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Abstract: In this paper, new conditions on parameters in difference sets are derived to satisfy
symplectic inner product, and new constructions of quantum stabilizer codes are proposed from the
conditions. The conversion of the difference sets into parity-check matrices is first explained. Then,
the proposed code construction is composed of three steps, which are to choose the generators of
quantum stabilizer code, to determine the quantum stabilizer groups, and to determine subspace
codewords with large minimum distance. The quantum stabilizer codes with various length are also
presented to explain the practicality of the code construction. The proposed design can be applied to
quantum stabilizer code construction based on combinatorial design.

Keywords: quantum information; quantum error correction codes; quantum stabilizer codes;
difference sets; symplectic inner-product

1. Introduction

Quantum theory gives the probability of the possible outcomes for a measurement on a physical
system [1]. Quantum computers which are based on quantum theory give us the possibility deal on
the various tasks such as factoring the large integer number that shows the substantial speed-up in
polynomial time over the best classical algorithm [2,3]. However, the effects of noisy and imperfect
environments of the quantum channel would reduce the performance advantages. Therefore, quantum
error correcting codes (QECCs) have been proposed to protect quantum information from noisy
environments. Since the first QECCs were proposed in the 1990s by Shor [4] and Steane [5], the general
theory of QECCs has been introduced [6].

After establishment in 1997 [7], quantum stabilizer codes have played a prominent role in QECCs.
A stabilizer code appends ancilla qubits to qubits to be protected. The most consequential advantage
of stabilizer code is that the errors can be detected and removed from the stabilizer operators [4].
Hence, stabilizer codes had been constructed to enhance the application of stabilizer formalism in
quantum mechanics. In addition, the stabilizer theory allows the transfer of classical binary and
quaternary codes to corresponding quantum stabilizer codes. Consequently, the various constructions
of quantum stabilizer codes based on classical codes have been proposed [3,5,8,9]. The key idea
of development of quantum stabilizer code is that the quantum stabilizer code can be established
as a parity-check matrix whose binary or quaternary elements satisfy the constraint of symplectic
inner product (SIP). Therefore, in [8,9], the authors considered the circulant matrix to construct the
parity-check matrix. The modified circulant matrix has been proposed to construct the parity-check
matrix and the results for entanglement-assisted quantum error correction codes are explained [8].
In [9], two sub-matrices are proposed to satisfy the constraint of parity-check matrix for quantum
stabilizer codes with length seven.

Low-density parity-check (LDPC) codes were first introduced by Gallager [10]. Then, an excellent
performance close to Shannon channel capacity was obtained according to large block size of binary
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parity-check matrix in classical communication [11]. Innovative designs of the parity-check matrix have
been proposed for LDPC codes with better performances or with easy implementation. The application
of combinatoric design on LDPC codes was proposed to increase the girth of the parity-check
matrices [12]. Adaptive selection of quasi-cyclic LDPC (QC-LDPC) codes suitable for visible light
communication had been studied to adjust the dimming control [13]. New quantum codes have been
proposed based on LDPC codes with the Calderbank-Shor-Steane (CSS) form in [14,15] and quantum
LDPC with the non-CSS form in [16,17].

A difference set (DS) in combinatorics [18–20] is defined as a subset in which each difference of
two elements occurs in the group. Perfect DSs have been used to build up cyclic codes which have
remarkable performance in classical channels. Hence, the new trial using DSs on quantum code was
first studied in [21] where DSs are used to construct dual-containing sparse-graph codes for QECCs.
Further, one-time DSs were used to construct entanglement-assisted quantum LDPC codes in [22] and
these quantum codes have shown a significant improvement in the error probability performance.
The quantum QC-LDPC codes based on the DSs in [23], where the set of DSs is easily generated by
only a single parameter; however, a lot of the DSs cannot be defined except for prime numbers of the
form n = 4k − 1, where k is even number.

In this paper, new constructions of quantum stabilizer codes based on DSs are proposed. From
the suitable DSs, the circulant matrices are designed and used to construct the parity-check matrix.
Then, the generators of the stabilizer should first be chosen to make independent rows of parity-check
matrix. Finally, the codeword and minimum distance are determined. Two quantum stabilizer codes
with lengths of seven and 15 from the proposed design are shown to express the practical application.
The organization of this paper is as follows. In Section 2, we introduce the importance of the stabilizer
codes as well as the quantum theory and we explain the binary formalism of quantum stabilizer codes.
In Section 3, the definition of difference sets and the circulant matrices are first explained. Then, an
innovative approach to DS properties and how to use DSs to build up circulant permutation matrices
which satisfy the condition are discussed. Finally, conclusions are listed in Section 4.

