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Abstract: For many multi-attribute decision-making (MADM) problems, linguistic variables are more
convenient for people to express the attribute values. In this paper, a novel shadowed set-based
method is proposed to deal with linguistic terms, where the linguistic term sets are symmetrical both
in meaning and form. Firstly, to effectively express the linguistic variables, we develop a data-driven
method to construct the shadowed set model for the linguistic terms. Secondly, the Pythagorean
shadowed set is defined, and some theorems are subsequently explored. Thirdly, we propose the
score function of the Pythagorean shadowed number and develop a new MADM method on the
basis of the Pythagorean shadowed set. Finally, a case study of the supplier selection problem is
provided to illustrate the effectiveness of the proposed method, and the superiority of our method is
demonstrated by comparison analysis.

Keywords: Pythagorean fuzzy linguistic set; shadowed set; Pythagorean shadowed set;
multi-attribute decision-making

1. Introduction

Multi-attribute decision-making (MADM) aims to select the best alternative solution(s) from
multiple alternatives and has been widely used in various fields [1–3]. In MADM problems,
linguistic terms are a convenient and natural way to describe evaluation information. For example,
the decision-makers (DMs) can use linguistic terms such as ‘Extremely low’, ‘Very low’, ‘Low’, ‘Fair’,
‘High’, ‘Very high’, and ‘Extremely high’ to estimate service quality, product performance, and so
forth. Therefore, MADM problems based on linguistic terms have received increasing attention.
In [4], Aggarwal proposed a new aggregation operator for linguistic terms, and the effectiveness of
the operator was illustrated by a case study on the supplier selection problem. Jin [5] developed
two group decision-making methods to handle MADM problems under linguistic set environment,
and comparative analysis with other methods was performed to demonstrate the validity and merits
of the two methods. Yu [6] proposed an extended TODIM method with unbalanced hesitant fuzzy
linguistic term sets for MADM problems. For linguistic decision-making problems, Pei [7] developed
a new decision-making method by integrating the fuzzy linguistic multiset and TOPSIS methods,
and two practical examples were utilized to verify the feasibility of the proposed approach. For the
venture capital problem under a linguistic environment, Cheng [8] proposed an interaction approach.
However, the methods mentioned above directly replace the linguistic variables with linguistic
subscript in the decision-making process, which may cause distortion of information. To better
express linguistic variables, the linguistic 2-tuple [9,10] and linguistic scale function [11,12] were
introduced to deal with linguistic sets. Nevertheless, the linguistic 2-tuple and linguistic scale function
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methods still use linguistic subscript to express language variables in nature. Besides, it is difficult
to explain the rationality in theory by simply replacing linguistic word with its linguistic subscript.
Furthermore, people may have diverse opinions on identical words, but linguistic subscript can only
depict a single meaning for one person, which may lead to information distortion.

As distinct from the linguistic 2-tuple and scale function, shadowed sets [13,14] can effectively
construct linguistic terms using a data-driven method, and have recently been attracting more and
more attention [15,16]. The membership value of the shadowed set is not a precise number, and its
distribution is composed of three different zones: the core zone, shadowed zone, and exclusion zone.
The core zone and the exclusion zone take the values of 1 and 0, which means all the elements of
both zones are fully compatible with or completely excluded from the linguistic word described by
a shadowed set. The shadowed zone is an entire unit interval perceived as a zone of uncertainty,
which means we are not sure whether the shadowed zone elements represent the linguistic word
described by a shadowed set.

