Article

Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character χ

Serkan Araci ${ }^{1, *(D)}$, Waseem Ahmad Khan ${ }^{2}$ and Kottakkaran Sooppy Nisar ${ }^{3}$ (D)
1 Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey
2 Department of Mathematics, Faculty of Science, Integral University, Lucknow-226026, India; waseem08_khan@rediffmail.com
3 Department of Mathematics, College of Arts and Science-Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 11991 Riyadh Region, Kingdom of Saudi Arabia; n.sooppy@psau.edu.sa or ksnisar1@gmail.com
* Correspondence: mtsrkn@hotmail.com

Received: 14 November 2018; Accepted: 27 November 2018; Published: 29 November 2018

Abstract

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials, by mainly using the theory of p-adic integral on \mathbb{Z}_{p}. The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.

Keywords: q-Volkenborn integral on \mathbb{Z}_{p}; Bernoulli numbers and polynomials; generalized Bernoulli polynomials and numbers of arbitrary complex order; generalized Bernoulli polynomials and numbers attached to a Dirichlet character χ

1. Introduction and Preliminaries

For a fixed prime number p, throughout this paper, let $\mathbb{Z}_{p}, \mathbb{Q}_{p}$, and \mathbb{C}_{p} be the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. In addition, let \mathbb{C}, \mathbb{Z}, and \mathbb{N} be the field of complex numbers, the ring of rational integers and the set of positive integers, respectively, and let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Let $\operatorname{UD}\left(\mathbb{Z}_{p}\right)$ be the space of all uniformly differentiable functions on \mathbb{Z}_{p}. The notation $[z]_{q}$ is defined by

$$
[z]_{q}:=\frac{1-q^{z}}{1-q} \quad\left(z \in \mathbb{C} ; q \in \mathbb{C} \backslash\{1\} ; q^{z} \neq 1\right)
$$

Let v_{p} be the normalized exponential valuation on \mathbb{C}_{p} with $|p|_{p}=p^{v_{p}(p)}=p^{-1}$. For $f \in \operatorname{UD}\left(\mathbb{Z}_{p}\right)$ and $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1, q$-Volkenborn integral on \mathbb{Z}_{p} is defined by Kim [1]

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x} \tag{1}
\end{equation*}
$$

For recent works including q-Volkenborn integration see References [1-10].
The ordinary p-adic invariant integral on \mathbb{Z}_{p} is given by $[7,8]$

$$
\begin{equation*}
I_{1}(f)=\lim _{q \rightarrow 1} I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d x \tag{2}
\end{equation*}
$$

It follows from Equation (2) that

$$
\begin{equation*}
I_{1}\left(f_{1}\right)=I_{1}(f)+f^{\prime}(0) \tag{3}
\end{equation*}
$$

where $f_{n}(x):=f(x+n)(n \in \mathbb{N})$ and $f^{\prime}(0)$ is the usual derivative. From Equation (3), one has

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{x t} d x=\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}, \tag{4}
\end{equation*}
$$

where B_{n} are the nth Bernoulli numbers (see References [11-14]; see also Reference [15] (Section 1.7)). From Equation (2) and (3), one gets

$$
\begin{align*}
& \frac{n \int_{\mathbb{Z}_{p}} e^{x t} d x}{\int_{\mathbb{Z}_{p}} e^{n x t} d x}=\frac{1}{t}\left(\int_{\mathbb{Z}_{p}} e^{(x+n) t} d x-\int_{\mathbb{Z}_{p}} e^{x t} d x\right) \tag{5}\\
= & \sum_{j=0}^{n-1} e^{j t}=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{n-1} j^{k}\right) \frac{t^{k}}{k!}=\sum_{k=0}^{\infty} S_{k}(n-1) \frac{t^{k}}{k!^{\prime}}
\end{align*}
$$

where

$$
\begin{equation*}
S_{k}(n)=1^{k}+\cdots+n^{k} \quad\left(k \in \mathbb{N}, n \in \mathbb{N}_{0}\right) \tag{6}
\end{equation*}
$$