2. Quantum Stabilizer Code

2.1. Quantum Information Theory

Qubit is the simplest unit in quantum information and can be expressed as a two-state
Hilbert space H⊗2 with dimension 2. Therefore, the two basis quantum states can be denoted as

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. The general quantum state of a qubit can be represented by a linear

superposition of its two orthogonal basis states as |ψ〉 = α|0〉+ β|1〉 =
[

α

β

]
. The state can be found

at both of basis states |0〉 and |1〉 at the same time, where the probability of outcome |0〉 is |α|2 and
the probability of outcome |1〉 is |β|2. According to the norm condition for qubits, the condition
|α|2 + |β|2 = 1 must be satisfied. In general, n qubits are represented by 2n dimensional Hilbert space
H⊗n as

|ψ〉 = ∑
ik={0,1}

αi1i2 ...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉 = ∑
i

αi|i〉,

where i = ∑n
k=1 2n−kik.

In classical computation, Boolean functions f : {0, 1}→ {0, 1} are performed over a single bit. In
the case of quantum computation, reversible operation represented by unitary matrices are performed
over a qubit. Representative quantum operations are Pauli operators. Four Pauli operators (matrices)
I, σX, σY, and σZ are

I =

[
1 0
0 1

]
, σX =

[
0 1
1 0

]
, σY = j

[
0 −1
1 0

]
, σZ =

[
1 0
0 −1

]
,
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where j =
√
−1. The transformations of quantum states by Pauli operators is as

I|ψ〉 =
[

1 0
0 1

]
×
[

α

β

]
=

[
α

β

]
= α|0〉+ β|1〉, σX|ψ〉 =

[
0 1
1 0

]
×
[

α

β

]
=

[
β

α

]
= β|0〉+ α|1〉,

σY|ψ〉 =
[

0 −j
j 0

]
×
[

α

β

]
=

[
−jβ
jα

]
= j(−β|0〉+ α|1〉), σZ|ψ〉 =

[
1 0
0 −1

]
×
[

α

β

]
=

[
α

−β

]
= α|0〉 − β|1〉.

Therefore, operators σX, σZ, and σY are regarded as a bit flip, a phase flip, and a combination of
bit and phase flips, respectively. Multiplications between Pauli operators are defined as

σX
2 = σY

2 = σZ
2 = I;

σX × σY = jσZ and σY × σX = −jσZ → σX × σY = −σY × σX;
σY × σZ = jσX and σZ × σY = −jσX → σY × σZ = −σZ × σY;
σZ × σX = jσY and σX × σZ = −jσY → σZ × σX = −σX × σZ.

The Pauli group P1 on a qubit is a group composed of Pauli operators and their multiplications
with the factor ±1, ±j. Then, P1 = ±{I, σX, jσX, σY, jσY, σZ, jσZ}. The Pauli group on n qubits Pn is
defined as n tensor product of the Pauli operators. Then, the elements of Pn are either commutative or
anti-commutative. The commutative operator “◦” for two operators A and B is defined as

A ◦ B =
n

∏
i=1

Ai•Bi where Ai•Bi =

{
+1, if Ai × Bi = Bi ×Ai
−1, if Ai × Bi = −Bi ×Ai

.

Quotient group Pn/C where C = {±I, ±jI} is defined as the center of Pn [24]. Therefore, the
notation X↔ σX, Y↔ −jσY, Z↔ σZ [25] are used in the rest of the paper.

2.2. Quantum Error Correction Code

QECCs are used in quantum computing to protect quantum information from errors due to
decoherence and other quantum noises. QECCs are essential to achieve fault-tolerant quantum
computation [6]. In classical error correcting code, it is easy to make the copy of information. In contrast,
it is impossible to make the copy of quantum information due to the non-cloning theorem [3]. Therefore,
quantum information can be extended to highly entangled quantum state with the help of ancillary
qubits and Unitary transforms. Classical error correcting codes use a syndrome measurement to
diagnose errors which corrupt an encoded state. QECC also employs the syndrome detection with the
help of quantum stabilizers operators. A block diagram of the QECC process is shown in Figure 1.
The quantum information can be protected from noisy quantum channel with the help of ancillary
qubits, the quantum stabilizer operators, and syndrome measurement.
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Figure 1. Quantum error correction operating process.

