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Abstract: In this paper, an efficient data hiding method that embeds data into absolute moment block
truncation coding (AMBTC) codes is proposed. The AMBTC method represents image blocks by
trios, and each trio consists of two quantization levels and an asymmetrically distributed bitmap.
However, the asymmetric phenomena of bitmaps cause large degradation in image quality during
data embedment. With the help of reference tables filled with symmetrical patterns, the proposed
method exploits a symmetry adjustment model to modify the quantization levels in those smooth
blocks to achieve the smallest distortion. If the block is complex, a lossless embedding method
is performed to carry one additional bit. A sophisticated division switching mechanism is also
proposed to modify a block from smooth to complex if the solution to the minimal distortion cannot
be found. The payload can be adjusted by varying the threshold, or by embedding more bits into the
quantization levels. The experiments indicate that the proposed work provides the best stego image
quality under various payloads when comparing to the related prior works.
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1. Introduction

Data hiding is a technique that embeds data into an innocent cover media for secret
communication [1]. The digital images are often used as the cover objects to convey messages because
they are easily available and provide rich redundancies for data embedment. When images are chosen
as the carriers, the images used for embedding messages are called cover images, while the embedded
images are called stego images [2]. The hiding capacity, stego image quality, and un-detectability are
the most important issues for a data hiding method in images. A large hiding capacity allows an image
to carry more data, while a higher image quality means that the distortion of the stego image is smaller.
The un-detectability allows the stego image to resist the statistical detection by the steganalyzers [3–5].

According to the recoverability of the cover image, data-hiding methods can be classified into
lossy [6–14] and lossless [15–17]. The least significant bit (LSB) matching [18] is one of the well-known
lossy methods. Some recently proposed state-of-the-art approaches, such as the highly undetectable
steganography (HUGO) [11], wavelet obtained weights (WOW) [12], and universal wavelet relative
distortion (UNIWARD) [13,14], also belong to lossy methods. The HUGO approach is the pioneer of
the modern content-adaptive data hiding methods in which the embedding distortion is formulated
and minimized. The WOW method utilizes wavelet filter banks to measure the embedding distortion.
The schemes based on UNIWARD have excellent performance and can be addressed by both the spatial
and frequency domains. These methods are considered more efficient than many prior works, and the
embedment of their method is only based on some convolution products, which require insignificant
computation cost.
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The lossy methods embed more data than those lossless ones and also provide a very acceptable
image quality. However, methods of this type distort the cover images permanently. As a result,
the cover image cannot be recovered from its stego version. On the other hand, the lossless data hiding
methods have the capability to restore the cover image after data extraction and thus they have wide
applications. For example, [17] employs a lossless data hiding scheme using integer wavelet transform
to embed data into encrypted images. Nevertheless, the payload and stego image quality offered by
the lossless methods are often considerably lower than that of lossy ones.

Data hiding methods can be applied to images in spatial domain [6–15] or compress domain [19–28].
The spatial domain data hiding methods embed data by slightly altering the pixel values. Since the modern
steganalyzers based on rich models [29], deep learnings [30], or combinations of these approaches [31]
are now capable of detecting the presence of embedment of this type to a large extent, an ideal spatial
domain data hiding method should be designed such that the cover and stego images are statistically
indistinguishable. To avoid the statistical trace, some novel coverless data hiding methods based on based
on scale invariant feature transform and bag of feature [32], or based on binary numbers and transformed
by Chinese characters [33] are proposed. The compress domain data hiding method embeds data by
modifying the compressed codes. Because most of the data hiding methods exploit the redundancies in
images to embed data, and the redundancies are considerably eliminated when images are compressed,
a compress domain data hiding method often provides smaller payload than those of spatial domain
methods. Moreover, since the pixel correlations are destroyed significantly in compress domain, a data
hiding method in this domain often requires elaborate computation such as image processing or machine
learning algorithms to achieve the goal of data embedment. However, since images are often stored
or transmitted in their compressed format, the compressed domain data hiding methods thus attract
researchers to investigate new techniques in various compress domains. A number of compressed
domain data hiding methods based on vector quantization (VQ) [19–21], joint photographic experts group
(JPEG) [22], and absolute moment block truncation coding (AMBTC) [23–28] compressed images are
proposed. Compared to VQ and JPEG, AMBTC requires less computing cost but achieves acceptable
image quality. Therefore, it is very suitable for applications with limited power consumption such as
portable digital devices. Due to the increasing demands of low-cost data hiding methods in computation
for portable devices, several data hiding methods for AMBTC codes are proposed.