From Equation (4), the generalized Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ are defined by the following p-adic integral (see Reference [15] (Section 1.7))

$$
\begin{equation*}
\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x+y_{1}+y_{2}+\cdots+y_{\alpha}\right) t} d y_{1} d y_{2} \cdots d y_{\alpha}=\left(\frac{t}{e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x) \frac{t^{n}}{n!}, \text {. }}_{\alpha \text { times }} \tag{7}
\end{equation*}
$$

in which $B_{n}^{(1)}(x):=B_{n}(x)$ are classical Bernoulli numbers (see, e.g., [1-10]).
Let $d, p \in \mathbb{N}$ be fixed with $(d, p)=1$. For $N \in \mathbb{N}$, we set

$$
\begin{align*}
& X=X_{d}=\lim _{\overleftarrow{N}}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right) ; \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\} \\
& \quad\left(a \in \mathbb{Z} \text { with } 0 \leq a<d p^{N}\right) ; \tag{8}\\
& X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right), \quad X_{1}=\mathbb{Z}_{p} .
\end{align*}
$$

Let χ be a Dirichlet character with conductor $d \in \mathbb{N}$. The generalized Bernoulli polynomials attached to χ are defined by means of the generating function (see, e.g., [16])

$$
\begin{equation*}
\int_{X} \chi(y) e^{(x+y) t} d y=\frac{t \sum_{j=0}^{d-1} \chi(j) e^{j t}}{e^{d t}-1} e^{\chi t}=\sum_{n=0}^{\infty} B_{n, \chi}(x) \frac{t^{n}}{n!} \tag{9}
\end{equation*}
$$

Here $B_{n, \chi}:=B_{n, \chi}(0)$ are the generalized Bernoulli numbers attached to χ. From Equation (9), we have (see, e.g., [16])

$$
\begin{equation*}
\int_{X} \chi(x) x^{n} d x=B_{n, \chi} \quad \text { and } \quad \int_{X} \chi(y)(x+y)^{n} d y=B_{n, \chi}(x) \tag{10}
\end{equation*}
$$

Define the p-adic functional $T_{k}(\chi, n)$ by (see, e.g., [16])

$$
\begin{equation*}
T_{k}(\chi, n)=\sum_{\ell=0}^{n} \chi(\ell) \ell^{k} \quad(k \in \mathbb{N}) \tag{11}
\end{equation*}
$$

Then one has (see, e.g., [16])

$$
\begin{equation*}
B_{k, \chi}(n d)-B_{k, \chi}=k T_{k-1}(\chi, n d-1) \quad(k, n, d \in \mathbb{N}) \tag{12}
\end{equation*}
$$

Kim et al. [16] (Equation (2.14)) presented the following interesting identity

$$
\begin{equation*}
\frac{d n \int_{X} \chi(x) e^{x t} d x}{\int_{X} e^{d n x t} d x}=\sum_{\ell=0}^{n d-1} \chi(\ell) e^{\ell t}=\sum_{k=0}^{\infty} T_{k}(\chi, n d-1) \frac{t^{k}}{k!} \quad(n \in \mathbb{N}) \tag{13}
\end{equation*}
$$

Very recently, Khan [17] (Equation (2.1)) (see also Reference [11]) introduced and investigated λ-Hermite-Bernoulli polynomials of the second kind ${ }_{H} B_{n}(x, y \mid \lambda)$ defined by the following generating function

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}}(1+\lambda t)^{\frac{x+u}{\lambda}}\left(1+\lambda t^{2}\right)^{\frac{y}{\lambda}} \mathrm{~d} \mu_{0}(u) \\
& =\frac{\log (1+\lambda t)^{\frac{1}{\lambda}}}{(1+\lambda t)^{\frac{1}{\lambda}}-1}(1+\lambda t)^{\frac{x}{\lambda}}\left(1+\lambda t^{2}\right)^{\frac{y}{\lambda}}=\sum_{m=0}^{\infty} H^{\infty} B_{m}(x, y \mid \lambda) \frac{t^{m}}{m!} \tag{14}\\
& \quad\left(\lambda, t \in \mathbb{C}_{p} \text { with } \lambda \neq 0,|\lambda t|<p^{-\frac{1}{p-1}}\right) .
\end{align*}
$$

Hermite-Bernoulli polynomials ${ }_{H} B_{k}^{(\alpha)}(x, y)$ of order α are defined by the following generating function

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{\alpha} e^{x t+y t^{2}}=\sum_{k=0}^{\infty} H_{k}^{(\alpha)}(x, y) \frac{t^{k}}{k!} \quad(\alpha, x, y \in \mathbb{C} ;|t|<2 \pi) \tag{15}
\end{equation*}
$$

where ${ }_{H} B_{k}^{(1)}(x, y):={ }_{H} B_{k}(x, y)$ are Hermite-Bernoulli polynomials, cf. [18,19]. For more information related to systematic works of some special functions and polynomials, see References [20-29].

