acting as a quasi-identifier. Similarly, with the birthday, zip code,
and physician together, one can also infer the name and SSN, as privacy constraint c11 describes.
Privacy constraints c0 to c11 are manually defined by the user.

Definition 2. Fragmentation. Let R(a1, a2, . . . an) be a relation schema, and the fragmentation result is
F = { f1, f2, . . . fp}, where these fragments satisfy:

(i) ∀ fi ∈ F, i ∈ [1, . . . p], fi ⊆ {a1, . . . , an},
(ii) ∀ fi, f j ∈ F, i 6= j : fi ∩ f j = ∅,
(iii) f1 ∪ f2 ∪ · · · ∪ fp = {a1, . . . , an}.
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Condition (i) represents that only attributes of the relation R are considered by the fragmentation,
condition (ii) ensures unlinkability between different fragments and condition (iii) guarantees that all
attributes are fragmented.

Using these privacy constraints, De Capitani di Vimercat divided the patients’ information sheet
into four blocks { {SSN}, {name}, {DoB, zip code}, {disease, physician} }. Next, they were stored on four
different servers that do not communicate with each other. Thus, even if one server is compromised
due to an attack, the entire relational database would not be leaked; that is, “two can keep a secret” [28].
This is the core concept of vertical fragmentation for privacy protection in De Capitani di Vimercat’s
research: that is, to break the original relationships for the purpose of privacy protection.

However, De Capitani di Vimercat’s research still has some flaws. First, we need to know the
semantics of each attribute as well as which attributes together may cause privacy leaks. Just like the
example above, we have to make sure that the SSN and name attributes are sensitive, and recognize
that they will cause privacy leaks along with other attributes. Second, some privacy constraints
are not easily found in semantics, such as the privacy constraint c10 = {DoB, zip code, and disease}
in the above patients’ information sheet. This is very difficult to apply to actual problem-solving.
In reality, the number of attributes will be very large, and their relationships will be very complicated,
so manually defined privacy constraints are not realistic. Third, there are many vertical fragmentation
schemes that can satisfy the privacy constraints. For example, { {SSN}, {name}, {DoB, disease}, {zip code,
physician} } is also a good scheme. However, De Capitani di Vimercat does not provide evaluation
criteria to judge the quality of these schemes.

3.2. Evaluation Standard

We consider our model, as shown in Figure 1. It is composed of three main components: (1) The
trusted client, which is the trusted party responsible for fragmenting and distributing the data to
different cloud service providers (CSPs); (2) the CSPs, which are responsible for storing, querying, and
retrieving data, and (3) the protocol that the trusted client and CSPs communicate by.

Trusted client

CSP

CSP

CSP

protocol

protocol

protocol

Figure 1. Storage model.

In our proposed research, we assume that the attacker can obtain the data of a certain CSP through
the network, but that the CSPs do not communicate with each other, so the risk of privacy leakage is
concentrated on a single CSP. Our goal is to ensure the protection of private information on a single
CSP. Based on the analysis of the example of the patients’ information sheet, below is a list of the types
of tasks that must be accomplished with our approach.

(1) Correct Fragmentation: Verify that the privacy constraints are broken, so that fragmentation
on a single CSP will not cause privacy leaks. Our approach must first ensure the most basic privacy
protection requirements to break the potential privacy constraints that exist in relational databases.
We must ensure there are no privacy leaks in the fragmentation of data, one can completely determine
the records in the database, and so are very likely to disclose privacy when paired together.
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Definition 3. Correct Fragmentation. Let R(a1, a2, . . . an) be a relation schema, the fragmentation result be
F = { f1, f2, . . . fp}, and C(c0, c1, . . . ct) be the privacy constraints. One correct fragmenting scheme must meet
Definition 1 and the following requirements:

∀ci ∈ C, i ∈ [1, . . . t], ci 6⊂ { f1, . . . , fp}.

As shown by example of the patients’ information sheet, with the scheme F =

{{SSN}, {name}, {DoB, disease}, {zipcode, physician}}, the privacy constraints c0, . . . c11 are not a
subset of the fragment fi.