The AMBTC compression method was proposed by Mitchell [34] in 1984. AMBTC partitions an
image into blocks, and each block is independently compressed to obtain a trio that represents the
compressed code. Each trio consists two quantization levels and a bitmap. Chuang and Chang [23]
proposed a data hiding method to embed data using direct bitmap replacement. If the difference
between the two quantization levels is small, the bitmap modification insignificantly affects the visual
quality of the decoded block. As a result, this method replaces the bitmap by secret data to achieve
the embedment. Chen et al. [24] use the order of two quantization levels to losslessly embed data
into AMBTC codes. Since the swapped quantization levels and the flipped bitmap also reconstruct
an identical AMBTC block, Chen et al.’s method not only effectively embeds data but also produces
a stego BTC image that is identical to the original AMBTC image. Inspired by Chen et al.’s works,
Hong et al. [25] proposed a hybrid AMBTC data hiding method to achieve lossy or lossless data
embedment. In their method, the number of different bits between the to-be-embedded bits and
bitmap is examined. If more than half the number of the bit values is different, the two quantization
levels are reversely recorded to reduce the distortion.

Ou and Sun [26] proposed another efficient data hiding method for AMBTC codes based on
quantization level modification. Ou and Sun observed that the replacement of bitmap with secret
data while keeping the quantization levels unchanged might introduce larger distortion. As a result,
they find an optimal modification to the quantization levels to ensure the distortion is the smallest.
In 2016, Bai and Chang [27] proposed a two-phase method to embed data into AMBTC codes by using
matrix encoding with high payload. In this method, the (7, 4) Hamming code is performed on the
quantization levels and their differences to embed data bits in the first phase, and then performed
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on the bitmap to embed more bits in the second phase. In 2017, Huang et al. [28] also proposed
an efficient method to embed data both in bitmap and quantization levels. Unlike Ou and Sun’s
method, Huang et al.’s method exploits the difference between the quantization levels to embed
data with great performance. Since the differences are subtly adjusted to carry additional data,
the introduced distortion is confined and thus the embedding performance is greater than that of Ou
and Sun’s method.

In this paper, we proposed an efficient data hiding method dedicated to the AMBTC compressed
codes with the guidance of a reference table. The proposed method classified AMBTC blocks into
smooth and complex. The bitmaps are replaced by secret data in those smooth blocks, and the
quantization levels are searched in a reference table and modified to carry data bits in a way that the
decoded AMBTC block has the smallest distortion. If the block is complex, a data bit can be losslessly
embedded using Chen et al.’s method. The payload can be increased by adjusting a threshold, or by
embedding more bits into the quantization levels. Since the embedded information can be easily
removed as the values of trios are slightly altered while providing a high image quality, the proposed
method can be adopted as a fragile watermarking technique used for image authentication.

The rest of this paper is organized as follows. Section 2 briefly introduces the AMBTC compression
technique and Huang et al.’s method. Section 3 presents the proposed method, while Section 4 gives
the experimental results. Concluding remarks are given in Section 5.

2. Related Works

In this section, we briefly introduce the AMBTC compression and the pixel pair matching
embedding technique. Huang et al.’s data hiding method based on AMBTC compressed images
is also presented in this section.

