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Abstract: The performance of many speech processing algorithms depends on modeling speech
signals using appropriate probability distributions. Various distributions such as the Gamma
distribution, Gaussian distribution, Generalized Gaussian distribution, Laplace distribution as
well as multivariate Gaussian and Laplace distributions have been proposed in the literature to
model different segment lengths of speech, typically below 200 ms in different domains. In this
paper, we attempted to fit Laplace and Gaussian distributions to obtain a statistical model of speech
short-time Fourier transform coefficients with high spectral resolution (segment length >500 ms)
and low spectral resolution (segment length <10 ms). Distribution fitting of Laplace and Gaussian
distributions was performed using maximum-likelihood estimation. It was found that speech
short-time Fourier transform coefficients with high spectral resolution can be modeled using Laplace
distribution. For low spectral resolution, neither the Laplace nor Gaussian distribution provided
a good fit. Spectral domain modeling of speech with different depths of spectral resolution is useful
in understanding the perceptual stability of hearing which is necessary for the design of digital
hearing aids.

Keywords: probabilistic modeling; speech modeling; short-time Fourier transform (STFT); maximum
likelihood (ML) estimation

1. Introduction

Several speech processing methods such as speech coding, speaker/speech recognition, speech
synthesis, speech enhancement, voice activity detection (VAD), independent component analysis (ICA),
speaker diarization, etc. require the statistical modeling of speech signals. The performance of these
speech processing applications depends on the accurate modeling of the probability distribution of
speech signals [1]. Many results available in the literature attribute speech with a Gamma distribution
(γ-D), Gaussian distribution (GD), Generalized Gaussian distribution (GGD), Laplacian distribution
(LD) as well as multivariate Gaussian and Laplacian distributions [1–8]. The probability distribution
that best model speech samples depends on various factors such as the domain of speech representation
(such as time domain or frequency domain), segment length, silence periods in the speech as well as
noise. Important findings available in the literature are discussed below to highlight the fact that there
are several probability distributions that can be used to model speech signals under different conditions.

The following findings have been reported in [1]: The time domain representation of speech
signals follows the Laplace distribution, when the silence intervals (pauses in speech) are omitted.
Furthermore, the de-correlated representation of speech, where the correlation between successive
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samples of speech is removed using the Karhunen–Loève transform, has a multivariate LD. In the
presence of silence intervals along with voice activity, γ-D is a good fit. Short segments (<2.5 ms) of
speech in the time domain have been shown to follow a GD, whereas for longer time domain segments
(>5 ms), LD is shown to provide a better fit. For time domain speech segment lengths of the order of
several seconds, γ-D or GGD is preferred.

De-correlated speech segments are also shown to follow LD with different distribution
parameters [2]. In [3,4], it was concluded that the voiced component of speech followed LD and
the unvoiced component followed GD. The generalized γ-D (Gγ-D) has also been proposed as a more
efficient and accurate parametric model of speech probability distribution [6,7].

In the spectral domain, the power spectral density of speech, obtained using linear predictive
coding (LPC) has been shown to be best described by a Rayleigh distribution for frequency components
around formant frequencies and by a Gaussian distribution for frequency components away from
formant frequencies [9]. The frequency components around which acoustic energy is concentrated
are formant frequencies. Frequency components that are not near formant frequencies have low
concentrations of acoustic energy. Time domain segments of lengths 20–200 ms have been shown to fit
LD but for segments shorter than 20 ms, GD is considered better. The distribution of discrete Fourier
transform (DFT) coefficients of speech segments around 30 ms has been shown to fit a GD [10], which
is in contradiction to [11,12],where the authors suggest that an LD or γ-D provides a better fit for the
DFT coefficients. The authors of [10] attribute this contradiction to longer segment lengths and the
multiple speaker samples used in [11,12].