(2) Minimal fragmentation: This is a simple metric of the fragmentation scheme to avoid excessive
fragments. Intuitively, if there are n attributes of the data to be fragmented, we can simply divide it
into n fragments. Thus, the risk of privacy leakage is also lower than other schemes. However, if we
completely divide all attributes, it will lead to higher database query overhead.

Definition 4. Minimal fragmentation. Let R(a1, a2, . . . an) be a relation schema. There are fragmentation
schemes F satisfy definition 3, Fi is the minimal fragmentation scheme, iff

∀Fj, j 6= i : #Fi ≤ #Fj.

Here, # indicates the number of collection elements. #Fi represents the number of fragments
of scheme Fi. De Capitani di Vimercat et al. translate the problem into the problem of computing
maximum weighted clique of the fragmentation graph and implemented it with the Ordered Binary
Decision Diagrams(OBDDs) [29]. Their methods are based on heuristics algorithm and cannot get the
optimal solution.

(3) Lower Risk of Information Disclosure: Each fragment contains a portion of private information
that is less than the total amount of private information. There are many kinds of vertical fragmentation
methods that can satisfy condition (1), but the various vertical fragmentation methods differ in that each
fragment contains a different amount of information. In the patients’ information sheet, both scheme (a)
{ {SSN}, {name}, {DoB, zip code}, {disease, physician} } and scheme (b) { {SSN}, {name}, {DoB, disease},
{zip code, physician} } are vertical fragmentation solutions. However, the amount of information they
contain is different; thus, we need to reduce the amount of information contained in each fragment as
much as possible. The greater the amount of information contained in the fragment, the greater the risk
of information leakage. Suppose there are s fragments, and the amount of information contained in
each fragment i is I(i). To evaluate the risk of information leakage of the scheme, we need to minimize
the sum of the squares of the information ∑ I(i)2.

Definition 5. Lower Risk of Information Leakage. Let R(a1, a2, . . . an) be a relation schema. There are
fragmentation schemes (a) Fa = { f a1, f a2, . . . f ap1} and (b) Fb = { f b1, f b2, . . . f bp2}, when

Ia =
p1
∑

i=1
Ii

2, Ib =
p2
∑

i=1
Ii

2, Ia < Ib.

Ia is an evaluation of the risk of information disclosure of the scheme (a), and Ib is the evaluation of the risk
of information disclosure of the scheme (b). This is to say scheme (a) has lower information than scheme (b).

The first statement indicates that our approach should achieve the goal of privacy protection,
while the second statement indicates that the number of fragments needs to be minimized. The last
statement indicates that we should minimize the potential risk of information disclosure. Our goal is to
meet the above three requirements, which is equivalent to a multi-objective constrained optimization
problem [30].
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4. Approach

In this section, we describe the method to obtain the goal of privacy protection with minimal
information disclosure. Our approach is implemented in three steps. First, we introduce the concept of
entropy values to quantify private information. In this way, we can automatically discover privacy
constraints to complete the fragmentation (Section 4.1). Second, we use the privacy constraints
calculated in step 1 to get the number of minimal fragmentation (Section 4.2). Finally, we implement
a minimum entropy fragmentation algorithm based on the greedy strategy, through which we can
minimize the entropy of each fragment (Section 4.3).

4.1. Information Entropy to Quantify Privacy

To automatically discover privacy constraints, we need a method to quantify privacy. As an
effective tool for measuring information, information entropy has proven to be an important
contribution to the field of communications. As privacy is a kind of information, we can naturally
consider using entropy to quantify it [31].

