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Abstract: Taking inspiration principally from some of the latest research, we develop a new series
representation for the λ-generalized Hurwitz-Lerch zeta functions. This representation led to
important new results. The Fourier transform played a foundational role in this work. The duality
property of the Fourier transform became significant for checking the consistency of the results.
Some known data has been verified as special cases of the results obtained in this investigation.
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1. Introduction

The Hurwitz-Lerch zeta function has always been remained a focal point for numerous
investigators because of its influence on analytic number theory and further practical disciplines.
Recently, Srivastava [1] offered a substantially innovative class of Hurwitz-Lerch zeta functions, namely,
λ-generalized Hurwitz-Lerch zeta functions. The exploration of its diverse forms has garnered notable
concern, and numerous papers have consequently been presented on this subject. Jankov et al. [2]
and Srivastava et al. [3] have offered inequalities by considering diverse cases of these functions.
Srivastava et al. [4], have presented a nonlinear operator connected to λ-generalized Hurwitz-Lerch
zeta functions, in order to investigate the inclusion properties of the definite subclass of a special type
of meromorphic functions. Srivastava and Gaboury [5] have considered new expansion formulas for
such functions (see, for related data, [6,7]; see also more systematically supplementary revisions cited
in these publications). Luo and Raina [8] have discussed an interesting series representation. They also
acquired some new inequalities comprising Srivastava’s λ-generalized Hurwitz-Lerch zeta functions.

By taking inspiration from all these outcomes, in our current investigation, we consistently present
all the special cases of this newly concentrated family of Srivastava’s λ-generalized Hurwitz-Lerch
zeta functions in the form of a table. On the one hand, we take account of extended Fermi-Dirac
and Bose-Einstein functions defined by Srivastava et al. [9], and on the other, we focus on the
close relationship of these functions with the family of zeta and related functions. The purpose
of this analysis is to discover some fascinating innovative outcomes for Srivastava’s λ-generalized
Hurwitz-Lerch zeta functions and their different cases by succeeding the methodology of Chaudhry &
Qadir [10], Tassaddiq & Qadir [11,12], Tassaddiq [13], Lail & Qadir [14], and Tassaddiq [15]. In these
articles [10–15], the authors have investigated new representations for gamma, generalized gamma,
extended Fermi-Dirac and Bose-Einstein functions, and Hypergeometric functions, respectively, in
terms of complex delta functions. More recently, Tassaddiq [16] has obtained some new results for
Srivastava’s λ-generalized Hurwitz-Lerch zeta functions by using its Mellin transform representation.

In the present work, we acquire a different representation for the recently introduced family of the
λ-generalized Hurwitz-Lerch zeta functions in terms of complex delta functions. We validate this over
the space of entire test functions denoted by Z. In the usual sense, we can think of a function being
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defined in the form of an integral or a series of some variables, or in terms of elementary functions.
Nevertheless, it requires consideration as an object in itself, characterized by an integral or a series.
This is the only possibility to study the function further than its original domain of description. This is
necessary for diverse applications of any function. This concern comes to be principally significant
while talking about the concept of higher transcendental functions. Such functions have different
series, asymptotic, and integral representations to express functions in diverse domains and to give
more simple proofs of its properties when compared to others. Therefore, our new representation
is a powerful modeling tool that generalizes the domain of the λ-generalized Hurwitz-Lerch zeta
functions from complex numbers to complex functions. It applies to functionals that depend on
functions, rather than functions that depend on numbers. Since the methodology used is new, therefore
each general result in this paper has the capacity to obtain similar new results for well-studied
functions. It provides a computational technique to evaluate integrals of the products of these functions.
The stability of the results is confirmed by means of classical methods. In any case, this investigation
evidence is meaningful for delivering substantial and innovative results. The approach used is simple
and interesting.

Next, we will present the basic definitions and preliminaries by dividing this section into two
sections, namely (Section 2.1) and (Section 2.2). In Section 2.1, we discuss preliminaries related
to Srivastava’s λ-generalized Hurwitz-Lerch zeta functions, while in Section 2.2, we discuss basic
preliminaries relevant with distributions (generalized functions) that are necessary to understand the
results presented in this paper. The organization of the ensuing sections of this paper is as follows: We
present a new representation of the λ-generalized Hurwitz-Lerch zeta functions in Section 3. We achieve
analogous outcomes for new associated functions. We discuss the convergence and consequences
of new representation in Section 4. We present the Fourier transform representation in Section 5.
We check the validity of the results achieved by new representation in Section 5. We summarize our
present analysis in the last Section 6. Some interesting new formulae created by giving variations to
different parameters are presented in Appendix A.