The design of digital hearing aids requires an understanding of the probabilistic model of long
segments of speech in the spectral domain, i.e., with high spectral resolution. A type of hearing
aid, called a cochlear implant provides the sense of sound to people with profound hearing loss.
Early version of cochlear implants discarded the fine spectral details and used only the coarse details.
The performance of cochlear implants improves progressively by including more spectral details [13].
Hence, the need to model speech spectral parameters with high spectral resolution. While results are
available in the literature for representing long segments of speech in the time domain, there is a void
of such representation in spectral domain as there are no available results in the literature that provide
a statistical model of spectral representation of long segments of speech. In this paper, we show that the
distribution of short-time Fourier transform (STFT) coefficients (spectral domain) of speech segments
over durations greater than 500 ms can be modeled accurately by LD, having a small RMS error for the
estimated LD parameters, which validates the estimated parameters. The Cramer–Rao bound (CRB)
for the estimated parameter was also evaluated and the RMS error, which represents the variance of
the estimated parameter, was found to be close to CRB, indicating that the maximum likelihood (ML)
estimation is an efficient algorithm for the proposed distribution parameter. It was also found that for
low spectral resolution, both LD and GD were not accurate distribution models.

The rest of the paper is organized as follows. In Section 2, the ML estimation of LD and GD
parameters and the error bound, which represents estimation optimality, is presented. Removal of
direct current (DC) bias and VAD to remove silence intervals is discussed in Section 3. In Section 4,
experimental details and results corresponding to fitting LD and GD are presented along with their
analysis and interpretation. Conclusions and future work are presented in Section 5.

2. Maximum Likelihood Estimation of Laplacian Distribution (LD) and Gaussian Distribution
(GD) Parameters

In ML estimation, based on the observation of STFT coefficients of speech, which are assumed to
be independently and identically distributed (IID), the distribution parameters which maximize their
likelihood function are estimated. It is a standard assumption in the literature that DFT coefficients
of speech are IID [10–12]. Since STFT coefficients are computed as the DFT of windowed segments,
it follows that the assumption of STFT coefficients to be IID is also valid. ML estimation is chosen due
to its low implementation complexity and for being a minimum variance unbiased estimator (MVUE)
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as the observation sample length increases [14]. Laplace distribution has a probability density function
(PDF) defined as

p(x) =
1
2b

exp
(
−|x− µ|

b

)
(1)

with parameters µ and b which are to be estimated. The likelihood function for the Laplace model
parameters µ and b is defined as

L(µ, b) = p(x1, . . . , xn|µ, b) =
n

∏
i=1

p(xi|µ, b) =
(

1
2b

)n
exp

(
−∑n

i=1|xi − µ|
b

)
(2)

and the corresponding log-likelihood is defined as

log(L(µ, b)) = −n log(2b)− ∑n
i=1(|xi − µ|)

b
(3)

The ML estimate of µ is given as the median of the observed samples i.e., an efficient estimator µ̂

for the parameter µ is the median of the observed samples [15]. Due to the symmetric nature of LD,
the median is equal to the mean:

µ̂ =
∑n

i=1 xi

n
(4)

The ML estimate of b is obtained by differentiating the log-likelihood function with respect to
w.r.t b and equating the derivative to zero.

∂

∂b
log(L(µ, b)) =

∂

∂b

(
−n log(2b)− ∑n

i=1(|xi − µ|)
b

)
= 0 (5)

i.e.,
n
b2

n

∑
i=1

|xi − µ|
n

− b = 0 (6)

Solving for b gives an efficient estimator b̂ for the parameter b [15]

b̂ =
n

∑
i=1

|xi − µ|
n

(7)

Similarly, the Gaussian distribution has a PDF defined as

p(x) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
(8)

where µ and σ denote the mean and standard deviation of GD. The corresponding efficient estimators µ̂

and σ̂ are obtained by following similar procedures as the estimation of LD parameters and are given as

µ̂ =
∑n

i=1 xi

n
(9)