First, we assume that the set of attributes to be fragmentated is table A (a1, a2, a3, . . . an), with n
attributes kept in m records r1,r2,..rm. We can calculate the overall entropy of the table as follows:

EN(A) = −
s
∑

i=1
p(ri)log2 p(ri),

s ≤ m, 0 ≤ p(ri) ≤ 1, ∑ p(ri) = 1.
(2)

EN(A) represents the entropy of table A, s indicates the number of records that are not repeated in
the record r, and p(ri) represents the probability of ri in table A. For example, the patient’s information
sheet has six records (r1 to r6). None of the records are repeated, thus:

p(ri) = 1/6(i = 1, 2, . . . 6),
EN(A) = −(1/6log21/6 + 1/6log21/6 + 1/6log21/6+
1/6log21/6 + 1/6log21/6 + 1/6log21/6) = log26 ≈ 2.5850.

It can be proved that, if there is no repeat record, then the entropy value is log2m. We can define a
probability distribution that a record Xi in the database takes a value a via

Pr(Xi = a) = #{rj(i) = a, 1 ≤ j ≤ m}/m. (3)

Here, the property Xi is a random variable of the attribute, and # represents the number of
elements in the collection. For example, in the patient’s information sheet:

Pr(disease = f lu) = 2/6 = 1/3,
Pr(physician = M.White) = 2/6 = 1/3.

Thus, the entropy of an attribute aj is:

EN(aj) = − ∑
a∈ai

Pr(ai = a)log2 Pr(ai = a). (4)

As Table 1 shows for the patients’ information sheet, the attributes’ entropies can calculated
as follows:

EN(SSN) = −(1/6log21/6 + 1/6log21/6 + 1/6log21/6+
1/6log21/6 + 1/6log21/6 + 1/6log21/6) = log26 ≈ 2.5850,

EN(physician) = −(2/6log22/6 + 2/6log22/6 + 1/6log21/6+
1/6log21/6) = 1/3log236 ≈ 1.2925.
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The joint entropy can be calculated as follows:

EN(SSN, name) = log26 ≈ 2.5850,
EN(DoB, disease) ≈ 2.2516.

The joint entropy treats multiple attributes as a new attribute. As shown above EN(SSN, name),
we treat SSN and name as a new single attribute. That is to say, EN(A, B) = EN(B, A).

Theorem 1. Let R be a relation schema, A and B are attributes, EN(A) and EN(B) represent their entropy,
and EN(A, B) is the joint entropy of attributes A and B; thus,

EN(A, B) ≥ max{EN(A), EN(B)}.

Proof of Theorem 1. Assume that attribute A consists of the records ra1, ra2, . . . ram, and B consists of
rb1, rb2, . . . rbm:

EN(A) = EN(ra1, ra2, . . . ram),

EN(B) = EN(rb1, rb2, . . . rbm),

EN(A, B) = EN(ra1∞rb1, ra2∞rb2, . . . ram∞rbm).

Here, ∞ is a string concatenation function. From the definition of entropy, we know that the more
non-repeating records there are, the larger the entropy. There are records rai and raj of attribute A.
If rai = raj, after adding attribute B, it will become rai∞rbi and raj∞rbj. However, rai∞rbi= raj∞rbj
is true only when rai = rai and rbj = rbj. EN(A, B) will reduce the number of repeating records,
so EN(A, B) ≥ max{EN(A), EN(B)}.

Theorem 2. Let R be a relation schema, A and B are attributes, EN(A) and EN(B) represent their entropy,
EN(A, B) is the joint entropy of attributes A and B, and thus

EN(A, B) ≤ EN(A) + EN(B).

Proof of Theorem 2. Mathematical induction. Assume that attribute A consists of the records
ra1, ra2, . . . ram, B consists of rb1, rb2, . . . rbm, and n represents the number of non-repeating records of
attribute B, thus:

When n = 1, n = 1 represents the records in attribute B exactly the same, rb1 = rb2 = · · · = rbm

and EN(B) = 0, thus:
EN(A, B) = EN(ra1∞rb1, ra2∞rb2, . . . ram∞rbm)

= EN(ra1, ra2, . . . ram) + 0=EN(A) + EN(B).

That is to say,
EN(A, B) ≤ EN(A) + EN(B).