2. Materials and Methods

2.1. Srivastava’s λ-Generalized Hurwitz-Lerch Zeta Functions

Consider the ordinary symbolizations

N := {1, 2, . . .}; N0 := N∪ {0}; Z− := {−1,−2, . . .}; Z−0 := Z− ∪ {0} (1)

where Z− is the set of negative integers. The symbols R, R+, and C symbolize the sets of real, positive
real, and complex numbers, individually throughout the paper.

The standard Fox-Wright function is an extension for the generalized hypergeometric function
that is defined by ([8] (p. 2219) Equation (1)) (see also [3], (p. 516), Equation (1)) and [17] p. (493),
Equation (2))

pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z

]
=

∞
∑

χ=0

([λp])ρpχ

([µq])σqχ

zχ

χ!(
λj, µk ∈ Candρj, σk ∈ R+(j = 1, . . . , p; k = 1, . . . , q)

)
.

(2)

Pochammar symbols
([

λp
])

ρpχ
:= [λ1]ρp

χ . . .
[
λp
]

ρpχ
are the shifted factorial, defined in terms

of the basic gamma function as follows:

(λ)ρ = Γ(λ+ρ)
Γ(λ)

=

{
1(ρ = 0, ρ ∈ Cr {0})

λ(λ + 1) . . . (λ + χ− 1)(ρ = χ ∈ N; λ ∈ C),

∆ :=
q
∑

j=1
σj −

p
∑

j=1
ρjand∇ :=

(
p
∏

j=1
ρ
−ρj
j

)
·
(

q
∏

j=1
σ

σj
j

)
.

(3)
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The series given by (2) converges in the complete complex z-plane for ∆ > −1; and if ∆ = 0,
the series (2) converges for specific values of |z| < ∇. For more a comprehensive exchange of such
functions, we refer the interested reader to see the references [18–23].

Srivastava’s λ-generalized Hurwitz-Lerch zeta function as presented by ([1], p. 1487, Equation (4))

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ) :=

1
Γ(s)

∫ ∞
0 ts−1exp

(
−at− b

tλ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; ze−t

]
dt

(min[<(a),<(s)] > 0;<(b) = 0; λ = 0)

(4)

are central for this research paper. Luo and Raina obtained the following series representation ([8],
p. 2221, Equation (6))

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ) = 1
λΓ(s)

∞
∑

χ=0

([λp])ρpχ

([µq])σqχ

1
χ! Z

s
λ
1
λ

(a + χ)λb zχ

(χ+a)s

( λj ∈ R(j = 1, . . . , p)andµj ∈ R\Z− 0(j = 1, . . . , q); ρj > 0(j, . . . , p); σj > 0(j = 1, . . . , q); 1 + ∆ ≥ 0 )

(5)

so that, obviously, one can get the following association with extended Hurwitz-Lerch zeta functions
([17], p. 503, Equation (6.2)) (see also [3,24])

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; 0, λ) = Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a) = ebΦ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, 0). (6)

By making use of Equations (4)–(6), we list all the items in the subsequent table that are
straightforward to achieve in view of different values of the parameters as specified column and
row wise on the next page.

Now if we go through the previous research, we notice that the different cases of λ-generalized
Hurwitz-Lerch zeta functions specified in the third column and second row, explicitly Θλ

µ (∓z, s, a; b),
have been defined and explored by [25], (p. 90), Equation (1.6), and [26]. Some of its most interesting
versions were studied and considered by [27]. The original class of zeta functions specifically
and explicitly is: Hurwitz-Lerch zeta function Φ(±z, s, a), [28], (p. 27), Equation (1.11), extended
Fermi-Dirac Θa(x; s), [9], (p. 9), Equation (3.14), extended Bose- Einstein Ψa(x; s), [9], (p. 115),
Equation (4.4), Fermi-Dirac Fs(x), [9], p. 109, Equation (1.12)], Bose-Einstein Bs(x), [9], (p. 109),
Equation (1.12), Polylogarithm φ(z, s), [28], (Chapter 1], Hurwitz zeta ζ(s, a) [28], (Chapter 1), and
Riemann zeta functions ζ(s), [28] (Chapter 1), respectively are listed in the last column of Table 1. Two

of the items in the first row specifically Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(±z, s, a) are defined by [1], (p. 1486), Equation
1.11 (see also [17]) and Φ∗µ(±z, s, a) defined by [29], p. 100, Equation (1.5). The extended Riemann zeta
ζb(s) [30], (p. 308) and Hurwitz zeta functions ζb(s, a) [30], (p. 308) are noticeable in the last two rows.
For additional comprehensive study of zeta and related functions, we refer the reader to [1–32] and
related discussions therein.