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials (15) and (31), by mainly using the theory of p-adic integral on \mathbb{Z}_{p}. The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.

2. Symmetry Identities of Hermite-Bernoulli Polynomials of Arbitrary Complex Number Order

Here, by mainly using Kim's method in References [30,31], we establish certain symmetry identities of Hermite-Bernoulli polynomials of arbitrary complex number order.

Theorem 1. Let $\alpha, x, y, z \in \mathbb{C}, \eta_{1}, \eta_{2} \in \mathbb{N}$, and $n \in \mathbb{N}_{0}$. Then,

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell}{ }_{H} B_{n-m}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) S_{m-\ell}\left(\eta_{1}-1\right) B_{\ell}^{(\alpha-1)}\left(\eta_{1} y\right) \eta_{1}^{n-m-1} \eta_{2}^{m} \\
& =\sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} H B_{n-m}^{(\alpha)}\left(\eta_{1} x, \eta_{1}^{2} z\right) S_{m-\ell}\left(\eta_{2}-1\right) B_{\ell}^{(\alpha-1)}\left(\eta_{2} y\right) \eta_{2}^{n-m-1} \eta_{1}^{m} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{1}^{m-1} \eta_{2}^{n-m} B_{n-m}^{(\alpha-1)}\left(\eta_{1} y\right)_{H} B_{m}^{(\alpha)}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j_{2} \eta_{2}^{2} z\right) \\
& \quad=\sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{2}^{m-1} \eta_{1}^{n-m} B_{n-m}^{(\alpha-1)}\left(\eta_{2} y\right)_{H} B_{m}^{(\alpha)}\left(\eta_{1} x+\frac{\eta_{1}}{\eta_{2}} j, \eta_{1}^{2} z\right) \tag{17}
\end{align*}
$$

Proof. Let

$$
\begin{gather*}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t):=\frac{e^{\eta_{1} \eta_{2} t}-1}{\eta_{1} \eta_{2} t}\left(\frac{\eta_{1} t}{e^{\eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} x t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}}\left(\frac{\eta_{2} t}{e^{\eta_{2} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} y t} \tag{18}\\
\left(\alpha, x, y, z \in \mathbb{C} ; t \in \mathbb{C} \backslash\{0\} ; \eta_{1}, \eta_{2} \in \mathbb{N} ; 1^{\alpha}:=1\right)
\end{gather*}
$$

Since $\lim _{t \rightarrow 0} \eta t /\left(e^{\eta t}-1\right)=1=\lim _{t \rightarrow 0}\left(e^{\eta t}-1\right) /(\eta t)(\eta \in \mathbb{N}), F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ may be assumed to be analytic in $|t|<2 \pi /\left(\eta_{1} \eta_{2}\right)$. Obviously $F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ is symmetric with respect to the parameters η_{1} and η_{2}.

Using Equation (4), we have

$$
\begin{equation*}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t):=\left(\frac{\eta_{1} t}{e^{\eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} x t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}} \frac{\int_{\mathbb{Z}_{p}} e^{\eta_{2} t u} d u}{\int_{\mathbb{Z}_{p}} e^{\eta_{1} \eta_{2} t u} d u}\left(\frac{\eta_{2} t}{e^{\eta_{2} t}-1}\right)^{\alpha-1} e^{\eta_{1} \eta_{2} y t} \tag{19}
\end{equation*}
$$

Using Equations (5) and (15), we find

$$
\begin{align*}
& F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} H_{n}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) \frac{\left(\eta_{1} t\right)^{n}}{n!} \cdot \frac{1}{\eta_{1}} \sum_{m=0}^{\infty} S_{m}\left(\eta_{1}-1\right) \frac{\left(\eta_{2} t\right)^{m}}{m!} \\
& \cdot \sum_{\ell=0}^{\infty} B_{\ell}^{(\alpha-1)}\left(\eta_{1} y\right) \frac{\left(\eta_{2} t\right)^{\ell}}{\ell!} \tag{20}
\end{align*}
$$