A quantum state |ψ〉 is stabilized by operator g ∈ Pn if g|ψ〉 = |ψ〉. The quantum states, which
are stabilized by all elements of any subgroup S of the Pauli group Pn form a subspace CS of H⊗n.
The subspace CS is defined as,
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CS =
{
|ψ〉 ∈ H⊗n ∣∣ g|ψ〉 = |ψ〉, ∀g ∈ S

}
.

If CS is non-trivial subspace, S is an abelian subgroup which is closed under multiplication.
The subgroup generated by elements g1, g2, . . . , gm is denoted as S = 〈g1, g2, . . . , gm〉. Then, any two
operators on S are commutative. Since g1, g2, . . . , gm are m (=n − k) independent Pauli operators, S
forms subspace Cs to be [[n, k, dmin]] quantum stabilizer code [7] which encodes k logical qubits into n
physical qubits and can correct t = b(dmin − 1)/2c errors [6]. For example, the quantum stabilizer code
[[5,1,3]] can correct one error and four generators in Table 1 produce the full quantum stabilizer set S.

Table 1. Generators of [[5,1,3]] quantum stabilizer code.

Generators Operators

g1 XZZXI
g2 IXZZX
g3 XIXZZ
g4 ZXIXZ

Let {E}⊂ Pn be the error set which makes the state |Ψ〉 to the corrupted state E|Ψ〉. Since elements
of Pauli operators are either commutative or anti-commutative, a vector on error set is either
commutative or anti-commutative with elements of stabilizer group S. Therefore, the corrupted
state E|Ψ〉 is identified by the elements of stabilizer group S and the error detection is defined as

Si × E|ψ〉 =
{

E× Si|ψ〉 = E|ψ〉, Error undetected.
−E× Si|ψ〉 = −E|ψ〉, Error detected.

The operator Ei is correctable by stabilizer group S if the following condition is satisfied.

Ei
†Ej /∈ N(S)S, ∀Ei, Ej ∈ E,

where Ei
† is the conjugate transpose of Ei and N(S) is the normalizer of S in Pn. Then, normalizer of S

is defined as
N(S) =

{
A ∈ Pn

∣∣∣A†EA ∈ S, ∀E ∈ S
}

.

N(S) is the collection of all operators in Pauli group which is commutative with elements in S.
Therefore, the minimum distance dmin is determined as

dmin = min(W(E)) s.t E ∈ N(S)\S,

where W(A) is defined as the number of positions not equal to Pauli operators I in A and min(x) is the
minimum number in set x.

2.3. Binary Formalism of Quantum Stabilizer Codes

In classical error correcting codes, the parity-check matrices give the constraint that the codewords
must have vanishing scalar product with every vector of the parity-check matrices. In quantum error
correcting codes, binary expression of quantum stabilizer operators also remains the parity-check
constraint to quantum codeword.

Any Pauli operators can be expressed as the product of X-containing and Z-containing operators
such as XYYZI = XXXII × IZZZI. Therefore, a simple but useful mapping exists between elements
of Pauli operators and binary vector as I→ (0, 0), X→ (1, 0), Z→ (0, 1), Y→ (1, 1). Consequently,
the n − k generators of an [[n, k]] quantum stabilizer code can be formed by a parity-check matrix H
which is a concatenation of HX, HZ as follows,

H = [HX|HZ], (1)
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where HX, HZ are the binary matrices of size (n − k) × n. For example, the quantum stabilizer code
[[5,1,3]] in Table 1 has corresponding parity-check matrices as

H =


1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

. (2)

Since there exists the requirement that quantum stabilizer operators must be commutative, the
constraint known as the symplectic inner product (SIP) is applied to H. We assume that m-th row of
parity-check matric H, rm is expressed as rm = [xm|zm], where zm and xm are binary strings for Z and
X, respectively. Hence, the symplectic product of the m1-th row and m2-th row is given as

rm1 � rm2 = [xm1

∣∣∣zm1 ]� [xm2

∣∣∣zm2 ] = xm1
∗ zm2 + xm2

∗ zm1 modulo2,

where xk ∗ zl =
n
∑

i=1
xki × zli. This product will give us zero if the number of different positions in X

and Z are even. Hence, for a given parity-check matrix H = [HX|HZ] with size (n − k) × 2n, the SIP
formulation is defined as