Symmetry 2018, 10, 733 4 of 20

Table 1. Different Special Cases of λ-Generalized Hurwitz-Lerch Zeta Functions.

min[<(a),<(s)]>0;<(b)≥0;λ≥0;
ρ=ρ1,. . . ,ρp;,σ=σ1,. . . ,σq;λ*=λ1,. . . ,λp;µ=µ1,. . . ,,µq

(p−1=q=0;λ1=µ;ρ1=1) (p−1=q=0;λ1=µ;ρ1=1)

λ=1 µ=1 λ=µ=1 b=0 b=0 µ=1;b=0

λ-Generalized Hurwitz-Lerch Zeta
Functions

Φ(ρ;σ)
λ∗ ,µ (±z, s, a; b, λ)

[1], (p. 1487),
Equation (1.14)

Θλ
µ(∓z, s, a; b)

[25], (p. 90),
Equation (6)

and [26]

Φ∗µ(±z, s, a, b) Φb(±z, s, a, λ) Φb(±z, s, a)

Φ(ρ;σ)
λ∗ ,µ (±z, s, a)

([1], p. 1486,
Equation (1.11)) &

[17]

Φ∗µ(±z, s, a)
([29], p. 100,

Equation (1.5))

Φ(±z, s, a)
([28], p. 27, Equation

(1.11))

Φ(ρ;σ)
λ∗ ,µ

(
±e−x, s, a; b, λ

)
λ-Generalized Extended

Fermi-Dirac and Extended
Bose-Einstein Functions

Θ(ρ;σ)
λ∗ ,µ (x, s, a; b, λ) Θλ

µ(x, s, a; b) Θ∗µ(x, s, a, b) Θb(x, s, a; λ) Θb(x, s, a) Θ(ρ;σ)
λ∗ ,µ (x, s, a)

Θ∗µ(x, s, a)
([27], p. 12,

Equation (45))

Θa(x; s)
([9], p. 9, Equation

(3.14))

Ψ(ρ;σ)
λ∗ ,µ (x, s, a; b, λ) Ψλ

µ(x, s, a; b) Ψ∗µ(x, s, a, b) Ψb(x, s, a, λ) Ψb(x, s, a) Ψ(ρ;σ)
λ∗ ,µ (x, s, a)

Ψ∗µ(x, s, a)
([27], p. 12,

Equation (45))

Ψa(x; s)
[9], p. 115, Equation

(4.4)

Φ(ρ;σ)
λ∗ ,µ (±z, s, 1; b, λ)

λ-Generalized Polylogarithm
Functions

φ
(ρ;σ)
λ∗ ,µ (±z, s; b, λ) φλ

µ(∓z, s, a; b) φ∗µ(z, s, b) φb(z, s, λ) φb(z, s) φ
(ρ;σ)
λ∗ ,µ (z, s)

φ∗µ(z, s)
([27], p. 12,

Equation (42))

φ(z, s)
[28], (Chapter 1)

Φ(ρ;σ)
λ∗ ,µ

(
±e−x, s + 1, 1; b, λ

)
λ-Generalized Fermi-Dirac and

Bose Einstein Functions

F(ρ;σ)
λ∗ ,µ (x, s; b, λ) Fλ

µ (x, s, a; b) F∗µ (x, s, b) Fb(x, s, λ) Fb(x, s) F(ρ;σ)
λ∗ ,µ (x, s)

F∗µ (x, s)
([27], p. 12,

Equation (45))

Fs(x)
([9], p. 109, Equation

(1.12)

B(ρ;σ)
λ∗ ,µ (x, s; b, λ) Bλ

µ(x, s, a; b) B∗µ(x, s, b) Bb(x, s, λ) Bb(x, s) B(ρ;σ)
λ∗ ,µ (x, s)

B∗µ(x, s)
([27], p. 12,

Equation (45))

Bs(x)
([9], p. 109, Equation

(1.12))

Φ(ρ;σ)
λ∗ ,µ (±1, s, a; b, λ)

λ-Generalized Hurwitz zeta
Functions

ζ
(ρ;σ)
λ∗ ,µ (s, a; b, λ) ζλ

µ(s, a; b) ζ∗µ(s, a, b) ζb(s, a, λ)
ζb(s, a) [30], p.

308 ζ
(ρ;σ)
λ∗ ,µ (s, a) ζ∗µ(s, a) [27] ζ(s, a) [28], (Chapter

1)

Φ(ρ;σ)
λ∗ ,µ (±1, s, 1; b, λ)

λ-Generalized Riemann Zeta
Functions

ζ
(ρ;σ)
λ∗ ,µ (s) ζλ

µ(s; b) ζ∗µ(s, b) ζb(s, λ)
ζb(s)

[30], p. 308 ζ
(ρ;σ)
λ∗ ,µ (s) ζ∗µ(s) [27] ζ(s) [28], (Chapter 1)



Symmetry 2018, 10, 733 5 of 20

2.2. Distributions and Test Functions

Continuous linear functionals that act on some space of test functions are commonly known as
generalized functions (or distributions). These are the elements of the corresponding dual space of
test functions. A review of such elements is significant, because they not only have locally integrable
functions, but also consist of additional objects that are not regular distributions. Consequently, several
actions such as integration, differentiation, and limits that are defined for functions can be applied to
functionals. A delta functional commonly used in singular distribution is defined by

〈δ(u− a),ϕ(t)〉 = ϕ(a)(∀ϕ ∈ D, a ∈ R), (7)

where for a non-zero a, δ(−u) = δ(u); δ(au) = δ(t)
|a| .