σ̂ =

√
∑n

i=1(xi − µ)2

n
(10)

CRB provides a limit to the performance optimality of unbiased estimators and is used to measure
the performance of estimators [16]. CRB gives the lower bound on the variance of any unbiased
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estimator. An unbiased estimator that achieves this bound is said to be fully efficient. In the context of
this work, the CRB for the estimated LD parameter b is defined as

CRB(b) =
1

I(b)
=

b2

n
(11)

where
I(b) =

n
b2 (12)

The corresponding CRB values for µ and σ of GD are defined as

CRB(µ) =
1

I(µ)
=

σ2

n
(13)

CRB
(

σ2
)
=

1
I(σ2)

=
2σ4

n
(14)

where I(b), I(µ),and I(σ2) denote the Fisher information associated with the estimated parameters [17].

3. Direct Current (DC) Removal and Voice Activity Detection

Speech samples used in this work were recorded in non-controlled environments to depict typical
application scenarios. Many audio cards introduce a DC offset component to the recordings [18] which
can adversely affect the estimated parameters of the fitted distribution by introducing bias. In order
to avoid this, a first-order DC removal infinite impulse response (IIR) filter was used to remove the
DC component. The response of the DC removal filter used in this work is shown in Figure 1 and its
transfer function is given below.

H
(

z−1
)
=

0.977− 0.977z−1

1− 0.954z−1 (15)

Voice activity detection (VAD) is used to remove ‘silence’ intervals in the recorded speech. Speech
signals contain voice activity as well as pauses in voice activity, between words or between sentences,
during which no voice activity is present. These constitute silence intervals which are removed using
VAD. In this paper, VAD is performed using a frame based approach where frames containing voice
activity alone are selected and concatenated in accordance with the procedure described in [19], thereby
removing silence intervals.
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4. Experimental Procedure and Discussion of Results

Speech samples are recorded in typical office and residential environments rather than in
a controlled environment such as an anechoic chamber, using a single microphone at a sample rate
equal to 16,000 samples per second. This sample rate is standard in speech processing research and
corresponds to a wideband representation of speech that faithfully restores all frequency components of
the speech signal. A lower sample rate can cause a loss of information in fricative components of speech
signal. DC offset is first removed, followed by VAD to remove silence intervals. Since the spectral
components of speech are time varying, computing STFT depicts the variation of spectral components
with time. The STFT of speech containing only voice activity is computed and ML estimation is used
to estimate the parameters of the fitted distribution. Accuracy of the fitted distribution is determined
by computing the RMS error and effectiveness of the fitting algorithm i.e., MLE is determined by
computing the CRB on the estimation error.

We computed a narrowband STFT using a wide Hamming window, providing a frequency
resolution below 5 Hz. Speech processing with high frequency resolution is useful in several
applications such as speech enhancement, improved VAD, speech de-noising, analysis of speech
intonation to detect emotion, speech recognition, and automatic speech restoration (ASR) to improve
speech intelligibility and in the design of hearing aids and cochlear implants for people with a hearing
disability [13,20–23]. A less obvious but important application is to model the perceptual stability of
human listening capability, which allows humans to perceive speech reliably under a wide range of
acoustic conditions [24]. While speech is generally considered as a non-stationary signal over segment
lengths longer than 20–30 ms, the perceptual stability of the human auditory system motivates the
need for an invariant representation of speech over long segment lengths which has application in the
design of digital hearing aids.