HX ×HZ
T + HZ ×HX

T = 0n−k modulo 2, (3)

where 0a is the a × a zero matrix. The constraint in (3) is called SIP constraint. For quantum stabilizer
code [[5,1,3]] in Table 1, the formulation (3) is calculated as

HX ×HZ
T + HZ ×HX

T =


0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

 = 04 modulo 2.

The parity-check matrix in (1) has the rank (n − k). Hence, the dual space of H has the dimension
2n − m (=m + 2k). Then, the normalizer group N(S) can be generated by an (m + 2k) × 2n binary matrix.
The first m rows are the parity-check matrix and the last 2k row are the logical operators denoted as X,
Z. Logical operators satisfy the conditions as

Xi ◦ Xj = +1
Zi ◦ Zj = +1

Xi ◦ Zj = +1 for i 6= j
Xi ◦ Zj = −1 for i = j

.

Using Gaussian elimination, we can transform the parity check matrix into standard form as r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
C1

k︷︸︸︷
C2

0 0 0 D I E

 } r
} n− k− r

(4)

Therefore, logical operators are in standard form as
X =

[
0 ET I (ETC1 + C2

T) 0 0
]

Z =
[

0 0 0 A2
T 0 I

] . (5)
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Finally, the codewords of the quantum stabilizer code are given as

|c1c2 . . . ck〉 =
1√
2m
×
(

m

∏
i=1

(I + gi)

)
× X1

c1 × X2
c2 × . . .× Xk

ck |00 . . . 0〉n, (6)

where ci ∈ {0, 1}. For the quantum stabilizer code [[5,1,3]] in Table 1, the standard form of parity-check
matrix is investigated as,

H =


1 0 0 0 1 1 1 0 1 1
0 1 0 0 1 0 0 1 1 0
0 0 1 0 1 1 1 0 0 0
0 0 0 1 1 1 0 1 1 1

.

Therefore, its logical operators are in standard form as,{
X = [0 0 0 0 1 1 0 0 1 0]⇔ X = ZIIZX
Z = [0 0 0 0 0 1 1 1 1 1]⇔ Z = ZZZZZ

.

3. Circulant Matrices Based on DS and QECC Construction

In this section, the definition, properties of DS, and circulant permutation matrices will be first
introduced. Then, the QECC construction from circulant matrices based on parameters of DS are
discussed with two examples.

3.1. Difference Sets and Shifted Difference Sets

A (n, k, λ) difference set (DS) D = {d1, d2, . . . , dk} is defined as a collection of k residues
(∈ {0, 1, 2, . . . , n− 1}). Then, for any residue α 6= 0, the congruence di − dj = α (modulo n) has
exactly λ solution pairs (di, dj) with di, dj ∈ D. The necessary condition of the parameters (n, k, λ) is
k(k− 1) = λ(n− 1) [18]. Assume that the (n, k, λ) DS D = {d1, d2, . . . , dk} is given, then the shifted
set D(s) = {d1 + s, d2 + s, . . . , dk + s} is also a new DS with the same parameters (n, k, λ). A DS with
three elements and its shifted DS are shown in Example 1.

Example 1. A perfect DS is (7, 3, 1) with D = {1, 2, 4},{
1− 2 ≡ 6 2− 1 ≡ 1 4− 1 ≡ 3
1− 4 ≡ 4 2− 4 ≡ 5 4− 2 ≡ 2

modulo 7.

The shifted (7, 3, 1) DS with offset 6 is D (6) = {0, 1, 3},{
0− 1 ≡ 6 1− 0 ≡ 1 3− 0 ≡ 3
0− 3 ≡ 4 1− 3 ≡ 5 3− 1 ≡ 2

modulo 7.

The notation D(s) stands for the shifted DS from D with the offset s.