Employing a formal manipulation of double series (see, e.g., [32] (Equation (1.1)))

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} A_{k, n}=\sum_{n=0}^{\infty} \sum_{k=0}^{[n / p]} A_{k, n-p k} \quad(p \in \mathbb{N}) \tag{21}
\end{equation*}
$$

with $p=1$ in the last two series in Equation (20), and again, the resulting series and the first series in Equation (20), we obtain

$$
\begin{array}{r}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{m} \frac{{ }_{H} B_{n-m}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) S_{m-\ell}\left(\eta_{1}-1\right) B_{\ell}^{(\alpha-1)}\left(\eta_{1} y\right)}{(n-m)!(m-\ell)!\ell!} \tag{22}\\
\times \eta_{1}^{n-m-1} \eta_{2}^{m} t^{n}
\end{array}
$$

Noting the symmetry of $F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ with respect to the parameters η_{1} and η_{2}, we also get

$$
\begin{array}{r}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{m} \frac{{ }_{H} B_{n-m}^{(\alpha)}\left(\eta_{1} x, \eta_{1}^{2} z\right) S_{m-\ell}\left(\eta_{2}-1\right) B_{\ell}^{(\alpha-1)}\left(\eta_{2} y\right)}{(n-m)!(m-\ell)!\ell!} \tag{23}\\
\times \eta_{2}^{n-m-1} \eta_{1}^{m} t^{n} .
\end{array}
$$

Equating the coefficients of t^{n} in the right sides of Equations (22) and (23), we obtain the first equality of Equation (16).

For (17), we write

$$
\begin{equation*}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\frac{1}{\eta_{1}}\left(\frac{\eta_{1} t}{e^{\eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} x t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}} \frac{e^{\eta_{1} \eta_{2} t}-1}{e^{\eta_{2} t}-1}\left(\frac{\eta_{2} t}{e^{\eta_{2} t}-1}\right)^{\alpha-1} e^{\eta_{1} \eta_{2} y t} \tag{24}
\end{equation*}
$$

Noting

$$
\frac{e^{\eta_{1} \eta_{2} t}-1}{e^{\eta_{2} t}-1}=\sum_{j=0}^{\eta_{1}-1} e^{\eta_{2} j t}=\sum_{j=0}^{\eta_{1}-1} e^{\eta_{1} \frac{\eta_{2}}{\eta_{1}} j t}
$$

we have

$$
\begin{equation*}
F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\frac{1}{\eta_{1}} \sum_{j=0}^{\eta_{1}-1}\left(\frac{\eta_{1} t}{e^{\eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j\right) t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}}\left(\frac{\eta_{2} t}{e^{\eta_{2} t}-1}\right)^{\alpha-1} e^{\eta_{1} \eta_{2} y t} . \tag{25}
\end{equation*}
$$

Using Equation (15), we obtain

$$
\begin{align*}
& F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\frac{1}{\eta_{1}} \sum_{n=0}^{\infty} B_{n}^{(\alpha-1)}\left(\eta_{1} y\right) \frac{\left(\eta_{2} t\right)^{n}}{n!} \\
& \times \sum_{m=0}^{\infty} \sum_{j=0}^{\eta_{1}-1} H_{m}^{(\alpha)}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j, \eta_{2}^{2} z\right) \frac{\left(\eta_{1} t\right)^{m}}{m!} \tag{26}
\end{align*}
$$

Applying Equation (21) with $p=1$ to the right side of Equation (26), we get

$$
\begin{align*}
& F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1} B_{n-m}^{(\alpha-1)}\left(\eta_{1} y\right) \tag{27}\\
& \quad \times_{H} B_{m}^{(\alpha)}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j, \eta_{2}^{2} z\right) \frac{\eta_{1}^{m-1} \eta_{2}^{n-m}}{m!(n-m)!} t^{n}
\end{align*}
$$

In view of symmetry of $F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ with respect to the parameters η_{1} and η_{2}, we also obtain

$$
\begin{align*}
& F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1} B_{n-m}^{(\alpha-1)}\left(\eta_{2} y\right) \tag{28}\\
& \quad \times_{H} B_{m}^{(\alpha)}\left(\eta_{1} x+\frac{\eta_{1}}{\eta_{2}} j, \eta_{1}^{2} z\right) \frac{\eta_{2}^{m-1} \eta_{1}^{n-m}}{m!(n-m)!} t^{n}
\end{align*}
$$

Equating the coefficients of t^{n} in the right sides of Equation (27) and Equation (28), we have Equation (17).