In addition, in many situations, experts may hesitate as to what attribute values should be given by
them, due to the increasing complexity. Consequently, Atanassov [17] proposed the intuitionistic fuzzy
set (IFS) to express uncertainty, which involves not only membership degree but also non-membership
degree. However, the limitation of IFS is that the sum of membership degree and non-membership
degree must be no more than 1, which makes it difficult to sufficiently express the ideas of the
DMs. Therefore, Yager [18] defined the Pythagorean fuzzy set (PFS), which can effectively express
the certainty and uncertainty of experts. Recently, PFS has been introduced to deal with MADM
problems [19–22]. Zhang and Xu [19] proposed the operation rules of PFS, and extended the TOPSIS
method to PFS. By combining PFS with the hesitant fuzzy set (HFS), a new fuzzy set was defined
by Liang and Xu [20], named the hesitant Pythagorean fuzzy set (HPFS), an extended TOPSIS
method with HPFS was subsequently proposed. Zhang [21] extended PFS to the interval-valued case,
and explored the basic operation rules of the Pythagorean fuzzy set (IVPFS). In addition, a Pythagorean
fuzzy QUALIFLEX method was developed by integrating closeness index, and its effectiveness was
demonstrated through a hierarchical MADM problem. Combining PFSs with linguistic variables,
the definition of Pythagorean fuzzy linguistic set (PFLS) was proposed by Peng and Yang [22] and the
operation rules of PFLS was defined, subsequently.

Inspired by the idea of the shadowed set and PFS, we propose a new approach to solve MADM
problems under linguistic set environment. Firstly, we define Pythagorean shadowed set and explore
some theorems of the shadowed set. Secondly, a score function of the Pythagorean shadowed number
is defined and the detailed decision-making procedures-based upon the score function is proposed.
Finally, a case study of supplier selection is adopted to verify the feasibility of the proposed approach.

The organization of this paper is as follows. Section 2 presents the preliminaries of the Pythagorean
fuzzy set and shadowed set. In Section 3, the shadowed set model of seven-level language term is
obtained by a data-driven method. A new score function of Pythagorean shadowed number is
introduced in Section 4. Section 5 mainly addresses a new MADM method based on Pythagorean
shadowed set. The effectiveness of the proposed approach is demonstrated through a supplier selection
problem in Section 6, and comparative analysis is made with the other existing methods. Finally,
some conclusions are drawn in Section 7.

2. Preliminaries

2.1. Pythagorean Fuzzy Set (PFS)

Definition 1 ([18,23]). Suppose X is a fixed set. A PFS takes the form of:

P = {〈 x, P(uP(x), vP(x))〉|x ∈ X}
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where vp(x): X → [0, 1] and up(x): X → [0, 1] represent the non-membership function and membership

function of x ∈ X, respectively, u2
p(x) + v2

p(x) ≤ 1. In addition, πp(x) =
√

1− u2
p(x)− ν2

p(x) denotes the
hesitation degree of x ∈ X.

For the sake of simplicity, Zhang and Xu [19] named P(uP(x), vP(x)) the Pythagorean fuzzy

number (PFN), expressed by β = P
(
uβ, vβ

)
, where up(x), vp(x) ∈ [0, 1], πp(x) =

√
1− u2

p(x)− ν2
p(x)

and u2
p(x) + v2

p(x) ≤ 1.

Definition 2 ([9]). Assume S = {si|i = 0, · · · , t, t ∈ R} is a linguistic term set, si is the linguistic evaluation
value, t is the granularity of S. Take the seven-level linguistic term as an example: S = {s0 = Extremely low,
s1 = Very low, s2 = Low, s3 = Fair, s4 = High, s5 = Very high, s6 = Extremely high}.

S must satisfy the following two properties:

(1) There is a negation operator: neg(si) = st−i;
(2) If i < j then Si < Sj;

Definition 3 ([22]). Based on the definition of linguistic term set and PFS, the Pythagorean fuzzy linguistic set
(PFLS) takes the form of D =

{〈
sτ(x), up(x), vp(x)

〉∣∣∣x ∈ X
}

, and the Pythagorean fuzzy linguistic number

(PFLN) is denoted as
〈

sτ(x), up(x), vp(x)
〉

, where sτ(x) is the linguistic evaluation value.