3.2. Circulant Permutation Matrices

Let In be the identity matrix of size n × n. Then, In(x) is the shift of In where the rows of In

are circularly shifted to the right by x positions (0 ≤ x ≤ n − 1). Generally, we notice that In(0) = In

and In(x ± kn) = In(x) for any integer k. Let In(1)
c be the c times of multiplying In(1), we have

In(1)
c = In(c) (0 ≤ c ≤ n − 1).
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Example 2. With n = 4, we have:

I4(0) = I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, I4(2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, and

I4(2) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

×


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = I4(1)
2.

A n× n circulant permutation binary matrix Pn is defined as

Pn =


i0 i1 i2 · · · in−1

in−1 i0 i1 · · · in−2

in−2 in−1 i0 · · · in−3
...

...
...

. . .
...

i1 i2 i3 · · · i0

,

where ik is the binary value. Pn can be given as the linear combination of identity matrix and its
shifted matrices.

Pn = i0 × In(0) + i1 × In(1) + i2 × In(2) + . . . + in−1 × In(n− 1). (7)

It is assumed that i0 + i1 + . . . + in−1 = k. Let t0<t1 < . . . < tk−1 be the position index of nonzero
elements in the sequence set {i0, i1, . . . , in−1}. For example, if the sequence set {i0, i1, . . . , in−1} is {1,
1, 0, 0, 1, 0, 1}, then t0 = 0, t1 = 1, t2 = 4, and t3= 6. The matrix Pn can also be expressed by using the
Hall-polynomial form pn(x) [18] as

pn(x) = xt0 + xt1 + . . . + xtk−1 (8)

Let T be the transpose operator. Then, the transpose matrix of Pn is denoted as Pn
T. Let pn(x)T be

the Hall-polynomial form of Pn
T. Then, the polynomial pn(x)T is expressed as

pn(x)T = x−t0 + x−t1 + . . . + x−tk−1 , (9)

where t0, t1, . . . , tk−1 are the values in (8). For a (n, k, λ) DS D = {d1, d2, . . . , dk}, the circulant
permutation matrix Pn in (7) is made where the element ij is 1 if j ∈ D and is 0 otherwise. Then, the
Hall-polynomial form pn(x)D for the DS D is expressed as

pn(x)D = xd1 + xd2 + . . . + xdk (10)

3.3. Construction of Quantum Stabilizer Code Based on DS

With difference sets (n, k, λ) D, the product of the two circulant permutation matrices can be
expressed as a function of parameter of DS and the shift values in the following theorem.

Theorem 1. Let h1(x) and h2(x) be the Hall-polynomials of D(s1) and D(s2), which are defined as h1(x) =
pn

D(s1) and h2(x) = pn
D(s2), respectively. Let the circulant permutation matrices H1 and H2 correspond to

h1(x) and h2(x), respectively. Then, the product of the two polynomials h1(x), h2(x)T and the product of the two
matrices H1 and H2

T are given as
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h1(x)× h2(x)T = (k− λ)× xs1−s2 + λ×
n−1

∑
l=0

xl and H1 ×H2
T = (k− λ)× In(s1 − s2) + λ× Jn,

where the size of matrix Jn is n× n and whose entries are all one.

Proof. From the definition of the Hall-polynomial, h1(x) and h2(x) can be expressed as

h1(x) = xd1+s1 + xd2+s1 + . . . + xdk+s1 and h2(x) = xd1+s2 + xd2+s2 + . . . + xdk+s2 .

Then, the Hall-polynomial h2(x)T for (9) is given as h2(x)T = x−d1−s2 + x−d2−s2 + . . . + x−dk−s2 .
Therefore, the product of the two polynomials h1(x) and h2(x)T is given as

h1(x)× h2(x)T = (xd1+s1 + xd2+s1 + . . . + xdk+s1)× (x−d1−s2 + x−d2−s2 + . . . + x−dk−s2)

=
k
∑

i=1
[x(di+s1)−(d1+s2) + x(di+s1)−(d2+s2) + . . . + x(di+s1)−(dk+s2)]

=
k
∑

i=1
xs1−s2 × [xdi−d1 + xdi−d2 + . . . + xdi−dk ]

= xs1−s2 ×
k
∑

u=1

k
∑

v=1
xdu−dv = xs1−s2 ×

[
k× x0 +

k
∑

u=1

k
∑

v=1, v 6=u
xdu−dv

]
.

(11)

k
∑

u=1

k
∑

v=1, v 6=u
xdu−dv in (11) can be expressed as

k

∑
u=1

k

∑
v=1, v 6=u

xdu−dv = λ×
n−1

∑
l=1

xl = λ×
n−1

∑
l=0

xl − λ× x0.