Corollary 1. By substituting $\alpha=1$ in Theorem 1, we have

$$
\begin{aligned}
& \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell}{ }_{H} B_{n-m}\left(\eta_{2} x, \eta_{2}^{2} z\right) S_{m-\ell}\left(\eta_{1}-1\right)\left(\eta_{1} y\right)^{\ell} \eta_{1}^{n-m-1} \eta_{2}^{m} \\
= & \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} B_{n-m}\left(\eta_{1} x, \eta_{1}^{2} z\right) S_{m-\ell}\left(\eta_{2}-1\right)\left(\eta_{2} y\right)^{\ell} \eta_{2}^{n-m-1} \eta_{1}^{m}
\end{aligned}
$$

and

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{1}^{m-1} \eta_{2}^{n-m}\left(\eta_{1} y\right)^{n-m}{ }_{H} B_{m}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j, \eta_{2}^{2} z\right) \\
= & \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{2}^{m-1} \eta_{1}^{n-m}\left(\eta_{2} y\right)^{n-m}{ }_{H} B_{m}\left(\eta_{1} x+\frac{\eta_{1}}{\eta_{2}} j, \eta_{1}^{2} z\right) . \tag{29}
\end{align*}
$$

Corollary 2. Taking $\alpha=1$ and $z=0$ in Theorem 1, we have

$$
\begin{aligned}
& \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} B_{n-m}\left(\eta_{2} x\right) S_{m-\ell}\left(\eta_{1}-1\right)\left(\eta_{1} y\right)^{\ell} \eta_{1}^{n-m-1} \eta_{2}^{m} \\
= & \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} B_{n-m}\left(\eta_{1} x\right) S_{m-\ell}\left(\eta_{2}-1\right)\left(\eta_{2} y\right)^{\ell} \eta_{2}^{n-m-1} \eta_{1}^{m}
\end{aligned}
$$

and

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{1}^{m-1} \eta_{2}^{n-m}\left(\eta_{1} y\right)^{n-m} B_{m}\left(\eta_{2} x+\frac{\eta_{2}}{\eta_{1}} j\right) \tag{30}\\
= & \sum_{m=0}^{n} \sum_{j=0}^{\eta_{1}-1}\binom{n}{m} \eta_{2}^{m-1} \eta_{1}^{n-m}\left(\eta_{2} y\right)^{n-m} B_{m}\left(\eta_{1} x+\frac{\eta_{1}}{\eta_{2}} j\right) .
\end{align*}
$$

3. Symmetry Identities of Arbitrary Order Hermite-Bernoulli Polynomials Attached to a Dirichlet Character χ

We begin by introducing generalized Hermite-Bernoulli polynomials attached to a Dirichlet character χ of order $\alpha \in \mathbb{C}$ defined by means of the following generating function:

$$
\begin{gather*}
\left(\frac{\sum_{j=0}^{d-1} \chi(j) e^{j t}}{e^{d t}-1}\right)^{\alpha} e^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n, \chi}^{(\alpha)}(x, y) \frac{t^{n}}{n!} \tag{31}\\
(\alpha, x, y \in \mathbb{C})
\end{gather*}
$$

where χ is a Dirichlet character with conductor d.
Here, $B_{n, \chi}^{(\alpha)}(x):={ }_{H} B_{n, \chi}^{(\alpha)}(x, 0), B_{n, \chi}^{(\alpha)}:={ }_{H} B_{n, \chi}^{(\alpha)}(0,0)$, and $B_{n, \chi}:={ }_{H} B_{n, \chi}^{(1)}(0,0)$ are called the generalized Hermite-Bernoulli polynomials and numbers attached to χ of order α and Hermite-Bernoulli numbers attached to χ, respectively.

Remark 1. Taking $y=0$ in Equation (31) gives ${ }_{H} B_{n, \chi}^{(\alpha)}(x, 0):={ }_{H} B_{n, \chi}^{(\alpha)}(x), c f$. [33].
Remark 2. Equation (15) is obtained when $\chi:=1$ in Equation (31).
Remark 3. The Hermite-Bernoulli polynomials ${ }_{H} B_{n}(x, y)$ are obtained when $\chi:=1$ and $\alpha=1$ in Equation (31).