2.1. AMBTC Compression Technique

To compress an original image O using AMBTC, O is firstly partitioned into N non-overlapping
blocks {Oi}N

i=1 of size m×m. For each block Oi, the mean value vi is calculated. Let
{

Oi,k
}m×m

k=1 be
the pixel in Oi. The lower and upper quantization levels ai and bi can be obtained by averaging those
pixels satisfying Oi,k ≤ vi and Oi,k > vi, respectively. A bitmap Bi of size m×m is employed to record
which quantization levels should be used at the decoding stage. Let

{
Bi,k
}m×m

k=1 be the k-th bit in Bi.
If Oi,k ≤ vi, then Bi,k = 0 is set. Otherwise, Bi,k = 1. AMBTC uses the trio (ai, bi, Bi) to represent
the compressed code of block Oi. As a result, the compressed codes of image O consist the trios
{ai, bi, Bi}N

i=1. To decode an AMBTC trio (ai, bi, Bi), the bits recorded in Bi are scanned. Let Ii be the
decoded AMBTC block using trio (ai, bi, Bi) and Ii,k be the k-th pixel of Ii. If Bi,k = 0, then Ii,k = ai
is set. Otherwise, Ii,k = bi. All the blocks are decoded using the same procedure, and the decoded
AMBTC image I =

{
Ii}N

i=1 is reconstructed.
The examples of encoding and decoding of the AMBTC compression technique are given as

follows. Let Oi =(52 53 37 47; 48 48 38 43; 41 51 50 42; 48 47 50 48) be the image block to be encoded,
where semicolons represent end of row. The mean value vi = 46.44 can be calculated. Averaging the
pixels with value smaller than 46.44 and rounding the result to the nearest integer, we have ai = 40.
Similarly, bi = 49 is obtained. The bitmap Bi = (1101; 1100; 0110; 1111) can then be constructed.
As a result, the compressed trio of Oi is (ai, bi, Bi) = (40, 49, (1101; 1100; 0110; 1111)). To decode the
compressed trio, replace 0 and 1 in Bi with 40 and 49, respectively, we have I = (49 49 40 49; 49 49 40
40; 40 49 49 40; 49 49 49 49).

2.2. Adaptive Pixel Pair Matching Technique

Pixel Pair Matching (PPM) [7] is a technique that embeds digits in σ-ary notational system into
pixel pairs by matching the secret digits with entities in a reference table. The reference table is a table
that fills with digits ranging from 0 to σ− 1. Let Rσ(x, y) be the entity located at the x-th column and
the y-th row of the reference table Rσ. Figure 1 shows the schematic diagram of the PPM technique.
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To embed secret digits in σ− ary notational system, the cover image is partitioned into blocks,
and each block consists of a pixel pair. Let sσ be the secret digit in σ-ary notational system to be
embedded into the i-th pixel pair (p1, p2). Firstly, the neighboring entities of Rσ(p1, p2) are searched to
find a coordinate (p′1, p′2) satisfying Rσ(p′1, p′2) = sσ and the Euclidean distance between (p1, p2) and
(p′1, p′2) is the smallest. The original pixel pair (p1, p2) is then replaced by the stego pixel pair (p′1, p′2).
Each pixel pair is embedded with a secret digit using the same procedure until all the secret digits
are embedded. To extract the embedded secret, pixel pairs in the stego image are sequentially visited
as in the embedding phase. The embedded digit sσ in the i-th pixel pair can be easily extracted by
referencing the entity located at (p′1, p′2), i.e., sσ = Rσ(p′1, p′2).
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Figure 1. Schematic illustration of the pixel pair matching (PPM)-based embedding methods.

The design of the reference table greatly affects the embedding performance of the PPM-based
method. A well-designed reference table should satisfy the condition that the MSE of the replacement
of (p1, p2) by all possible (p′1, p′2) should be the smallest. The adaptive PPM (APPM) method proposed
in [7] gives the optimal solution to construct the reference table for concealing digits with σ-ary
notational system, where the reference table is filled with the digits by using the equation

Rσ(x, y) = mod(cσx + y, σ) (1)

where cσ is a constant. For example, when σ = 4, 8, 16, 32, and 64, cσ = 2, 3, 6, 7, and 14, respectively. We use
a brief example to show the procedures of embedding and extraction of the APPM method. Let p1 = 35,
p2 = 23, and the secret digits in 16-ary notational system to be embedded is s16 = 1516. The reference table
can be constructed using Equation (1). Figure 2 shows a fraction of the reference table.