In this paper, we demonstrate through computer simulation that STFT coefficients of speech with
high spectral resolution fit reasonably accurately to LD as shown in Figures 2–5 for arbitrary speech
segments of different individuals. The PDF’s wereobtained by plotting the envelope of histograms
of STFT coefficients by dividing their entire range into 100 equally spaced bins. The envelope was
obtained by joining the peak of each bin in the histogram. In all the figures that follow, the red (thick)
curve represents the fitted distribution based on MLE of distribution parameters and the blue (thin)
curve is the actual distribution of the corresponding STFT coefficients. The RMS error of the estimated
LD parameter as well as the CRB was small, indicating that MLE is an efficient estimator for LD scale
parameter b. It is therefore argued that STFT coefficients of long speech segments (>500 ms) where
silence intervals have been removed are modeled accurately by LD. This conclusion was found to be
valid for ‘female’ (Figure 2) and ‘male’ (Figure 3) speech as well as for both the ‘real’ (Figure 4) and
‘imaginary’ (Figure 5) parts of the STFT coefficients.

For the purpose of comparison, GD was also fitted to STFT coefficients as shown in Figures 6–9
from which it is clear that the STFT coefficients of speech were not accurately modeled by GD. The RMS
error of the fitted GD was small (but larger compared to fitting LD) and the MLE of the mean µ̂ of
GD was also reasonably accurate, but the estimated value of variance σ̂2, using MLE, deviated quite
significantly from the actual variance σ2 of STFT coefficients with σ̂2 � σ2. It is therefore concluded
that speech STFT coefficients with a high spectral resolution are not accurately represented by GD and
that LD provides a better fit than GD. This wasfound to be the case for ‘female’ (Figure 6) and ‘male’
(Figure 7) speech as well as for ‘real’ (Figure 8) and ‘imaginary’ (Figure 9) parts of STFT coefficients.
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For a short segment length of 8 ms corresponding to low spectral resolution (125 Hz), neither
LD nor GD provided an accurate model for the distribution of STFT coefficients of speech. The plots
in Figures 10 and 11 depict the fitted distributions corresponding to LD and the plots in Figures 12
and 13 depict the fitted distributions corresponding to GD for STFT coefficients with low spectral
resolution. It should be noted that the ordinates in Figures 10–13 represent the actual count due to
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the short segment lengths, rather than the probabilities as in Figures 2–9.The abscissa of all plots in
Figures 2–13 denotes the actual values (real/imaginary parts) of the STFT coefficients.
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For low spectral resolution STFT coefficients of both male and female speech, LD and GD fitting
based on MLE yielded a significantly large RMS error. The ML estimated value of the scale parameter
b̂ of LD and corresponding scale parameter σ̂2 of GD was large in comparison to the actual scale
parameters b and σ2′, respectively, resulting in the RMS error being too large. Hence, LD and GD
cannot be considered as favorable probabilistic models to represent speech STFT coefficients with
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low spectral resolution. Further investigation is required to identify the probabilistic models that best
represent short segments of speech as STFT coefficients.

In Figures 2–5, both the RMS error and CRB values were small, indicating that LD was
an appropriate fit and MLE was an efficient estimation algorithm. In Figures 6–9, although the RMS
error was small, the CRB values corresponding to the estimation of ‘σ2’ was large. This indicates that
the choice of distribution is appropriate, but the ML estimation did not yield accurate parameters to
represent the distribution, based on the observed data. Hence, a different estimation algorithm needed
to be chosen. Since the CRB values in Figures 10–13 were small, it indicates that the ML estimation is an
efficient algorithm to fit the model parameters. However, the large value of the RMS error indicates that
the distributions hypothesized as potential fits i.e., LD and GD, are not suitable. These observations are
summarized in Table 1. As CRB represents the lower bound on the estimation error of an estimation
algorithm, a small value of CRB indicates the better efficiency of the estimation algorithm.

Table 1. Observation on the validity of the hypothesized distribution and efficiency of MLE.