A multi-volume presentation [33] (Vol. I-V) by Gelfand and Shilov is a great treatise on such
functions. The commonly used spaces of test functions are the spaces of compact support functions
denoted by D, and the space of rapidly decaying functions denoted by S, that also have derivatives of
all orders. The spaces D′ and S′ are the dual spaces of D and S. Spaces S and S′ are closed under the
Fourier transform, but D and D′ are not. The Fourier transform of the elements of D′ are continuous
linear functionals acting on the elements of z that comprises of entire functions such that their Fourier
transforms are in D [34]. The entire function ϕεz does not vanish on some interval a < u < b, but
vanishes universally. Accordingly

z′ ⊃ S′ ⊃ S ⊃ z; D∩ z ≡ 0; D′ ⊃ S′ ⊃ S ⊃ D. (8)

The elements of Z consist of entire analytic functions satisfying the following set of inequalities

|sqϕ(s)| ≤ Cqea|τ|; (q = 0, 1, 2, . . . .) (9)

where the constants a and Cq may depend on ϕ. By ([33], Vol 1, p. 169, Equation (8)), we take the
Fourier transform of exponential function

F
[
eαt; ω

]
= 2πδ(ω− iα) (10)

as an example of distribution that is an element of z′ and for ∀g ∈ z′ ([33], (p. 159), Equation (4)), see
also ([34], p. 201, Equation (9))

g(s + b) =
∞

∑
r=0

g(r)(s)
br

r!
. (11)

So that we have the following basic identity

δ(s + b) =
∞

∑
r=0

δ(r)(s)
br

r!
; 〈δ(r)(s),ϕ(s)〉 = (−1)rϕ(r)(0). (12)

For an additional extensive study of these spaces, we refer the reader to [33] (Vol. I–V), [34,35]
and the related bibliography therein.

Throughout this investigation, conditions on the parameters will be considered standard as given
in (1)–(6) unless otherwise stated.
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3. Results

New Series Representation of the λ-Generalized Hurwitz-Lerch Zeta Functions

Theorem 1. λ-generalized Hurwitz-Lerch zeta functions have the following representation

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(13)

Proof: Let us first replace t = ey and s = σ + iτ in Equation (4), then we get

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a) =

= 1
Γ(s)

∫ ∞
−∞ ey(σ+iτ)exp

(
−aey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z exp(−ey)

]
dt,

(min[<(a),<(s)] > 0).

(14)

Now, writing the series form of the Fox-Wright function

pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp(−ey)

]
=

∞

∑
χ=0

([
λp
])

ρpχ([
µq
])

σqχ

zχ

χ!
exp(−χey) (15)

and then collecting and expanding the exponential terms

eσyexp
(
−(a + χ)ey − b

eλy

)
=

∞

∑
ξ,ψ=0

([
λp
])

ρpχ([
µq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
, (16)

we get

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ)

=
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ!

∫ ∞
−∞ eiτye(σ+ξ−ψλ)ydy.

(17)

The order of summation and integration is interchangeable due to uniform convergence of the
integral. By using Equation (10), we get∫ ∞

−∞ eiτye(σ+ξ−ψλ)ydy = F
[
e(σ+ξ−ψλ)y; τ

]
= 2πδ(τ–i(σ + ξ −ψλ))

= 2πδ
[

1
i (iτ − (σ + ξ −ψλ))

]
= 2π|i|δ(σ + iτ + ξ −ψλ) = 2πδ(s + ξ −ψλ).

(18)

The above Equations (17) and (18) lead to the required result. �

Remark 1. We can get analogous outcomes for further associated functions as enumerated row-wise in Table 1,
in view of altered parameter values in the form of following corollaries.

Corollary 1. λ-Generalized Extended Fermi-Dirac functions have the following representation

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(−e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ)
(19)
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and λ-Generalized Extended Bose-Einstein functions have the following representation

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(20)

Proof. This holds by simply replacing z −→ ±e−x on both sides of (13) and by means of the
corresponding item specified in column 2 and row 2 of Table 1. �

Corollary 2. λ-Generalized Fermi-Dirac functions have the following representation

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(−e−x)
χ

χ!
(−(χ+1))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ)
(21)

and λ-Generalized Extended Bose-Einstein functions have the following representation

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(22)

Proof. Both results hold by simply replacing z −→ ±e−x; a −→ 1 on both sides of (13) and in view of
defined item from Table 1 reliable on these parameter values. �

Corollary 3. λ-Generalized Polylogarithm functions has the following representation

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s; b, λ)

= 2πz
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+1))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(23)

Proof. This holds by simply replacing a −→ 1 on both sides of (13) and using the precise element
from Table 1 equivalent to these constraint values. �

Corollary 4. λ-Generalized Hurwitz zeta functions has the following representation

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

([
λp
])

ρpχ([
µq
])

σqχ

1
χ!