Suppose when n = t, EN(A, B)t ≤ EN(A)t + EN(B)t, there are x duplicate rbk records in
attribute B, #BR = #{rbi|rbi = rbk} = x, x ≥ 1. We mark them with BR = {rnb1, rnb2, . . . rnbx},
and the corresponding elements in attribute A are recorded as AR = {rna1, rna2, . . . rnax}. Here,
rnb1 = rnb2 = · · · = rnbx = rbk. At the same time, we mark attributes A and B to remove these
records as A− AR and B− BR:

EN(A, B)t ≤ EN(A)t + EN(B)t.
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When n = t + 1, we know that the number of repeating records is minus one. There are x− 1
duplicate rbk records in attribute B; we need to discuss in two cases:

(1) #{rai∞rbi|rbi = rbk} = x, this means #{rna1, rna2, . . . rnax} = x, thus

EN(B)t = −
#{B−BR}

∑
i=1

pilog2 pi + (− x
m
)log2(

x
m
),

EN(B)t+1 = −
#{B−BR}

∑
i=1

pilog2 pi + (− x− 1
m

)log2(
x− 1

m
) + (− 1

m
)log2(

1
m
).

When we chang the duplicate record in attribute B, rai and rai∞rbi will not change, thus

EN(A)t+1 = EN(A)t,

EN(A, B)t+1 = EN(A, B)t.

From the above, we know that we only need to prove EN(B)t+1 − EN(B)t > 0:

EN(B)t+1 − EN(B)t =
1
m

log2
xx

(x− 1)x−1 .

It is easy to prove that, when x > 1 and m > 1, the above formula is greater than zero, so

EN(A, B)t+1 = EN(A, B)t ≤ EN(A)t+1 + EN(B)t+1.

(2) #{rai∞rbi|rbi = rbk} = y, y < x. We know that the number of duplicate records is y. There are
at least two duplicate records in the set AR, thus y ≥ 2, we mark them as RNA. When the number of
repeating records in the set BR is minus one, if the records in the set RB corresponding to the RNA
do not change, it will become situation (1). We only need to consider that the situation of the set RB
corresponding to the RNA are changing, thus:

EN(A)t+1 = EN(A)t,

EN(B)t = −
#{B−BR}

∑
i=1

pilog2 pi + (− x
m
)log2(

x
m
),

EN(B)t+1 =
#{B−BR}

∑
i=1

−pilog2 pi + (− x− 1
m

)log2(
x− 1

m
) + (− 1

m
)log2(

1
m
),

EN(A, B)t = −
s

∑
i=1

pilog2 pi + (− y
m
)log2(

y
m
),

EN(A, B)t+1 = −
s

∑
i=1

pilog2 pi + (−y− 1
m

)log2(
y− 1

m
) + (− 1

m
)log2(

1
m
).

This is equivalent to proof

EN(A, B)t+1 − EN(A, B)t ≤ EN(B)t+1 − EN(B)t.
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This is to say, we need to prove

1
m

log2
yy

(y− 1)y−1 ≤
1
m

log2
xx

(x− 1)x−1 .

We know that, when m > 1 and x > y > 1, f (x) = 1
m log2

xx

(x−1)x−1 is a monotonically increasing

function. Obviously, EN(A, B)t+1 ≤ EN(A)t+1 + EN(B)t+1.
In summary, we can get the following conclusion:

EN(A, B) ≤ EN(A) + EN(B).

With this knowledge, we can automatically discover the privacy constraints that exist in Table 1:
EN(SSN) = EN(name) = 2.585 = EN(total table), which indicates that these attributes have privacy
constraints, corresponding to c0 to c9. Likewise, EN(DoB, zip code, disease) = EN(DoB, zip code, physician)
= 2.585 = EN(total table) also indicates these attributes have privacy constraints, corresponding to c10

and c11. We know from the definition of entropy that entropy is the amount of information an attribute
contains. That is to say, both SSN and name contain the information amount of the entire table of the
patients’ information sheets, similar to the primary key. Thus, they are susceptible to privacy leaks
along with other attributes.We proposed an algorithm that automatically generates privacy constraints,
shown in Algorithm 1.