Remark 4. The generalized Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ is obtained when $\chi:=1$ and $y=0$ in Equation (31).
Remark 5. The classical Bernoulli polynomials attached to χ is obtained when $\alpha=1$ and $y=0$ in Equation (31).

Theorem 2. Let $\alpha, x, y, z \in \mathbb{C}, \eta_{1}, \eta_{2} \in \mathbb{N}$, and $n \in \mathbb{N}_{0}$. Then,

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} \eta_{1}^{n-m-1} \eta_{2}^{m} B_{n-m, \chi}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) B_{m-\ell, \chi}^{(\alpha-1)}\left(\eta_{1} y\right) T_{\ell}\left(\chi, d \eta_{1}-1\right) \\
& =\sum_{m=0}^{n} \sum_{\ell=0}^{m}\binom{n}{m}\binom{m}{\ell} \eta_{2}^{n-m-1} \eta_{1}^{m}{ }_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{1} x, \eta_{1}^{2} z\right) B_{m-\ell, \chi}^{(\alpha-1)}\left(\eta_{2} y\right) T_{\ell}\left(\chi, d \eta_{2}-1\right) \tag{32}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{\ell=0}^{d \eta_{1}-1} \chi(\ell)\binom{n}{m} \eta_{1}^{n-m-1} \eta_{2}^{m}{ }_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{2} x+\frac{\ell \eta_{2}}{\eta_{1}}, \eta_{2}^{2} z\right) B_{m, \chi}^{(\alpha-1)}\left(\eta_{1} y\right) \\
& =\sum_{m=0}^{n} \sum_{\ell=0}^{d \eta_{2}-1} \chi(\ell)\binom{n}{m} \eta_{2}^{n-m-1} \eta_{1}^{m}{ }_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{1} x+\frac{\ell \eta_{1}}{\eta_{2}}, \eta_{1}^{2} z\right) B_{m, \chi}^{(\alpha-1)}\left(\eta_{2} y\right) \tag{33}
\end{align*}
$$

where χ is a Dirichlet character with conductor d.
Proof. Let

$$
\begin{align*}
& G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t):=\frac{d}{\int_{X} e^{d \eta_{1} \eta_{2} u t} d u}\left(\frac{\eta_{1} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{1} t}}{e^{d \eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} x t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}} \tag{34}\\
& \times\left(\frac{\eta_{2} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{2} t}}{e^{d \eta_{2} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} y t}
\end{align*}
$$

Obviously $G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ is symmetric with respect to the parameters η_{1} and η_{2}. As in the function $F\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ in Equation (18), $G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ can be considered to be analytic in a neighborhood of $t=0$. Using Equation (9), we have

$$
\begin{align*}
& G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\frac{d \int_{X} \chi(u) e^{\eta_{2} u t} d u}{\int_{X} e^{d \eta_{1} \eta_{2} u t} d u}\left(\frac{\eta_{1} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{1} t}}{e^{d \eta_{1} t}-1}\right)^{\alpha} e^{\eta_{1} \eta_{2} x t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}} \tag{35}\\
& \times\left(\frac{\eta_{2} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{2} t}}{e^{d \eta_{2} t}-1}\right)^{\alpha-1} e^{\eta_{1} \eta_{2} y t} .
\end{align*}
$$

Applying Equations (13) and (31) to Equation (35), we obtain

$$
\begin{align*}
G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t):=\frac{1}{\eta_{1}} \sum_{n=0}^{\infty} H B_{n, \chi}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) \frac{\left(\eta_{1} t\right)^{n}}{n!} & \sum_{m=0}^{\infty} B_{m, \chi}^{(\alpha-1)}\left(\eta_{1} y\right) \frac{\left(\eta_{2} t\right)^{m}}{m!} \\
& \times \sum_{\ell=0}^{\infty} T_{\ell}\left(\chi, d \eta_{1}-1\right) \frac{\left(\eta_{2} t\right)^{\ell}}{\ell!} \tag{36}
\end{align*}
$$

Similarly as in the proof of Theorem 1, we find

$$
\begin{gather*}
G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{m} \frac{\eta_{1}^{n-m-1} \eta_{2}^{m}}{(n-m)!(m-\ell)!\ell!} \tag{37}\\
\times_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{2} x, \eta_{2}^{2} z\right) B_{m-\ell, \chi}^{(\alpha-1)}\left(\eta_{1} y\right) T_{\ell}\left(\chi, d \eta_{1}-1\right) t^{n} .
\end{gather*}
$$