When the attribute values are represented in the form of linguistic terms in MADM problems,
the linguistic variable cannot be directly calculated. Therefore, Xu used the subscript of the linguistic
term [24] for computation, Wang put forward a linguistic scale function [11] to convert linguistic terms
into crisp numbers, and Herrera converted linguistic terms into fuzzy numbers [25]. However, all those
methods still use linguistic subscript to express language variables in nature. To express the fuzziness
and uncertainty of linguistic terms, we introduce shadowed set method to cope with linguistic term,
and further put forward a new Pythagorean shadowed set.

2.2. Shadowed Set

Definition 4 ([13,14]). A shadowed set S is a set-valued mapping as follows:

S : U → {0, [0, 1], 1}

where U is a given universe of discourse.

The core of the shadowed set S is the area where the mapping values of the elements are equal to 1.

core(S) = {x ∈ U|S(x) = 1}

The elements of U whose mapping values are unit intervals in S compose the shadowed zone of
the shadowed set and are expressed as follows,

CU(S) = {x ∈ U|S(x) = [0, 1]}

The elements of U whose mapping values are equal to 0 will be excluded from the shadowed
set S.
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Definition 5. A = [a, b, c, d] is called a shadowed number (SN), where a, b are the lower and upper bound of
the left-shoulder shadowed part, and c, d are the lower and upper bound of the right-shoulder shadowed part.
Figure 1 shows an illustration of shadowed number.
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2.3. Pythagorean Shadowed Set (PSS)

In this section, we will define the Pythagorean shadowed set and give some properties for it.

Definition 6. Suppose X is a fixed set, a Pythagorean shadowed set T over X takes the form of

T = {〈 A, P(uP(x), vP(x))〉|x ∈ X}

where A = [a, b, c, d], a, b are the lower and upper bound of the left-shoulder shadowed part, respectively,
and c, d are the lower and upper bound of the right-shoulder shadowed part, respectively. Function up(x):
X → [0, 1] and vp(x): X → [0, 1] denote the membership function and non-membership function, respectively.

u2
p(x) + v2

p(x) ≤ 1, and πp(x) =
√

1− u2
p(x)− ν2

p(x) denotes the hesitate degree of x ∈ X.

Definition 7. A Pythagorean shadowed number (PSN) takes the form of:

V = 〈 A, P(uP(x), vP(x))〉

where a, b are the lower and upper bound of the left-shoulder shadowed part, c, d are the lower and upper bound
of the right-shoulder shadowed part, and up(x): X → [0, 1] and vp(x): X → [0, 1] represent membership
function and non-membership function, respectively.

Let V1 = 〈 A1, P(uP(x1), vP(x1))〉 and V2 = 〈 A2, P(uP(x2), vP(x2))〉 be two PSNs,
where A1 = [a1, b1, c1, d1] and A2 = [a2, b2, c2, d2], then the operation rules are as follows:

(1) V1 + V2 =

〈
[a1 + a2, b1 + b2, c1 + c2, d1 + d2], P

(√(
up(x1)

)2
+
(
up(x2)

)2 −
(
up(x1)

)2(up(x2)
)2, vp(x1)vp(x2)

)〉
(2) V1 ×V2 =

〈
[a1 × a2, b1 × b2, c1 × c2, d1 × d2], P

(
up(x1)up(x2),

√(
νp(x1)

)2
+
(
νp(x2)

)2 −
(
νp(x1)

)2(
νp(x2)

)2
)〉

(3) λV1 =

〈
[λa1, λb1, λc1, λd1], P

(√
1−

(
1−

(
up(x1)

)2
)λ

,
(
νp(x1)

)λ

)〉
, λ ≥ 0

(4) V1
λ =

〈 [
aλ

1 , bλ
1 , cλ

1 , dλ
1
]
, P

(up(x1)
)λ,

√
1−

(
1−

(
νp(x1)

)2
)λ
〉, λ ≥ 0

Theorem 1. For any two PSNs V1 = 〈 A1, P(uP(x1), vP(x1))〉 and V2 = 〈 A2, P(uP(x2), vP(x2))〉,
whereA1 = [a1, b1, c1, d1] and A2 = [a2, b2, c2, d2], the calculation rules satisfy the following properties:

(1) V1 + V2 = V2 + V1

(2) V1 ×V2 = V2 ×V1
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(3) λ(V1 + V2) = λV1 + λV2, λ ≥ 0

(4) Vλ1+λ2
1 = Vλ1

1 + Vλ2
2 , λ1, λ2 ≥ 0

(5) λ1V1 + λ2V1 = (λ1 + λ2)V1, λ1, λ2 ≥ 0

(6) Vλ
1 ×Vλ

2 = (V1 ×V2)
λ, λ ≥ 0

3. Shadowed Set Model of Linguistic Terms

We collect the interval data for each language word in the form of the seven-level linguistic
term listed in Definition 2 and use the collected interval data to construct the shadowed set models
for the seven-level linguistic term. The interval data are obtained by means of questionnaire survey.
The main framework of our questionnaire is designed to get a proper interval value for each word
of the seven-level linguistic term from those respondents according to their experience, habits and
common sense. It is necessary for the filled numbers to be accurate to the first decimal place.

We handed out our questionnaires via leaflets, emails and online survey websites to people in
different fields, especially to those with a bachelor degree or above. In the end, we got 1205 valid
questionnaires, and the questionnaire data were processed by the following interval data preprocessing
method to obtain the shadowed number of the seven-level linguistic term.

3.1. Interval Data Preprocessing

Wu and Liu [26,27] proposed an efficient method to preprocess interval data, and we preprocessed
the n interval endpoint data [ak, bk](k = 1, 2, . . . , n) based on this method, as follows:

Step 1: Bad data processing. This aims to remove unreasonable results from the surveyed people,
whose answers were beyond the range of the universe of discourse U. If the interval endpoints satisfy
the following conditions, the interval data are acceptable. Otherwise, they will be rejected.

0 ≤ ak ≤ 10
0 ≤ bk ≤ 10
bk ≥ ak

, k = 1, 2, . . . , n

By this step, some data will be abandoned, and n∗ < n interval data will be preserved.
Step 2: Outlier Processing. By using the Box and Whisker test [28], the data that are extremely

large or small, i.e., outliers, can be eliminated. Outlier tests can be applied to process the endpoints
of interval data and the lengths of interval data Lk = bk − ak, respectively. Consequently, only the
interval endpoints and lengths satisfying the following conditions are kept:

ak ∈ [Qa(0.25)− 1.5IQRa, Qa(0.75) + 1.5IQRa]

bk ∈ [Qb(0.25)− 1.5IQRb, Qb(0.75) + 1.5IQRb]

Lk ∈ [QL(0.25)− 1.5IQRL, QL(0.75) + 1.5IQRL]

, k = 1, 2, . . . , n∗

where Qa and IQRa are respectively the quartile and interquartile ranges of the left endpoints, Qb and
IQRb are respectively the quartile and interquartile ranges of the right endpoints, QL and IQRL are
respectively the quartile and interquartile ranges of the interval data’s length. Q(0.25) and Q(0.75)
are the first and third quartiles, which include 25% and 75% of the data, respectively. In addition,
the interquartile range IQR is the difference between Q(0.25) and Q(0.75); that is to say, IQR contains
50% of the data between Q(0.25) and Q(0.75). The points that are more than 1.5IQR below the first
quartile or more than 1.5IQR above the third quartile are regarded as outliers.

After this step, m∗ < n∗ interval data will remain.
Then, the following statistics of the m∗ interval data are calculated: ml and σl are mean values

and standard deviations of the m∗ left endpoints, respectively. Similarly, mr and σr represent the mean
values and standard deviations of the m∗ right endpoints. mL and σL denote the mean values and
standard deviations of the lengths of the m∗ interval data.
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Step 3: Tolerance limit processing. If the remaining intervals satisfy the following conditions,
then they will be accepted; otherwise, they will be rejected.

ak ∈ [ml − ησl , ml + ησl ]

bk ∈ [mr − ησr, mr + ησr]

Lk ∈ [mL − ησL, mL + ησL]

, k = 1, 2, . . . , m∗

where η is the tolerance factor, which represents that we can assure the given limits at least include
the proportion 1− α of the measurements with 100 · (1−γ)% confidence level. The value of tolerance
factor can be obtained from Table 1 [29].