Because R16(37, 23) = 1516 and (37, 23) has the nearest distance to (35, 23) for all R16(x, y) = 1516,
we have p′1 = 37 and p′2 = 23. To extract the embedded digits, since we know p′1 = 37 and p′2 = 23,
we thus obtain s16 = 1516.
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Figure 2. Example of data embedding and extraction.

2.3. Huang et al.’s Method

Huang et al. [28] proposed a data hiding method based on AMBTC in 2017. In their method,
AMBTC blocks are classified into smooth and complex. The quantization levels of both smooth and
complex blocks are used to carry data, while only the bitmaps of the smooth blocks are used to embed
data. To embed data, the trios {ai, bi, Bi}N

i=1 are scanned. Let di be the difference between bi and ai,
i.e., di = bi − ai. If di ≤ T, where T is a predefined threshold, the block is classified as a smooth
one. In this case, the bitmap Bi is replaced by m×m bits secret data Sj. The two quantization levels
ai and bi are also modified for carrying log2 T secret bits in a way that the binary representation of
the difference di is the log2 T secret bits. To do this, let D be the decimal value of log2 T secret bits.
If di > D, the difference between ai and bi has to be decreased such that the decreased difference
d′i = b′i − a′i = D, where a′i and b′i represent the modified values of ai and bi, respectively. This can be
done by shifting ai by δa and shifting bi by δb, where δa + δb = di − D. In [28], δa = b(di − D)/2c and
δb = d(di − D)/2e are set. The schematic diagram of the shifting of ai and bi are shown in Figure 3.

Symmetry 2018, 10, x FOR PEER REVIEW  5 of 18 

 

 
Figure 2. Example of data embedding and extraction. 

2.3. Huang et al.’s Method 

Huang et al. [28] proposed a data hiding method based on AMBTC in 2017. In their method, 
AMBTC blocks are classified into smooth and complex. The quantization levels of both smooth and 
complex blocks are used to carry data, while only the bitmaps of the smooth blocks are used to embed 
data. To embed data, the trios 1{ , , }Ni i i ia b B =  are scanned. Let id  be the difference between ib  and 

ia , i.e., i i id b a= − . If id T≤ , where T is a predefined threshold, the block is classified as a smooth 

one. In this case, the bitmap iB  is replaced by m m×  bits secret data jS . The two quantization levels 

ia  and ib  are also modified for carrying 2log T  secret bits in a way that the binary representation 
of the difference id  is the 2log T  secret bits. To do this, let D be the decimal value of 2log T  secret 

bits. If id D> , the difference between ia  and ib  has to be decreased such that the decreased 

difference i i id b a D′ ′ ′= − = , where ia′  and ib′  represent the modified values of ia  and ib , 

respectively. This can be done by shifting ia  by aδ  and shifting ib  by bδ , where a b id Dδ δ+ = − . 

In [28], ( ) / 2a id Dδ = −    and ( ) / 2b id Dδ = −    are set. The schematic diagram of the shifting of ia  
and ib  are shown in Figure 3.  

 
Figure 3. Schematic diagram of the shifting of ia  and ib  for a smooth block. 

With the concept described above, Huang et al. use the following equations to perform the 
modification of quantization levels for carrying 2log T  secret bits: 

( ) / 2 ( )

( ) / 2
i i i i

i
i i

a d D d D d D T
a

a d D T

 + − > ≤ ≤   ′ =  + − +   

, if or ,
, otherwise,

 (2) 

( ) / 2 ( )

( ) / 2
i i i i

i
i i

b d D d D d D T
b

b d D T

 − − > ≤ ≤   ′ =  − − +   

, if or ,
, otherwise.

 (3) 

Figure 3. Schematic diagram of the shifting of ai and bi for a smooth block.

With the concept described above, Huang et al. use the following equations to perform the
modification of quantization levels for carrying log2 T secret bits:

a′i =

{
ai + b(di − D)/2c, if di > D or (di ≤ D ≤ T),
ai + b(di − D + T)/2c, otherwise,

(2)

b′i =

{
bi − d(di − D)e/2, if di > D or (di ≤ D ≤ T),
bi − d(di − D + T)/2e, otherwise.