(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (24)

Proof. This holds by simply replacing z −→ 1 on both sides of (13) and, in view of particular items
from Table 1, stable with these parameter values. �

Corollary 5. λ-Generalized Riemann zeta functions has the following representation

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

([
λp
])

ρpχ([
µq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (25)
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Proof. This holds by simply replacing z −→ 1; a −→ 1 on both sides of (13) and, in view of certain
components from Table 1, is firm with these considered values. �

Remark 2. We can get similar representations for other special cases of these functions by considering different
parameter variations in view of Table 1 column-wise.

By putting λ = 0 in the above results (13), and in view of the relation (6), we get the following
new results:

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ). (26)

Next by considering b = 0 in (26), we get the following results:

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ). (27)

Considering, p − 1 = q = 0; (λ1 = µ; ρ1 = 1), the above Equation (13) would reduce immediately to
the following form

Γ(s)Θλ
µ (z, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (28)

Next, specifying µ = 1 in (28), one can get the following new result as special case

Γ(s)Θ(z, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(z)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (29)

Next, again by giving variations to different parameters, we can get similar representations for
other special cases of these functions.

By putting λ = 0 in the above result (29), we get the following new result

Γ(s)Φ(z, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ). (30)

By putting b = 0 in (30), we get the following results for the original family of Hurwitz-Lerch
zeta function and its special cases ([13], Chapter 4):

Γ(s)Φ(z, s, a) = 2π
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ), (31)

Γ(s)φ(z, s) = 2πz
∞

∑
χ,ξ=0

(z)χ (−(χ + 1))ξ

ξ!
δ(s + ξ), (32)

Γ(s)ζ(s, a) = 2π
∞

∑
χ,ξ=0

(−(χ + a))ξ

ξ!
δ(s + ξ), (33)

Γ(s)ζ(s) = 2π
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
δ(s + ξ). (34)



Symmetry 2018, 10, 733 9 of 20

Remark 3. Note that we have obtained a demonstration given in the form of complex delta functions that is
only meaningful in the sense of distributions once defined as an inner product with some suitable function. For
example, divide both sides of (34) in the usual sense

1 =

∞
∑

χ,ξ=0

(−(χ+1))ξ

ξ! δ(s + ξ)

Γ(s)ζ(s)
. (35)

In addition, we get

1 =
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
1

Γ(−ξ)ζ(−ξ)
, (36)

where the product Γ(−ξ)ζ(−ξ) contributes only for even values of ξ, because zeros of zeta cancel the
poles of gamma functions while for other values of ξ, the right-hand side sum will vanish due to Γ(−ξ)

in the reciprocal. Therefore, we get

1 =
∞

∑
χ,ξ=1

(χ)2ξ

(2ξ)!
+ 0 =⇒ 1 =

∞

∑
χ=0

cosh(χ) =⇒ 1 = ∞ (37)

that leads to an obvious contradiction.
Meanwhile, if we consider the inner product

〈Γ(s)ζ(s), 1
Γ(s)ζ(s)

〉 =
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
〈δ(s + ξ),

1
Γ(s)ζ(s)

〉 (38)

then we get ∫
sεC

1ds =
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
1

Γ(−ξ)ζ(−ξ)
. (39)

Due to the reason as stated above we get

∫
sεC

1ds =
∞

∑
χ,ξ=1

(χ)2ξ

(2ξ)!
+ 0, (40)

∫
sεC

1ds =
∫ +∞

−∞
1ds =

∞

∑
χ=0

cosh(χ), (41)

and both sides diverge. Therefore, we need to be very rigorous in selecting a class of functions for
which this representation is meaningful or convergent.

4. Convergence and Applications of New Series Representation

The representation of the λ -generalized Hurwitz-Lerch zeta function

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ)

and related functions is attained in the form of the series of delta function that is defined simply if
converges as distributions or generalized functions. Therefore, these new representations are well
defined for the functions for which these infinite series converge. Meanwhile, the complex delta
function acts as a continuous linear functional on the space Z. Hence, it is straightforward that the
series of delta functions are obviously the continuous linear functionals acting on the space Z. (The
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results may also be true for some larger spaces, but here in our present investigation, we are just
restricting to Z). Therefore, ∀Λ(s)εZ, we get from (13)

〈Γ(s)Φ(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ), Λ(s)〉 =

2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a)ξ

ξ!
(−b)ψ

ψ! 〈δ(s + ξ − λψ), Λ(s)〉; (∀Λ(s)εZ)

=
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! Λ(λψ− ξ).