Hence, Equation (11) is expressed as

xs1−s2 ×
[

k× x0 +
k
∑

u=1

k
∑

v=1, v 6=u
xdu−dv

]
= xs1−s2 ×

[
k× x0 + λ×

n−1
∑

l=0
xl − λ× x0

]
= (k− λ)× xs1−s2 + λ× xs1−s2 ×

n−1
∑

l=0
xl = (k− λ)× xs1−s2 + λ×

n−1
∑

l=0
xl .

(12)

Since the circulant permutation matrices corresponding to the polynomials xs1−s2 and
n−1
∑

l=0
xl are

In(s1 − s2) and Jn, respectively, the product of H1 and H2
T is expressed as

H1 ×H2
T = (k− λ)× In(s1 − s2) + λ× Jn (13)

Therefore, the expressions in (12) and (13) prove Theorem 1. �

Since the product of H1 and H2
T in Theorem 1 is expressed as the function of k, λ, s1, and s2, the

constraint on parameter of DSs to satisfy the SIP condition of parity-check matrix is explained in the
following theorem.

Theorem 2. For any (n, k, λ) DS D where k ≡ λ modulo 2 and any integers s1 6= s2 where s1, s2 ∈
{0, 1, . . . , n− 1}, parity-check matrix H = [H1|H2] where H1 and H2 corresponding to h1(x) = pn

D(s1) and
h2(x) = pn

D(s2), respectively, satisfies the SIP condition (2).

Proof. From Theorem 1, we have:

H1 ×H2
T = (k− λ)× In(s1 − s2) + λ× Jn (14)
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H2 ×H1
T = (k− λ)× In(s2 − s1) + λ× Jn (15)

The summation of (14) and (15) is

H1 ×H2
T + H2 ×H1

T = (k− λ)× In(s1 − s2) + λ× Jn + (k− λ)× In(s2 − s1) + λ× Jn

= (k− λ)× [In(s1 − s2) + In(s2 − s1)] + 2λ× Jn.
(16)

If k− λ is even, all elements of the matrix (k− λ)× [In(s1 − s2) + In(s2 − s1)] in (16) are even.
Moreover, all elements of the matrix 2λ× Jn in (16) are also even. Then, all elements of the matrix
(k − λ) × [In(s1 − s2) + In(s2 − s1)] + 2λ × Jn in (16) are even. Therefore, if k ≡ λ modulo 2, the
equation H1 ×H2

T + H2 ×H1
T = 0n is always true. Therefore, the parity-check matrix H of H1

and H2 which is made from the parameter of DS with the constraint k ≡ λ modulo 2 satisfies the
SIP condition. �

In Table 2, eight DSs with the constraint k ≡ λ modulo 2 are listed among the DSs in [18,19].
For the practical applications of proposed construction, two DSs with parameters (7, 4, 2) and (15, 7, 3)
are considered in Examples 3 and 4.

Table 2. Difference sets (DSs) with parameters k ≡ λ modulo 2.

No n, k, λ Difference Set

1 7, 3, 1 1 2 4.
2 7, 4, 2 0 3 5 6.
3 15, 7, 3 0 1 2 4 5 8 10.
4 21, 5, 1 3 6 7 12 14.
5 23, 11, 5 1 2 3 4 6 8 9 12 13 16 18.
6 31, 15, 7 1 2 3 4 6 8 12 15 16 17 23 24 27 29 30.
7 47, 23, 11 1 2 3 4 6 7 8 9 12 14 16 17 18 21 24 25 27. 28 32 34 36 37 42.

8 199, 99, 49

1 2 4 5 7 8 9 10 13 14 16 18 20 23 25 26 28 29 31 32 33 35 36 40 43 45 46 47 49 50 51 52
53 56 57 58 61 62 63 64 65 66 70 72 79 80 81 86 89 90 91 92 94 98 100 102 103 104 106
111 112 114 115 116 117 121 122 123 124 125 126 128 130 131 132 139 140 144 145 151
155 157 158 160 161 162 165 169 172 175 177 178 180 182 184 187 188 193 196.