(3)
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On the other hand, if the scanned block is complex, i.e., di > T, ai and bi are also modified to carry
log2 T bits according to the equation given below:

a′i =

{
ai − b(D− Ri)/2c, if Ri ≤ D or (Ri > D and di − Ri + D > T),
ai − b(D− Ri + T)/2c, otherwise,

(4)

b′i =

{
bi + d(D− Ri)/2e, if Ri ≤ D or (Ri > D and di − Ri + D > T),
bi + d(D− Ri + T)/2e, otherwise,

(5)

where Ri is the remainder between di and T. For a complex block, because a′i ≤ ai and b′i ≥ bi,
b′i − a′i > T still hold. Huang et al. exploits this fact to embed one additional bit. That is, if the
to-be-embedded bit is 12, the values of a′i and b′i are swapped and bitmap B′i = Bi is set, where Bi is the
flipped version of Bi. Otherwise, a′i and b′i are kept unchanged and set B′i = Bi.

The data extraction procedures in Huang et al.’s method are quite straight forward. If b′i −
a′i ≤ T, the scanned block is smooth and thus m × m bits can be extracted from B′i , and the other
log2 T bits (log2

∣∣b′i − a′i
∣∣ ) 2 can be extracted from the two quantization levels, where (x)2 represents

the binary representation of x. Here we use a simple example to illustrate the embedment in the
quantization levels. Suppose ai = 25, bi = 30, T = 4, and the to-be-embedded bits are 102. Because
di = bi − ai = 5 > T, the block is complex, and we have D = 102 = 2, Ri = mod(di, T) = 1.
According to Equation (4), because Ri ≤ D, we have a′i = ai − b(D− Ri)/2c = 25− b(2− 1)/2c = 25,
b′i = 30 + d(2− 1)/2e = 31. To extract the embedded bits, which is the binary representation of
mod(d′i, T), we calculate d′i = b′i − a′i = 6. Because mod(d′i, T) = 2, the embedded bits are 102.

3. Proposed Method

Most of the prior works based on the AMBTC compressed images embed data by replacing
the bitmap of trios with secret data. However, these methods do not fully exploit the adjustment of
quantization levels for carrying additional data bits while minimizing the distortion. Ou and Sun’s
method [26] gives an optimal modification to the quantization levels to ensure the distortion after the
bitmap replacement is minimal. However, the quantization level modification is based on the original
image blocks. The optimized quantization levels can be obtained only if the original image block is
known. Besides this, the quantization levels in this method are not used to carry data bit. As a result,
the embedding capacity is limited. Huang et al.’s method [28] subtly embeds additional data bits into
the difference of the quantization levels. However, they provide no solution to deal with the overflow
and underflow problems, and these problems occur frequently, as the threshold is large.

The proposed method fully exploits the modification of quantization levels to achieve a better
embedding efficiency. A threshold is used in the proposed method to classify blocks into smooth and
complex ones. For smooth blocks, the bitmap in each trio is replaced by secret messages, while the two
quantization levels are adjusted in a way that the stego block has the smallest distortion. Moreover,
the adjusted quantization levels can be further modified to embed additional data bits using the APPM
technique [7]. For complex blocks, a data bit is losslessly embedded by switching the recording order
of quantization levels while flipping the bitmap. The payload is adjustable by varying the threshold or
by choosing a larger notational system. A division-switching mechanism is also adopted to solve the
case when the constraints in the optimization problems cannot be satisfied. The detailed techniques
used in the proposed method are given in the following subsection.