(42)

Here, in the above equation, we have used the shifting property of delta functions as follows

〈δ(s + ξ − λψ), Λ(s)〉 = Λ(λψ− ξ), (43)

which being the elements of space Z are slowly increasing (bounded by a polynomial) test functions
and note that sum over the coefficients is

sumoverthecoefficients =
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ!

= exp(−a− b)pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z
e

]
,

(44)

which is finite and well defined. Therefore, by using the famous Abel convergent test or by ([35],
Proposition 1, p. 46), it is obvious that new series given by (13) converges for ∀Λ(s)εZ, which leads to
a similar fact for its special and other related cases given in Section 3 and Appendix A.

As already mentioned, in our present investigation, we proved the convergence for slowly
increasing functions, but it can now be observed that the series converges for a larger space of
functions. Therefore, the condition is necessary and not sufficient, that means for ∀Λ(s)εZ, the series
is convergent but if the series is convergent, then Λ(s) may belong to some other large space for which
delta function is meaningful.

Next, by using the new representation of Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ), we can find some new
integral formulae and verify them by using classical Fourier transform. First, we consider a simple
example of a specific set of functions

Λ(s) = ωsβ(ω 6= 0; s ∈ C;βεR). (45)

By taking the inner product of these functions with (13) and using the basic (shift) property of
delta functions, we get∫

sεC ωsβΓ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ)ds =

2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([µq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! ω(λψ−ξ)β

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z.exp
(
−ω−β

)]
.

(46)

Similarly, by considering the action of Λ(s) for representations (19)–(34), we can get the following
new results:∫

sεC ωsβΓ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−exp
(
−x−ω−β

)]
;

(47)
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∫
sεC ωsβΓ(s)Ψ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−x−ω−β

)]
;

(48)

∫
sεC ωsβΓ(s)F

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−exp
(
−x−ω−β

)]
;

(49)

∫
sεC ωsβΓ(s)B

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−x−ω−β

)]
;

(50)

∫
sεC ωsβΓ(s)φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s; b, λ)ds

= 2πz.exp
(
−ω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp
(
−ω−β

)]
;

(51)

∫
sεC ωsβΓ(s)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s, a; b; λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−ω−β

)]
;

(52)

∫
sεC ωsβΓ(s)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−ω−β

)]
.

(53)

By putting b = 0, in (46), we get the following new results: (and if we put λ = 0, we get eb times
the following results (54)):∫

sεC ωsβΓ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a)ds =
∞
∑

χ,ξ=0

(z)χ

χ!
(−(χ+a))ξ

ξ! ω(λψ−ξ)β

= 2πexp
(
−aω−β

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z.exp
(
−ω−β

)]
.

(54)

By considering p − 1 = q = 0 (λ1 = µ; ρ1 = 1), b 6= 0 in Equation (46) we can get the following

∫
sεC

ωsβΓ(s)Θλ
µ (z, s, a; b)ds =

2πexp
(
−(a− 1)ω−β − b

ω−λβ

)
(exp(ω−β)− z)µ . (55)

Taking b = 0 in the above results (55) leads to the following new result:

∫
sεC

ωsβΓ(s)Φ∗µ(z, s, a)ds =
2πexp

(
−(a− 1)ω−β

)
(exp(ω−β)− z)µ . (56)

By considering other parametric values as, p − 1 = q = 0; λ1 = µ; ρ1 = 1; b 6= 0; λ = µ = 1 the
above result (54) shrinks instantly to the subsequent result:

∫
sεC

ωsβΓ(s)Φb(z, s, a)ds =
2πexp

(
−(a− 1)ω−β − b

ω−λβ

)
(exp(ω−β)− z)

. (57)
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Next, by putting b = 0 in the above Equations (57), we get the following [13], (Chapter 4):

∫
sεC

ωsβΓ(s)Φ(z, s, a)ds =
exp
(
−(a− 1)ω−β

)
(exp(ω−β)− z)

. (58)

Remark 4. Results obtained in this section give insights for further new results. For example, consider ω = 1
e ,

then we get the Laplace transform of the λ-generalized Hurwitz-Lerch zeta functions and the related family of
functions. Before going on further with this new representation, we consider the consistency of the new results
in the subsequent section.

5. Fourier Transform Representation

The main purpose of this section is to verify the consistency of the results obtained by the
new series representation with the classical Fourier transform representation. Different transform
representations have always been of interest for such functions.

By replacing t = ey and s = σ + iτ in Equation (4), the Fourier transform representation of
λ-generalized Hurwitz-Lerch zeta functions is

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0).

(59)

Similarly for the λ-generalized extended Fermi-Dirac functions

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−e−xexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0)

(60)

and Extended Bose-Einstein Functions

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; e−xexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0).