Table 1. Tolerance factor η for several collected data.

m*

1−γ = 0.95 1−γ = 0.99

1−α 1−α

0.90 0.95 0.90 0.95

10 2.839 3.379 3.582 4.265
15 2.480 2.954 2.945 3.507
20 2.310 2.752 2.659 3.168
30 2.140 2.549 2.358 2.841
50 1.996 2.379 2.162 2.576

100 1.874 2.233 1.977 2.355
1000 1.709 2.036 1.736 2.718

∞ 1.645 1.960 1.645 1.960

After the processing of Step 3, m∗∗ < m∗(1 ≤ m∗∗ ≤ n) interval data will be left, and the following
statistical characteristics of the m∗∗ data will be computed: ml , σl , mr, σr, mL and σL of the left (right)
endpoints the m∗∗ interval data.

Step 4: Reasonable-interval processing. If the intervals satisfy the following conditions, they will
be kept; otherwise, they will be rejected.

2ml − φ∗ ≤ ak < φ∗ < bk ≤ 2mr − φ∗

where

φ∗ =

(
mrσ2

l −mlσ
2
r
)
± σlσr

[
(ml −mr)

2 + 2
(
σ2

l − σ2
r
)

ln(σl/σr)
]1/2

σ2
l − σ2

r

After this step, there will be m interval data.
In a word, there will be m interval data after the four processing steps above, which is not greater

than the n interval data at the beginning, as shown in Figure 2.
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3.2. Shadowed Set Model of Seven-Level Language Terms

After data preprocessing, the distribution of the remaining interval data is obtained as shown
in Figure 3. The intervals of the left-end points and right-end points can reflect the linguistic word’s
uncertainties from different surveyed persons. Therefore, it is necessary to determine the representative
intervals for the left-end points and right-end points to express the uncertainties. As shown in Figure 3,
the core area can be determined even if the surveyed people cannot give accurate representative
intervals. As a result, the core of the shadowed set is the core area and the uncertain bound of the
shadowed set is the representative intervals.
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Next, we will estimate the representative intervals by the tolerance limit method via the
following steps.

Step 1: Calculate the mean ml and standard deviation σl of the remaining left-end points

ml =

m
∑

k=1
l̂k

m
(1)

σl =

√√√√√ m
∑

k=1

(
l̂k −ml

)2

m
(2)

where l̂k denotes the left-end point of each remaining interval, m is the number of remaining intervals.
Step 2: Determine the representative interval. Let [Ll , Lr] and [Rl , Rr] be the representative

intervals of the left-end points and right-end points, respectively.

Ll = ml − η ∗ σl (3)

Lr = ml + η ∗ σl (4)

where η is the tolerance factor in Table 1.
Then, the representative interval for the right-end points is calculated in the same way.
The parameters γ and α are set to 0.05 and 0.1 in this paper, respectively, and we can obtain a

tolerance factor η of 1.709 from Table 1. Take the seven-level language terms as an example: based on
the results above, the shadowed set models for seven-level language terms can be constructed as
shown in Figure 4.
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4. The Score Function of Pythagorean Shadowed Number

Based on the concepts of shadowed number and Pythagorean shadowed number in Section 2,
we will further present the score functions of shadowed number and Pythagorean shadowed number,
respectively. Numerical examples will also be given to illustrate the specific calculation process of the
two score functions.