Algorithm 1 Automatically Generates Privacy Constraints Algorithm (Table A, Constraints)
Input: Input parameters TableA : the table to be fragmented
Output: Output Constraints : the privacy constraints

1: [m, n] = size(TableA)
2: Entropy_tableA = calEntropy(TableA, m)
3: for each Ai ∈ {A1, . . . An} do
4: Attri_entropy = calEntropy(Ai, m);
5: end for
6: for i = 2 to n − 1 do
7: Combinations(i) = calCombinations(i, Attri_entropy, Entropy_tableA)
8: for j = 1 to size(Combinations(i)) do
9: Str = ∅

10: for each Ak ∈ Combinations(i, j) do
11: Str = Str + Ak
12: end for
13: Comb_entropy(i, j) = calEntropy(Str, m)
14: if Comb_entropy(i, j) > Entropy_tableA× threshold then
15: Constraints(i, j) = Combinations(j);
16: end if
17: end for
18: end for

The automatically generated privacy constraints algorithm takes the table to be split as input,
and the set of constraints result is saved in the array Constraints. Line 1 calculates the number of
records and the number of attributes, marked as m and n, respectively. Line 2 calculates the entropy of
the whole table. The function calEntropy takes the set of attributes and the number of records as input,
using Equations (3) and (4) to calculate the entropy of the attribute. Lines 3 to 5 calculate the entropy
of a single attribute in TableA. In lines 6 to 18, we calculate the constraints from 2 to n − 1 dimension.
In Line 7, the function calCombinations calculates the combination of possible privacy constraints for
the number of different attributes based on the entropy of all attributes. If i = 3, it will return all
ternary combinations that may have privacy constraints. The basis for determining whether it can
become a privacy constraint is based on Theorems 1 and 2. In lines 8 to 17, we decide whether these
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possible combinations will become privacy constraints. On line 13, we calculate the entropy of the
possible combination of privacy constraints. On line 14, we set a threshold(0 < threshold ≤ 1) that the
user can adjust. The larger the threshold, the stronger the privacy constraint requirement. When the
entropy of possible combination exceeds the entropy of entire table multiplied by threshold, we think
that there is a privacy constraint so that we can automatically discover privacy constraints. There is no
need for users to manually define privacy constraints at all.

4.2. Calculate Minimal Fragmentation

Given a relational database, there are many correct fragmentation schemes. We can quickly
calculate a simple minimal fragmentation scheme by Theorems 1 and 2.

Theorem 3. Let R(a1, a2, . . . an) be a relation schema, and EN(R) represent the entropy of it. EN(ai) is the
entropy value of each attribute. F is a correct fragmentation and close to the optional minimal fragmentation
schemes, and de is the ceiling function, threshold is a parameter that allows users to adjust the strength of
privacy protection, thus

#F =


n
∑

i=1
EN(ai)

EN(R)× threshold

 .

Proof of Theorem 3. We get correct fragmentation schemes F = { f1, f2, . . . fp}. From Definition 2,
we know

f1 ∪ f2 ∪ · · · ∪ fp = {a1, a2, . . . an},

∀ fi, f j ∈ F, i 6= j : fi ∩ f j = ∅.

According to Theorem 2,

EN( f1) + EN( f2) + . . . EN( fp) ≤ EN(a1) + EN(a2) + . . . EN(an)

EN(
p

∑
i=1

EN( fi)) ≤
n

∑
i=1

EN(ai). (5)

We know from Section 4.1 that, when a fragmentation violates privacy constraints, its entropy
must be greater than EN(R)× threshold. When F is a correct fragmentation, thus

EN( fi) < EN(R)× threshold. (6)

From Equations (5) and (6), we can conclude that

#F = p =


n
∑

i=1
EN(ai)

EN(R)× threshold

 .

According to the above method, we can quickly calculate a smaller number of fragmentation,
but not an optimal solution.