(61)

For λ-generalized Fermi-Dirac functions

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−e−xexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0)

(62)
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and Bose-Einstein functions

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; e−xexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0).

(63)

For λ-generalized Polylogarithm functions

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s; b, λ)

=
√

2πF
[

zeσyexp
(
−ey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0)

(64)

For λ-generalized Hurwitz zeta functions

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0).

(65)

For λ-generalized Riemann zeta functions

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp(−ey)

]
; τ

]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0).

(66)

Similarly, by giving variations to different parameters, we can get similar representations for other
special cases of these functions in consideration of Table 1.

6. Verification of the Results Obtained by New Representation

For the Fourier transform of any function f(t), duality property holds as

F
[√

2πF [f(t); τ];β
]
= 2πf(−β). (67)

Hence, from (59)–(66), by applying (67), we obtain the following

F
{

Γ(σ + iτ)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, σ + iτ, a; b, λ);β
}
=

F
{
√

2πF
{

eσye
−aey− b

eλy pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; ze−ey

]
; τ

}
;β

}
= f(−β)

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp
(
−e−β

)]
(min[<(a),<(s)] > 0;<(b) = 0; λ = 0),

(68)

Or
∫ +∞
−∞ eiτβΓ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp
(
−e−β

)]
,

(69)
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which is the special case of our main result (46) for w = e; s = σ + iτ and verifies that results obtained
by the new representation are consistent with the classical results.

If we put β = 0 in the above equation (69), we get the following integral:∫ +∞
−∞ Γ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, σ + iτ, a; b, λ)dτ

= 2πe−a−bpΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; z
e

]
,

(70)

which is also a specific case of our main result (46). It shows that our new representation produces new
results that cannot be found by other methods, but special cases of our obtained results are consistent
with the classical results.

Similarly, by considering different parametric values in the above equations and as given in Table 1
in Section 2, we can get the following list of integrals: (one can also note that results obtained by new
representation are not only more general than the results obtained by Fourier transform representation
but also consistent with the special cases of these results)∫ +∞

−∞ eiτβΓ(σ + iτ)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; e−xexp
(
−e−β

)]
;

(71)

∫ +∞
−∞ eiτβΓ(σ + iτ)Θ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−e−xexp
(
−e−β

)]
;

(72)

∫ +∞
−∞ eiτβΓ(σ + iτ)B

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−e−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; e−xexp
(
−e−β

)]
;

(73)

∫ +∞
−∞ eiτβΓ(σ + iτ)F

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−e−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

;−e−xexp
(
−e−β

)]
;

(74)

∫ +∞
−∞ eiτβΓ(σ + iτ)φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, σ + iτ; b, λ)dτ

= 2πze−σβexp
(
−e−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp
(
−e−β

)]
;

(75)

∫ +∞
−∞ eiτβΓ(σ + iτ)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−e−β

)]
;

(76)

∫ +∞
−∞ eiτβΓ(σ + iτ)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; exp
(
−e−β

)]
;

(77)

∫ +∞
−∞ eiτβΓ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, σ + iτ, a)dτ

= 2πe−σβexp
(
−ae−β − b

)
pΨ∗q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(µ1, σ1), . . . , (µq, σq)

; zexp
(
−e−β

)]
.

(78)
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For β = 0, the above results (68)–(78) yield some interesting and simple integral formulae.
To confirm the consistency of the results obtained by new representation, it can be noted that the results
obtained in this Section (68)–(78) can be generated as special cases of (46)–(48) for ω = e, s = σ + iτ
and vice versa. These are straightforward to obtain by using a basic fact of the Fourier transform and
therefore to test the consistency of new representations as they become more important.

7. Discussion and Future Directions

The confluence of distributions (generalized functions) with classical integral transformations has
become a remarkably influential tool in the theory of partial differential equations. It has solved various
physical and engineering problems that cannot be solved by using classical methods. In this paper, we
obtained a new representation for the newly defined family of the λ-generalized Hurwitz-Lerch zeta
functions in terms of complex delta functions such that the definition of these functions is formalized
over the space of entire test functions denoted by Z. This is significant for advancing the foundations of
distributional (generalized function) concepts for such higher transcendental functions and enhancing
their applications to solve real-world problems. The Riemann hypothesis is a famous and unsolved
problem at present in analytic number theory [31]. It states that "all the non-trivial zeros of the zeta
function lie on the real line s = 1/2′′. These zeros appear symmetrically as complex conjugates on
this line. The integrals of the zeta function and its generalizations are essential in the investigation
of Riemann hypothesis and for the study of zeta functions. Such integrals are also important for
the study of distributions in statistical inference and reliability theory [1,26,32]. By using this new
definition of the λ-generalized Hurwitz-Lerch zeta functions, one can find such integrals in a simple
and uniform way.