According to the central limit theorem, the attribute value rij given by the decision-maker is stable
and tends to be the most likely attribute value at a certain point, so it is believed that rij obeys the
normal distribution within the fuzzy interval. From the tolerance limit method in Section 3.2, we can
obtain the distribution of attribute value in the shadowed set S = {Ai|U}, Ai = [ai, bi, ci, di], as shown
in Figure 5.
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Definition 8. The score function of shadowed number A is defined as follows:

score(A) = a +
∫ b

a
f (x) dx + c− b +

∫ d

c
f (x) dx + d (5)

where f (x) = 1√
2πσ
· e−(x−u)2/(2·σ2).

According to the 3σ principle of normal distribution:

p(r ∈ [u− 3σ, u + 3σ]) = 0.9974, p(r ∈ [a, d]) = 0.9974

Then u = a+d
2 , σ = d−a

6 .

Example 1. The score function value of shadowed set A0 for ‘High’ in Figure 3 can be calculated as follows:

u = a + d = 5.77 + 7.96 = 13.73, σ =
d− a

6
=

7.96− 5.77
6

= 0.37

f (x) = 1.08e−(x−6.87)2/0.27

Then, we can gain the figure of shadowed number ‘High’ as shown in Figure 6.

score(A0) = 5.77 +
∫ 6.48

5.77
f (x) dx + 7.21− 6.48 +

∫ 7.96

7.21
f (x) dx + 7.96 = 17.9
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In the same way, we can get the score function of shadowed sets for the other six language terms
in Figure 3.

Definition 9. The score function of a Pythagorean shadowed number V is denoted as:

score(V) =

(
a +

∫ b

a
f (x) dx + c− b +

∫ d

c
f (x) dx + d

)
· (u/v) (6)

Example 2. For a Pythagorean shadowed number V1 = {[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)}, the score function
value is:

score(V1) =

(
5.77 +

∫ 6.48

5.77
f (x)dx + 7.21− 6.48 +

∫ 7.96

7.21
f (x)dx + 7.96

)
· (0.7/0.4) = 31.33

where f (x) = 1.08e−(x−6.87)2/0.27.
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5. MADM Method Based on the Pythagorean Shadowed Set

With the concept of PSS in mind, we can put forward a novel MADM approach under Pythagorean
fuzzy linguistic term circumstances. The diagram of the proposed method is shown in Figure 7. Firstly,
present a description of the MADM problem under the Pythagorean linguistic fuzzy circumstances.
Secondly, transform the PFLS into PSS through a data-driven method. Thirdly, determine the ranking
order of all alternatives so as to obtain the best choice(s) by means of the score function of PSNs and
OWA operator. The whole decision-making process is carried out in the following steps.
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Step 1: Standardized decision matrix. For PFLVs Pij =
〈

sτij , P
(
up
(
xij
)
, vp
(
xij
))〉

For beneficial attributes, Pij = Pij =
〈

sτij , P
(
up
(
xij
)
, vp
(
xij
))〉

For cost attributes, Pij =
(

Pij
)−1

=

〈
s
(τij)

−1 , P
(
vp
(
xij
)
, up
(
xij
))〉

where
(
τij
)−1

= l + 1− τij and

l is the number of language term.
Step 2: Collect the data by questionnaire and get the shadowed set of language terms by

processing the data. Transform Pythagorean fuzzy linguistic numbers into PSNs using Figure 4.
Step 3: Transform the PFSN decision matrix into score function matrix based on Equation (6).
Step 4: By OWA operator, the attribute values rij of each alternative ai are aggregated to obtain

the comprehensive attribute values zi.

zi = OWAw(ri1, ri2, . . . , rim) =
m

∑
j=1

wirij, i = 1, 2, . . . , n
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where w = (w1, w2, . . . , wm) is the criterion weight vector, n is the number of alternatives, m is the
number of attribute.

Step 5: Determine the order of all the alternatives in the light of the comprehensive attribute
values zi.

6. Numerical Study

The proposed algorithm will be demonstrated by solving the problem of how to select the most
suitable supplier for a company under various evaluation factors. At the same time, comparisons with
the linguistic term subscript method and the linguistic scale function method are performed to show
the advantages of our approach.