4.3. Minimum Entropy Fragmentation Algorithm

By using the entropy to quantify privacy, we can automatically discover the privacy constraints
between attributes and the number of fragmentation. In this section, we achieve another goal, which is
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to minimize the amount of information disclosed in each fragment using the minimum entropy
fragmentation algorithm.

From the definition of information entropy, we know that if the entropy of an attribute is x,
then the amount of information it contains is 2x. Thus, the information disclosed after fragmentation is:

I(n) =
n

∑
i=1

2EN( fi) (7)

EN( f (i)) represents the entropy value of fragmentation f(i) , and n represents the number of
fragments. In order for us to turn this problem into: given a relation R(a1, a2, . . . an), F = { f1, f2, . . . fp}
is a correct minimal fragmentation, this requires the following constraints:

∀ fi, EN( fi) < EN(R) ∗ threshold

and make the I(p) as small as possible

I(p) =
p

∑
i=1

2EN( fi).

This is the constrained minimum solution problem. To achieve the approximate optimal solution
of disclosing the minimum amount of information, we employ a greedy algorithm, shown in
Algorithm 2.

The minimum entropy fragmentation algorithm takes the table to be split as input, and the
fragmentation result is saved in the array FS. Line 1 calculates the number of records and the number
of attributes, marked as m and n, respectively. The function calEntropy takes the attribute and the
number of records as input, using Equations (3) and (4) to calculate the entropy of the attribute. Lines 2
to 4 calculate the entropy of a single attribute in Table A. In Line 5, we calculate the entropy of entire
table. In Line 6, we use Theorem 3 with the function calMinimalFragmentation to calculate the minimal
number of fragments. In Line 7, all of the attributes are arranged in descending order. Lines 8 to 10 fill
in the maximum attributes to the result array FS. Line 14 uses Equation (7) to calculate the current
amount of information disclosure, while Lines 16 to 22 calculate the amount of information disclosure
after adding the specified attribute to each fragment. On line 17, we use the function calSetSumEntropy
to calculate the entropy of the set FS and determine if there is a risk of privacy leak after adding
the attribute Ai. If there is a risk of privacy leak, we set the amount of information disclosure to
the maximum value of the system; otherwise, we use the function cal In f oIncrement to calculate the
increment of information disclosure. On Line 23, the fragmentation that minimizes the amount of
information disclosed is selected. Finally, the attributes are assigned to the target fragmentation. Thus,
there is no need for users to specify privacy constraints at all, and an evaluation of the privacy level
after fragmentation can be made.
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Algorithm 2 Minimum Entropy Fragmentation Algorithm (TableA, FS)
Input: Input parameters Table A : the table to be fragmented
Output: Output FS : the result array of fragmentation

1: [m, n] = size(TableA)
2: for each Ai ∈ {A1, . . . An} do
3: Attri_entropy = calEntropy(Ai, m)
4: end for
5: Table_entropy = calEntropy(TableA, m)
6: s = calMinimalFragmentation(Table_entropy, Attri_entropy)
7: [AttriSort, Sindex] = SortByDescend(Attri_entropy)
8: for each i ∈ {1, . . . s} do
9: FS[i] = AttriSort[i]

10: end for
11: AttriSort = AttriSort− FS
12: for each Ai ∈ AttriSort do
13:
14: preIn f ormation =

s
∑

i=1
2EN(FS[i])

15:
16: for each j ∈ {1, ..s} do
17: if (calEntropy(Ai, m) + calSetSumEntropy(FS[j], m)) > Table_entropy× threshold then
18: In f ormation[j] = Max_Number
19: else
20: In f ormation[j] = cal In f oIncrement(calEntropy(Ai + FS[j], m), preIn f ormation)
21: end if
22: end for
23: target = minimal(In f ormation)
24: FS[target] = FS[target] ∪ Ai
25: end for

5. Experiments

Considering that there is no published data set for the problem defined in this paper, we tested
the algorithm on the adult database of UCI datasets (http://archive.ics.uci.edu/ml/datasets/Adult).
The UCI database is intended to be used for machine learning, presented by the University of California
Irvine. Table 2 gives the detailed information of the test dataset. It has 14 attributes, which are age,
workclass, fnlwgt (serial number), education, education_num (time of education), maritial_status,
occupation, relationship, race, sex, capital_gain, capital_loss, hours_per_week, and native_country.
In the following, we replace these attributes with the serial numbers 1–14.