Example 3. For the DS D = {0, 3, 5, 6} with parameter (7, 4, 2), two shifted DSs are considered as D(1) = {0 +
1, 3 + 1, 5 + 1, 6 + 1} = {0, 1, 4, 6}, D(4) = {0 + 4, 3 + 4, 5 + 4, 6 + 4} = {0, 2, 3, 4}. Then, the Hall-polynomials
for D(1) and D(4) are h1(x) = p7

D(1) and h2(x) = p7
D(4), respectively. Therefore, the corresponding binary

matrices for the Hall-polynomials are given as

H1 =



1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1


, H2 =



1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1


, H = [H1|H2]. (17)

It follows that two products H1 ×H2
T and H2 ×H1

T are given by:

H1 ×H2
T =



2 2 2 2 4 2 2
2 2 2 2 2 4 2
2 2 2 2 2 2 4
4 2 2 2 2 2 2
2 4 2 2 2 2 2
2 2 4 2 2 2 2
2 2 2 4 2 2 2


= (4− 2)× I7(1− 4) + 2× J7, H2 ×H1

T =



2 2 2 4 2 2 2
2 2 2 2 4 2 2
2 2 2 2 2 4 2
2 2 2 2 2 2 4
4 2 2 2 2 2 2
2 4 2 2 2 2 2
2 2 4 2 2 2 2


= (4− 2)× I7(4− 1) + 2× J7.
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Then, the SIP product is H1 ×H2
T + H2 ×H1

T =



2 2 2 6 6 2 2
2 2 2 2 6 6 2
2 2 2 2 2 6 6
6 2 2 2 2 2 6
6 6 2 2 2 2 2
2 6 6 2 2 2 2
2 2 6 6 2 2 2


= 07 modulo 2.

The seven quantum stabilizer operators corresponding to the seven rows in H(17) are given as

g1 = YXZZYIX; g2 = XYXZZY I ; g3 = I XYXZZY;
g4 = YIXYXZZ; g5 = ZYIXYXZ; g6 = ZZY IXYX; g7 = XZZYIXY.

Among the seven operators, there are a maximum of three linearly independent operators. If g1, g2 and
g3 are chosen as the maximum of three linearly independent operators, the other operators are expressed as
g4 = g1 × g3; g5 = g1 × g2 × g3; g6 = g1 × g2; g7 = g2 × g3. With S = 〈g1, g2, g3〉, a stabilizer subgroup
is composed as

S = {YXZZYIX, XYXZZYI, IXYXZZY, YIXYXZZ, ZYIXYXZ, ZZYIXYX, XZZYIXY, I I I I I I I}.

Using Equation (4), we transform the H matrix in (17) into its standard form as 1 0 0 1 0 1 1 0 1 1 1 0 0 1
0 1 0 1 1 1 0 1 1 0 0 1 0 1
0 0 1 0 1 1 1 1 1 1 0 0 1 0

.

Then, as Equation (5), the logical operators X and Z are calculated as

X =


0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0

 and Z =


0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1



⇔


X1 = ZI IXI I I
X2 = IZI IXI I
X3 = I IZI IXI

X4 = ZZI I I IX

and


Z1 = ZZIZ I I I
Z2 = IZZIZI I
Z3 = ZZZIIZI

Z4 = Z IZI I IZ

.

The codewords of the quantum stabilizer code [[7,4]] are expressed as

|c1c2c3c4〉 = 1√
23 ×

(
3

∏
i=1

(I + gi)

)
× X1

c1 × X2
c2 × X3

c3 × X4
c4 |0000000〉

= 1√
23 × X1

c1 × X2
c2 × X3

c3 × X4
c4

(
∑

s∈S
s|0000000〉

)
,

where
3

∏
i=1

(I + gi) = ∑
s∈S

s and ci ∈ {0, 1}.

The minimum distance dmin of the [[7,4]] code is determined by the smallest weight of N(S)\S. One of the
smallest weights is X1 × IIIIIII. Since W( X1 × IIIIIII) = 2, the minimum distance dmin is 2. Therefore,
the quantum stabilizer code from the DS with parameter (7, 4, 2) is [[7,4,2]].

Example 4. A DS D = {0 1 2 4 5 8 10} with parameters (15, 7, 3) is considered to construct a quantum stabilizer
code with length 15. The parity-check matrix is given as H = [H1 H2] where
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H1 =


0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1
1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

, H2 =


0 1 1 0 0 1 0 1 0 0 0 0 1 1 1
1 0 1 1 0 0 1 0 1 0 0 0 0 1 1
1 1 0 1 1 0 0 1 0 1 0 0 0 0 1
1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0

.