RMS Error CRB Hypothesized Distribution (s) Validity of Distribution Efficiency of MLE

Small Small LD Valid Efficient
Small Large GD Valid Inefficient
Large Small LD and GD Invalid Efficient

There are applications that require the appropriate probabilistic modeling of speech signals in
spectral domain with high spectral resolution. STFT transforms signals from the time domain to
frequency domain with the flexibility to control resolution depth. In order to find the best probabilistic
model that represents speech STFT coefficients, it is important to hypothesize the correct distribution
and to also choose an appropriate estimation algorithm. Speech STFT coefficients with high spectral
resolution can be accurately represented as LD using MLE to estimate LD parameters. While GD
makes a valid hypothesis, MLE does not accurately estimate the parameters of the fitted GD. It should
still be noted that LD is a better fit than GD. For STFT coefficients with a low spectral resolution,
both LD and GD are invalid hypotheses, even though MLE is an accurate estimation algorithm. It was
therefore necessary to include other probability distributions in our hypothesis and also investigate
alternative estimation algorithms to MLE in our pursuit to model speech by a representation that is
relatively invariable, as needed by several applications. The work presented in this article used speech
samples in English, spoken by healthy individuals in the age group of 20–40 years of Asian origin.
Certain features of speech such as ‘pitch’, mel frequency cepstral coefficients (MFCC), and perceptual
linear predictive (PLP) features depend on language, age, and race. For example, the variation of
pitch for different languages for both male and female speakers of various ethnic origins is presented
in [25], which concludes that certain languages are inherently high pitched while certain others are
low pitched. While there is a variation of pitch between males and females, the amount of variation is
different for different languages. It is also hypothesized that the nativity of the speaker also affects the
pitch frequency. MFCC has been used in published literature for language identification [26,27]. In [28],
both MFCC and PLP were used for language identification. Speech recognition for four different
languages (German, Danish, Finnish, and Spanish) based on adapted versions of MFCC and PLP was
discussed in [29] and MFCC was used for Arabic speech recognition in [30], indicating that MFCC
and PLP features depend on language. MFCC was also used in [31,32] for age classification to classify
speakers as adults or kids. In [33], statistical modeling of speech spectral coefficients was used to
discriminate the speech of patients with Parkinson’s disease from that of healthy individuals. The effect
of language, race, and age on the statistical distribution of speech STFT coefficients is not available in
the literature and needs to be investigated.
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5. Conclusions

Several probabilistic distributions have been proposed in the literature to model speech in different
domains and with different segment lengths, typically below 200 ms. It is evident from the existing
literature that different probabilistic models are applicable to speech under different conditions and
each has utility in different applications. Some applications such as the design of digital hearing aids
require the stable modeling of speech over longer durations due to the perceptual stability of human
listening capability. In particular, it is required to find a probabilistic model for speech signals in the
spectral domain with high spectral resolution. In this work, a probabilistic model for frequency domain
representation of speech, where silence intervals were removed, was proposed. It was shown that
STFT coefficients of speech segments greater than 500 ms, corresponding to a high spectral resolution,
were accurately modeled by LD for which the distribution scale parameter wasobtained using MLE.
Fitting a GD also yielded a small RMS error, but the MLE of variance of the fitted GD was much larger
than the actual variance, leading to the conclusion that LD provides a better fit than GD to accurately
model speech STFT coefficients with a high spectral resolution. In the case of STFT coefficients with
low spectral resolution (short segments), neither LD nor GD provided an accurate representation as the
RMS error was too large. These conclusions are valid for both the male and female speech samples as
well as for both the real and imaginary parts of STFT coefficients. In order to find the best distribution,
it is important to hypothesize the correct distribution and also use an appropriate estimation algorithm
to estimate the distribution parameters. The conclusion that speech STFT coefficients with high spectral
resolution are modeled by LD is useful in improving the design of digital hearing aids to make their
performance stable and better under a wide range of ambient conditions as the inclusion of fine spectral
details is necessary to improve their performance. Future work shall investigate more probabilistic
distributions as well as other estimation algorithms to obtain the distribution and parameters that can
provide accurate models for speech under different conditions. The presented results are for speech
samples in English, spoken by individuals of Asian origin in the age group of 20–40 years. The effect
of speaker language, speaker race, noise, and resolution of the transducer shall also be investigated
in future.
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