Table 2. Detailed information of adult datasets.

Dataset Number of Samples Dimensions

Adult 32,561 14

5.1. Implementation and Usability Aspects

Our experiments were tested on an Intel(R) Core(TM) i5-4210U 1.7 GHz CPU (Intel Corporation,
California, CA, USA) with 8 GB RAM. Entropy calculation and the minimum entropy fragmentation
algorithm were run with Matlab 2014a (8.3.0.532, MathWorks, Massachusetts, MA, USA).

To break constraints, we could not use semantics to determine which attributes together would
lead to privacy leak risk in the adult database. Instead, we propose that, if some attributes together
can identify a record easily, then they have a privacy constraint. This is similar to a primary key and
can completely identify a record. First, we calculated the original unfragmented adult database’s
entropy to be 14.9893. From the previous definition, we let threshold = 0.8, which means that when
the entropy of the attribute set exceeds 14.9893× 0.8, it is considered to have privacy constraints. Next,
we calculated the entropy of the set of attributes for groups of attributes. For these sets of attributes,
we listed the sets whose entropy exceeds 14.9893× 0.8, which are the sets that have privacy constraints,
as shown in Table 3. For example, the entropy of the first row attribute set (1, 2, 4, 7), corresponding

http://archive.ics.uci.edu/ml/datasets/Adult
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to age, workclass, education and occupation is 12.1658, which may represent a privacy constraint.
The other attribute sets in the table represent other privacy constraints that exist in the adult database.
We subjected the adult database to Algorithm 2. The minimum number of fragments is 4, and the
last fragmentation result was F1 = {3}, F2 = {1, 11, 14}, F3 = {2, 4, 5, 7, 12}, and F4 = {6, 8, 9, 10, 13}.
From the final fragmentation results, all possible privacy constraints in Table 3 have been broken,
thus we have completely broken these potential privacy constraints.

Table 3. Calculate constraints.

Attributes Entropy Attributes Entropy

3 14.1583 1, 4, 6, 13 12.2393
1, 2, 4, 7 12.1658 1, 4, 7, 8 12.6782
1, 2, 4, 13 12.2012 1, 4, 7, 13 13.2738
1, 2, 5, 7 12.1658 1, 4, 8, 13 12.5190
1, 2, 5, 13 12.2012 1, 5, 6, 7 12.3872
1, 2, 7, 13 12.4623 1, 5, 6, 13 12.2393
1, 4, 6, 7 12.3872 1, 5, 7, 8 12.6782
1, 5, 7, 13 13.2738 1, 5, 8, 13 12.5190
1, 6, 7, 13 12.6807 1, 7, 8, 13 12.9189
1, 7, 9, 13 12.2523 1, 7, 10, 13 12.2812
1, 7, 11,13 12.0908 1, 7, 13, 14 12.1851

Concerning the lower information aspect, we know the original unfragmented adult database’s
entropy is 14.9893. We also calculated the last entropy of each fragment F1 to F4 to be 14.1583, 7.2534,
7.6337, and 7.4301, respectively. Therefore, the entropy is reduced after fragmentation, and the risk of a
privacy leak is significantly reduced. Since our minimum entropy fragmentation algorithm is a greedy
algorithm, we have not yet obtained the optimal solution.