Five independent generators can be chosen as

g1 = IYYX IYXZIX IXZZZ
g2 = Z IYYXIYXZIX IXZZ
g3 = ZZIYYXIYXZIXI XZ
g4 = ZZZIYYXI YXZIXIX
g5 = XZZZIYYXIYXZIX I

.

By using Gaussian elimination, the logical operators X and Z can be written as

X1 = Z I IZZX I I I I I I I I I, Z1 = Z I Z I ZZ I I I I I I I I I
X2 = ZZZI I I X I I I I I I I I, Z2 = ZZZZZ I Z I I I I I I I I
X3 = I ZZZ I I I X I I I I I I I, Z3 = ZZ I Z I I I Z I I I I I I I
X4 = I IZZZ I I IX I I I I I I, Z4 = I Z Z IZI I I Z I I I I I I
X5 = ZIZZ I I I I IX I I I I I, Z5 = Z I I Z ZI I I I Z I I I I I
X6 = I ZIZZ I I I I IX I I I I, Z6 = ZZZ I I I I I I I Z I I I I
X7 = Z I I I I I I I I I IX I I I, Z7 = I ZZ Z I I I I I I I Z I I I
X8 = I ZI I I I I I I I I I XI I, Z8 = I I Z ZZ I I I I I I I Z I I
X9 = I IZ I I I I I I I I I IX I, Z9 = Z I Z Z I I I I I I I I I Z I
X10 = I I I Z I I I I I I I I I I X, Z10 = IZ I Z Z I I I I I I I I I Z

Therefore, the codewords for the [[15,10,2]] stabilizer code can be expressed as

|c1c2 . . . c10〉L = 1√
25 ×

(
5

∏
i=1

(I + gi)

)
× X1

c1 × X2
c2 × . . .× X10

c10 |0102. . . 015〉

= 1√
25 × X1

c1 × X2
c2 × . . .× X10

c10

(
∑

s∈S
s|0102. . . 015〉

)
.

As shown in Table 3, the parameter constraints for difference sets in proposed construction are
different from the ones in [23]. Since 2p − 1 ≡ p − 1 modulo 2 where p is an even number, DSs
which are used in [23] can be also used in the proposed construction. In contrast, DSs in the proposed
construction are not always used in [23] because 4p − 1 must be a prime number. As a result, the
proposed construction is more general than [23]’s construction and the proposed construction enlarges
the results of using DSs for quantum stabilizer code construction. In addition, in comparison to the
proposed codes with existing quantum codes, quantum codes with length 7 and 15 are discussed. It
is known that existing quantum stabilizer codes with length 7 have code parameters [[7,3,2]] from
quadratic residue sets in [26], or [[7,3,2]] and [[7,4,2]] constructed over the quaternary alphabet, listed
in [27]. To compare to the proposed codes and codes in [26], the number of information bits of the
proposed codes is 1 bit larger than the referenced code. As referenced in the list in [27], a stabilizer
with length 15 and the same parameters of [[15,10,2]] that were constructed over quaternary alphabet
are found.
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Table 3. Comparison of our proposed method and [23]’s method.

Paper [23]’s Construction Proposed Construction

Focus on the difference set with parameters:
(n, k, λ) = (4p− 1, 2p− 1, p− 1) where p is even

number and 4p − 1 is a prime number.

Focus on the difference set with parameters: (n, k, λ)
where k ≡ λ(modulo 2)

4. Conclusions

In this paper, the conditions of a DS are examined to satisfy the SIP condition and a new
construction method of quantum stabilizer codes from the DS is proposed. The condition of a DS to
satisfy the SIP constraint is equivalent to determine a DS with k ≡ λ modulo 2. Quantum stabilizer
codes [[7,4,2]] and [[15,10,2]] are presented from the proposed construction with DS (7, 4, 2) and DS
(15, 7, 3), respectively, for practical applications. Moreover, since there are many DSs with parameters
that satisfy k ≡ λ modulo 2, it is possible to produce new quantum stabilizer codes with greater length.
In comparison with the referenced construction, the proposed construction provides more candidates
for the quantum stabilizer code based on DSs.
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