λ-generalized Hurwitz-Lerch zeta functions systematically oversimplify the functions of the
zeta family and provide understanding for some other potential new members of this family that
are not found in the literature. This element is very useful for achieving new results from one
main result. Our main result generates at once significant new results for a class of well-studied
functions by applying the methodology of this paper. The Fermi-Dirac and Bose-Einstein functions
arose in the distribution functions for quantum statistics that deals with two particular kinds of spin
symmetry, namely, bosons and fermions. Their close connection considered in this investigation with
the λ-generalized Hurwitz-Lerch zeta functions have provided some significant new results for these
functions that directly develop the future applications of these representations in quantum physics
and related fields. The technique to obtain the results by using new representation explores a required
simplicity that is always desirous. These are some straightforward examples. It is expected that the
approach developed in this investigation will be doubtlessly significant for further exploration of these
higher transcendental functions in future research.
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Appendix A New Results by Considering Special Cases for Section 2 in View of Table 1

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ); (A1)

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ); (A2)
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Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A3)

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A4)

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s) = 2πzeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A5)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ); (A6)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ); (A7)

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A8)

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A9)

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A10)

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(x, s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A11)

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(z, s) = 2πz
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A12)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s, a) = 2π
∞
∑

χ,ξ=0

([λp])ρpχ

([µq])σqχ

1
χ!

(−(χ+a))ξ

ξ! δ(s + ξ) (A13)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,µ1,...,,µq

(s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
µq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A14)

Γ(s)Θλ
µ (x, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A15)

Γ(s)Ψλ
µ (x, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A16)

Γ(s)Bλ
µ (x, s; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A17)

Γ(s)Fλ
µ (x, s; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A18)

Γ(s)φλ
µ (z, s; b) = 2πz

∞

∑
χ,ξ,ψ=0

(µ)χ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A19)
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Γ(s)ζλ
µ (s, a; b, a) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A20)

Γ(s)ζλ
µ (s; b) = 2π

∞

∑
χ,ξ,ψ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A21)

Γ(s)Φ∗µ(z, s, a, b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A22)

Γ(s)Θ∗µ(x, s, a, b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A23)

Γ(s)Ψ∗µ(x, s, a, b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A24)

Γ(s)B∗µ(x, s, b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A25)

Γ(s)F∗µ(x, s, b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A26)

Γ(s)φ∗µ(z, s; b, λ) = 2πebz
∞

∑
χ,ξ=0

(µ)χ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A27)

Γ(s)ζ∗µ(s, a; b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ) (A28)

Γ(s)ζ∗µ(s; b) = 2πeb
∞

∑
χ,ξ=0

(µ)χ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A29)

Γ(s)Φ∗µ(z, s, a) = 2π
∞

∑
χ,ξ=0

(µ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A30)

Γ(s)Θ∗µ(x, s, a) = 2π
∞

∑
χ,ξ=0

(µ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A31)

Γ(s)Ψ∗µ(x, s, a) = 2π
∞

∑
χ,ξ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A32)

Γ(s)B∗µ(x, s) = 2π
∞

∑
χ,ξ=0

(µ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A33)

Γ(s)F∗µ(x, s) = 2π
∞

∑
χ,ξ=0

(µ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A34)

Γ(s)φ∗µ(z, s; b, λ) = 2πz
∞

∑
χ,ξ=0

(µ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A35)

Γ(s)ζ∗µ(s, a) = 2π
∞

∑
χ,ξ=0

(µ)χ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ) (A36)

Γ(s)ζ∗µ(s) = 2π
∞

∑
χ,ξ=0

(µ)χ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A37)
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Γ(s)Θ(x, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
−e−x)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A38)

Γ(s)Ψ(x, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
e−x)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A39)

Γ(s)B(x, s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
e−x)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A40)

Γ(s)F(x, s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
−e−x)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A41)

Γ(s)φ(z, s; b, λ) = 2πz
∞

∑
χ,ξ,ψ=0

(z)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A42)

Γ(s)ζ(s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A43)

Γ(s)ζ(s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A44)

Γ(s)Φ(z, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A45)

Γ(s)Θ(x, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(
−e−x)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A46)

Γ(s)Ψ(x, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(
e−x)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A47)

Γ(s)F(x, s; b) = 2πeb
∞

∑
χ,ξ=0

(
−e−x)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A48)

Γ(s)B(x, s; b) = 2πeb
∞

∑
χ,ξ=0

(
e−x)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A49)

φ(z, s; b) = 2πzeb
∞

∑
χ,ξ=0

(z)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A50)

Γ(s)ζ(s, a; b) = 2πeb
∞

∑
χ,ξ=0

(−(χ + a))ξ

ξ!
δ(s + ξ) (A51)

Γ(s)ζ(s; b) = 2πeb
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A52)
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