In view of the symmetry of $G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ with respect to the parameters η_{1} and η_{2}, we also get

$$
\begin{array}{r}
G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{m} \frac{\eta_{2}^{n-m-1} \eta_{1}^{m}}{(n-m)!(m-\ell)!\ell!} \tag{38}\\
\times{ }_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{1} x, \eta_{1}^{2} z\right) B_{m-\ell, \chi}^{(\alpha-1)}\left(\eta_{2} y\right) T_{\ell}\left(\chi, d \eta_{2}-1\right) t^{n} .
\end{array}
$$

Equating the coefficients of t^{n} of the right sides of Equations (37) and (38), we obtain Equation (32).
From Equation (13), we have

$$
\begin{equation*}
\frac{d \int_{X} \chi(u) e^{\eta_{2} u t} d u}{\int_{X} e^{d \eta_{1} \eta_{2} u t} d u}=\frac{1}{\eta_{1}} \sum_{\ell=0}^{d \eta_{1}-1} \chi(\ell) e^{\ell \eta_{2} t} \tag{39}
\end{equation*}
$$

Using Equation (39) in Equation (35), we get

$$
\begin{align*}
& G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\frac{1}{\eta_{1}} \sum_{\ell=0}^{d \eta_{1}-1} \chi(\ell)\left(\frac{\eta_{1} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{1} t}}{e^{d \eta_{1} t}-1}\right)^{\alpha} e^{\left(\eta_{2} x+\frac{\ell \eta_{2}}{\eta_{1}}\right) \eta_{1} t+\eta_{1}^{2} \eta_{2}^{2} z t^{2}} \\
& \times\left(\frac{\eta_{2} t \sum_{j=0}^{d-1} \chi(j) e^{j \eta_{2} t}}{e^{d \eta_{2} t}-1}\right)^{\alpha-1} e^{\eta_{1} \eta_{2} y t} \tag{40}
\end{align*}
$$

Using Equation (31), similarly as above, we obtain

$$
\begin{align*}
G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{d \eta_{1}-1} \chi & (\ell)_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{2} x+\frac{\ell \eta_{2}}{\eta_{1}}, \eta_{2}^{2} z\right) \tag{41}\\
& \times B_{m, \chi}^{(\alpha-1)}\left(\eta_{1} y\right) \frac{\eta_{1}^{n-m-1} \eta_{2}^{m}}{(n-m)!m!} t^{n}
\end{align*}
$$

Since $G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)$ is symmetric with respect to the parameters η_{1} and η_{2}, we also have

$$
\begin{align*}
G\left(\alpha ; \eta_{1}, \eta_{2}\right)(t)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{\ell=0}^{d \eta_{2}-1} \chi & (\ell)_{H} B_{n-m, \chi}^{(\alpha)}\left(\eta_{1} x+\frac{\ell \eta_{1}}{\eta_{2}}, \eta_{1}^{2} z\right) \tag{42}\\
& \times B_{m, \chi}^{(\alpha-1)}\left(\eta_{2} y\right) \frac{\eta_{2}^{n-m-1} \eta_{1}^{m}}{(n-m)!m!} t^{n}
\end{align*}
$$

Equating the coefficients of t^{n} of the right sides in Equation (41) and Equation (42), we get Equation (33).

4. Conclusions

The results in Theorems 1 and 2, being very general, can reduce to yield many symmetry identities associated with relatively simple polynomials and numbers using Remarks $1-5$. Setting $z=0$ and $\alpha \in \mathbb{N}$ in the results in Theorem 1 and Theorem 2 yields the corresponding known identities in References [33,34], respectively.