5.2. Performance Evaluation

In order to evaluate the minimum entropy fragmentation algorithm performance, we tested the
time cost according to the number of samples and attributes. The adult database has 14 attributes and
32,561 records. We use the exhaustive method to calculate the minimum entropy fragmentation. In the
experiment of the adult database, when there are only four attributes, it takes 17 seconds, but when
the attribute is increased to 10, the time is increased to 1709 s. Thus, the exhaustive method takes
time to grow exponentially and cannot be applied in reality. In order to observe the variation of our
algorithm with the number of records, we divide the number of records into {1000, 2000, 4000, 8000,
16,000, 32,561} with a fixed number of attributes. In addition, in the case of fixed records, the attributes
were divided into {4, 6, 8, 10, 12, 14}. Figure 2a shows the time cost when the adult database varies in
the number of records, but the number of attributes is fixed at 14. The correlation coefficient between
the number of records and the time cost was 0.9667, and thus a strong linear relationship between the
number of records and the overhead time of the greedy algorithm was observed. Figure 2b shows the
time cost when the number of attributes is varied, but the number of records is fixed at 32,561. We also
calculated the correlation coefficient between the number of attributes and the time cost to be 0.9977.

In order to maintain the generalizability of our approach, we conducted experiments in
the census-income database of the UCI database (http://archive.ics.uci.edu/ml/datasets/Census+
Income), as depicted in Figure 3a,b. The census-income database has 199,523 records and 42 attributes.
The correlation coefficients were calculated to be 0.9940 and 0.9806, respectively. Thus, the greedy
fragmentation algorithm proposed in this paper is a polynomial time algorithm, which can quickly
fragment the database with privacy protection.

http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income
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Figure 2. Time cost for experiments on the adult database with respect to (a) changing the number of
records, and (b) changing the number of attributes.
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Figure 3. Time cost in census database with respect to (a) changing the number of records, and (b)
changing the number of attributes.

6. Discussion

Relational databases have always been the preferred solution for storing data. However, with the
development of the internet, there must be more computing resources to handle fast-growing data.
Extensions to computing resources include vertical scaling and horizontal scaling. The general
method of vertical scaling is to replace the CPU, memory, etc., but this method is costly and has
limited scalability. Another method is to use a small set of computers for large-scale computing tasks.
Since relational databases are not suitable for building on clusters, NoSQL (Not Only SQL) databases
have emerged.

NoSQL databases are divided into four categories according to storage methods [32]: (1) key-value
storage, (2) columnar storage, (3) document storage, and (4) graphic storage. In the NoSQL data storage
model, both columnar storage and document storage can be understood as extensions to key-value
storage. These NoSQL databases are based on distributed storage, and the data is horizontally
sharded and distributed to multiple nodes. The two major sharding strategies are order-preserving
partitioning (OPP) and random partitioning (RP) [33]. OPP can perform range queries, but it may
cause load-balancing problems. The current sharding method mainly considers load balancing and
range query, regardless of privacy issues. We believe that our proposed entropy method can be used
to protect privacy in NoSQL key-value storage databases because the information stored by each node
can be quantified as EN(node1), EN(node2), . . . EN(noden). However, from the current point of view,
it is inefficient to calculate the entropy value in a NoSQL database. When a data record is generated,
we need to recalculate which node is placed to minimize the entropy, so we need to fetch the data
of each node and parse it to calculate the entropy, which is a time-consuming task. There may be
some techniques such as delayed record write, or caching each node feature information for entropy
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calculation to reduce the time overhead. However, these will always reduce the writing efficiency of
the NoSQL database. For most NoSQL databases, it is necessary to support efficient writing operations,
and our proposed entropy calculation method is only suitable for mass reading applications. To extend
our method to NoSQL databases, we need to propose a new entropy calculation method. In the case of
caching the key feature of each node, we can estimate the entropy value of the node after adding new
data. This will be our next step in future work.

7. Conclusions

In this paper, we introduced information entropy as a powerful tool to quantify privacy; thus,
we can automatically discover potential privacy constraints between attributes without the need
for users to manually define such constraints. Based on this, we provided a greedy method of
vertically fragmenting the data with the information entropy, which we called the minimum entropy
fragmentation algorithm. With this approach, we can evaluate how much private information
is contained in different vertical fragments. Our method is currently not applicable to NoSQL
databases, but it is a feasible privacy protection scheme that enables us to optimize the efficiency of
entropy calculation.
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