6.1. Supplier Selection Problem

A car company needs to choose appropriate supplier of spare parts. A total of five alternative
suppliers are denoted as a1, a2, a3, a4, a5. After synthetical consideration, four main factors are taken
into account: c1 Supply capacity, c2 Delivery timeliness, c3 Service quality, c4 Scientific research ability.
The criterion weight vector is w = (0.3, 0.2, 0.4, 0.1). Language evaluation of the four attributes adopts
the form of seven-level linguistic term, S = {s0, s1, s2, s3, s4, s5, s6} = {Extremely low, Very low, Low,
Fair, High, Very high, and Extremely high}. The decision matrix given by experts is shown in Table 2:

Table 2. Decision matrix.

Alternatives
Attributes

c1 c2 c3 c4

a1 〈s4, P(0.7, 0.4)〉 〈s5, P(0.5, 0.6)〉 〈s2, P(0.7, 0.3)〉 〈s3, P(0.8, 0.4)〉
a2 〈s5, P(0.6, 0.4)〉 〈s3, P(0.7, 0.4)〉 〈s3, P(0.6, 0.4)〉 〈s4, P(0.7, 0.5)〉
a3 〈s6, P(0.6, 0.5)〉 〈s3, P(0.8, 0.3)〉 〈s5, P(0.6, 0.5)〉 〈s2, P(0.6, 0.4)〉
a4 〈s3, P(0.7, 0.3)〉 〈s4, P(0.6, 0.5)〉 〈s3, P(0.7, 0.4)〉 〈s6, P(0.7, 0.6)〉
a5 〈s4, P(0.7, 0.4)〉 〈s5, P(0.6, 0.5)〉 〈s4, P(0.7, 0.4)〉 〈s3, P(0.8, 0.4)〉

Step 1: c1, c2, c3, c4 are beneficial attributes. Therefore, the standardized decision matrix is the
same with Table 2.

Step 2: Transform PFLNs into Pythagorean shadowed numbers using Figure 4, and the result is
shown in Table 3.

Table 3. Decision matrix with PFSN.

Alternatives
Attributes

c1 c2

a1 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[7.51, 7.61, 8.60, 8.97], P(0.5, 0.6)〉
a2 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.4)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.4)〉
a3 〈[8.61, 9.22, 9.62, 9.89], P(0.6, 0.5)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.3)〉
a4 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.3)〉 〈[5.77, 6.48, 7.21, 7.96], P(0.6, 0.5)〉
a5 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.5)〉

Alternatives
Attributes

c3 c4

a1 〈[2.38, 3.28, 3.83, 4.90], P(0.7, 0.3)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.4)〉
a2 〈[3.83, 4.84, 5.52, 6.46], P(0.6, 0.4)〉 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.5)〉
a3 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.5)〉 〈[2.38, 3.28, 3.83, 4.90], P(0.6, 0.4)〉
a4 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.4)〉 〈[8.61, 9.22, 9.62, 9.89], P(0.7, 0.6)〉
a5 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.4)〉
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Step 3: Transform the PFSNs decision matrix into score function matrix (shown in Table 4) based
on Equation (6).

Table 4. Score function matrix.

Alternatives
Attributes

c1 c2 c3 c4

a1 31.33 18.39 25.29 26.76
a2 33.11 23.42 20.07 25.06
a3 40.97 35.68 26.49 16.26
a4 31.22 21.48 23.42 39.83
a5 31.33 26.49 31.33 26.76

Step 4: By OWA operator, the attribute values rij of each alternative ai are aggregated to obtain
the comprehensive attribute values zi.

z1 = 25.87, z2 = 25.15, z3 = 31.65, z4 = 27.01, z5 = 29.91Step 5: Rank the alternatives and obtain
the best alternative(s) according to the comprehensive attribute values zi in the Step 4.

z3 > z5 > z4 > z1 > z2, that means, a3 � a5 � a4 � a1 � a2.
And the alternative a3 is the best choice of the supplier option problem.