Author Contributions: All authors contributed equally.
Funding: Dr. S. Araci was supported by the Research Fund of Hasan Kalyoncu University in 2018.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288-299.
2. Cenkci, M. The p-adic generalized twisted h, q-Euler-l-function and its applications. Adv. Stud. Contem. Math. 2007, 15, 37-47.
3. Cenkci, M.; Simsek, Y.; Kurt, V. Multiple two-variable p-adic q-L-function and its behavior at $s=0$. Russ. J. Math. Phys. 2008, 15, 447-459. [CrossRef]
4. Kim, T. On a q-analogue of the p-adic log gamma functions and related integrals. J. Numb. Theor. 1999, 76, 320-329. [CrossRef]
5. Kim, T. A note on q-Volkenborn integration. Proc. Jangeon Math. Soc. 2005, 8, 13-17.
6. Kim, T. q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 2007, 14, 15-27. [CrossRef]
7. Kim, T. A note on p-adic q-integral on \mathbb{Z}_{p} associated with q-Euler numbers. Adv. Stud. Contem. Math. 2007, 15, 133-137.
8. Kim, T. On p-adic q-l-functions and sums of powers. J. Math. Anal. Appl. 2007, 329, 1472-1481. [CrossRef]
9. Kim, T.; Choi, J.Y.; Sug, J.Y. Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on \mathbb{Z}_{p}. Russ. J. Math. Phy. 2007, 14, 160-163. [CrossRef]
10. Simsek, Y. On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phy. 2006, 13, 340-348. [CrossRef]
11. Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2017, in press.
12. Khan, N.; Usman, T.; Choi, J. A new generalization of Apostol-type Laguerre-Genocchi polynomials. C. R. Acad. Sci. Paris Ser. I 2017, 355, 607-617. [CrossRef]
13. Pathan, M.A.; Khan, W.A. Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials. Mediterr. J. Math. 2015, 12, 679-695. [CrossRef]
14. Pathan, M.A.; Khan, W.A. A new class of generalized polynomials associated with Hermite and Euler polynomials. Mediterr. J. Math. 2016, 13, 913-928. [CrossRef]
15. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012.
16. Kim, T.; Rim, S.H.; Lee, B. Some identities of symmetry for the generalized Bernoulli numbers and polynomials. Abs. Appl. Anal. 2009, 2009, 848943. [CrossRef]
17. Khan, W.A. Degenerate Hermite-Bernoulli numbers and polynomials of the second kind. Prespacetime J. 2016, 7, 1297-1305.
18. Cesarano, C. Operational Methods and New Identities for Hermite Polynomials. Math. Model. Nat. Phenom. 2017, 12, 44-50. [CrossRef]
19. Dattoli, G.; Lorenzutta, S.; Cesarano, C. Finite sums and generalized forms of Bernoulli polynomials. Rend. Mat. 1999, 19 , 385-391.
20. Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258-277. [CrossRef]
21. Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Publishing Company: New York, NY, USA, 1985.
22. Jang, L.C.; Kim, S.D.; Park, D.W.; Ro, Y.S. A note on Euler number and polynomials. J. Inequ. Appl. 2006, 2006, 34602. [CrossRef]
23. Kim, T. On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 2007, 326, 1458-1465. [CrossRef]
24. Kim, T. q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15, 51-57. [CrossRef]
25. Kim, T. On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phy.2008, 15, 481-486. [CrossRef]
26. Kim, T. New approach to q-Euler, Genocchi numbers and their interpolation functions. Adv. Stud. Contem. Math. 2009, 18, 105-112.
27. Kim, T. Sums of products of q-Euler numbers. J. Comput. Anal. Appl. 2010, 12, 185-190.
28. Kim, Y.H.; Kim, W.; Jang, L.C. On the q-extension of Apostol-Euler numbers and polynomials. Abs. Appl. Anal. 2008, 2008, 296159.
29. Simsek, Y. Complete sum of products of (h, q)-extension of the Euler polynomials and numbers. J. Differ. Eqn. Appl. 2010, 16, 1331-1348. [CrossRef]
30. Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca 2018, 68, 239-243. [CrossRef]
31. Kim, T. Symmetry p-adic invariant integral on \mathbb{Z}_{p} for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14, 1267-1277. [CrossRef]
32. Choi, J. Notes on formal manipulations of double series. Commun. Korean Math. Soc. 2003, 18, 781-789. [CrossRef]
33. Kim, T.; Jang, L.C.; Kim, Y.H.; Hwang, K.W. On the identities of symmetry for the generalized Bernoulli polynomials attached to χ of higher order. J. Inequ. Appl. 2009, 2009, 640152. [CrossRef]
34. Kim, T.; Hwang, K.W.; Kim, Y.H. Symmetry properties of higher order Bernoulli polynomials. Adv. Differ. Equ. 2009, 2009, 318639. [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