6.2. Comparison Analysis

To verify the superiority of our method, comparations will be made between our approach and the
other two approaches, i.e., the linguistic term subscript method [22] and the linguistic scale function
method [11,19].

In [22], the score function of p =
〈

sτ(x), uA(x), vA(x)
〉

is:

score(p) =
τ(x)
t + 1

∗
(

µ2
β − ν2

β

)
(7)

where τ(x) is the subscript of the linguistic term, and t is the number of linguistic terms.
We can obtain the comprehensive attribute values zi based on Equation (7) and the OWA operator.
z1 = 0.094, z2 = 0.104, z3 = 0.098, z4 = 0.115, z5 = 0.147, and z5 > z4 > z2 > z3 > z1.
Therefore, the alternative a5 is the best choice.
In [19], the score function of PFN β = P

(
uβ, vβ

)
is:

score(β) = µ2
β − ν2

β (8)

In [11], the improved linguistic scale function is calculated as follows:

f (si) = θi =


mα−(m−i)α

2mα (i = 0, 1, 2, . . . , m)
mβ+(i−m)β

2mβ (i = m + 1, m + 2m . . . , t)
(9)

where α, β ∈ (0, 1], m = t
2 , and t is the number of linguistic terms.

According to the improved linguistic scale Function (8) and score Function (9), we can obtain the
score function of p =

〈
sτ(x), uA(x), vA(x)

〉
as:

score(p) = f (si) ∗
(

µ2
β − ν2

β

)
(10)

Let α = β = 0.5. We can obtain the comprehensive attribute values zi based on Equation (10) and
the OWA operator.

z1 = 0.07, z2 = 0.15, z3 = 0.2, z4 = 0.14, z5 = 0.16, and z3 > z5 > z2 > z4 > z1.
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Therefore, the alternative a3 is the best choice.
From Table 5, it can be observed that the ranking result obtained via our algorithm is different

from the other two methods. By using the linguistic term subscript method, the ranking order is
a5 � a4 � a2 � a3 � a1, which is totally different form the results of our method and the language
scale function method. The reason is that replacing linguistic words simply with linguistic subscript
leads to distortion of information. In fact, the linguistic subscript cannot effectively reflect original
decision information. Compared with the linguistic term subscript approach, the linguistic scale
function method seems more reasonable for describing the linguistic term information with a so-called
language scale function. However, the language scale function still replaces linguistic words with
numbers in nature, and information loss or information distortion is still inevitable. On the other hand,
different people may have different viewpoints on the same word, but the linguistic subscript and
linguistic scale function can only express a single meaning for a word. Compared with the other two
methods, we utilize a data-driven method to construct the shadowed set models for the linguistic
terms, which cannot only maintain the original decision information as far as possible, but also take
different views into account for a single word.

Table 5. Comparison analysis results.

Method Order of Alternatives

Our method a3 � a5 � a4 � a1 � a2
Linguistic term subscript method [22] a5 � a4 � a2 � a3 � a1

Language scale function method [11,19] a3 � a5 � a2 � a4 � a1

7. Conclusions

A novel method for MADM problems under a linguistic term environment was proposed,
combining shadowed sets and Pythagorean fuzzy sets. We defined Pythagorean shadowed numbers
and subsequently described their operation rules and basic properties. Based on the operation rules,
the score function of Pythagorean shadowed numbers was deduced, and a numerical example was
provided to illustrate the computing process. Bearing the above results in mind, we proposed a
new MADM approach to deal with linguistic terms. A supplier selection example was used to
demonstrate the feasibility of our method. Compared with the linguistic term subscript method and
the linguistic scale function method, a data-driven method was adopted to construct the shadowed
set models for linguistic terms, which can avoid information loss or information distortion to a great
extent. The comparative analysis shows that our method can provide more reasonable and accurate
decision-making results by depicting linguistic terms in a more precise manner.

In future research, the proposed method can be extended to other types of shadowed sets,
for example, left-shoulder, right-shoulder, non-cored, etc. Additionally, applications in other fields are
also worth exploring with our approach.
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