3.1. Optimal Quantization Level Adjustment

The proposed method uses a threshold T to classify blocks into smooth and complex. If the
difference between ai and bi is smaller or equal to T, i.e., bi − ai ≤ T, the block is a smooth one,
Otherwise, the block is classified as complex. The bitmap Bi =

{
Bi,k
}m×m

k=1 of a smooth block is

employed to carry secret data Sj =
{

Sj,k

}m×m

k=1
by replacing Bi with Sj. The distortion due to the
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bitmap replacement will inevitably occur. Nevertheless, the quantization levels can be adjusted such
that the distortion is the smallest. Let I(ai, bi, Bi) and I(a, b, Sj) be the decoded AMBTC block using
the trio (ai, bi, Bi) and (a, b, Sj), respectively. The quantization levels that minimize the distortion can
be found by minimizing the mean square error (MSE) between I(ai, bi, Bi) and I(a, b, Si). Since a and b
are 8-bit integers, the minimization problem can be formulated as:

Minimize:
m×m

∑
k=1

(I(ai, bi, Bi,k)− I(a, b, Si,k))
2 (6)

Subject to:
a, b ∈ integrals,

0 ≤ a, b ≤ 255,

b− a ≤ T.

Let (âi, b̂i) denote the solution to Equation (6). Suppose ν0 and ν1 represent the percentage of the
unchanged bits and flipped bits when replacing Bi with Sj, respectively. Therefore, the squared error
SE caused by replacing Bi with Si can be formulated as

SE = ν0

(
(ai − a)2 + (ai − b)2

)
+ ν1

(
(bi − a)2 + (bi − b)2

)
. (7)

The minimal distortion of SE can be found by setting the partial derivative of Equation (7) with
respect to a and b to zero and solving the resultant equations, we have

a =
ai ν0 + bi ν1

ν0 + ν1
, b =

ai ν1 + bi ν0

ν0 + ν1
. (8)

Because ai ≤ bi, we assume ai = γbi where γ is a constant and γ ≤ 1. Therefore, Equation (8) can be
rewritten as a = ai(ν0 +

1
γ ν1)/(ν0 + ν1) and b = bi(ν0 +γ ν1)/(ν0 + ν1). Since (ν0 +

1
γ ν1)/(ν0 + ν1) ≥ 1

and (ν0 + γ ν1)/(ν0 + ν1) ≤ 1, the conditions ai ≤ âi and b̂i ≤ bi always hold. Therefore, the second
constraint in Equation (6) can be reduced to ai ≤ a and b ≤ bi, and thus the third constraint automatically
holds. Because ν0 and ν1 can be obtained once Bi and Sj are known, âi and b̂i can be directly calculated by
rounding the results of Equation (8).

3.2. Embedment Using APPM

The solution a = âi, b = b̂i to Equation (6) gives a minimum distortion when bitmap Bi is replaced
by the secret data Sj. However, âi and b̂i themselves do not carry any data. We observe that the
slight modification to the optimized quantization levels can carry additional data bits, and the APPM
technique gives the smallest distortion when modifying a pair of quantization levels (âi, b̂i) to (â′i, b̂′i)
for concealing a digit in σ− ary notational system [7]. Therefore, the proposed method adopts APPM
to embed an additional secret digit sσ in σ− ary notational system into the optimized quantization
levels, as formulated as

Minimize:
(âi − a)2 + (b̂i − b)

2
(9)

Subject to:
Rσ(a, b) = sσ,

0 ≤ a, b ≤ 255,

|a− b| ≤ T,

where Rσ is the reference table used for embedding digits in σ− ary notational system. The solution
a = â′i and b = b̂′i to Equation (9) can be easily solved by locating the neighboring entities of (âi, b̂i) with
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value sσ in the reference table Rσ, and then select the one satisfying |a− b| ≤ T and (âi − a)2 +(b̂i − b)2

is the minimum.

3.3. Division-Switching Technique

In rare cases that the solution cannot be found because of no quantization levels a and b both
satisfying Rσ(a, b) = sσ and | a− b | ≤ T , we simply modify the original quantization levels ai and
bi to a′i and b′i such that b′i − a′i > T and the MSE between I(ai, bi, Bi) and I(a′i, b′i , Bi) is the smallest.
This operation can be formulated as an optimization problem:

Minimize:
m×m

∑
k=1

(I(ai, bi, Bi,k)− I(a, b, Bi,k))
2 (10)

Subject to:
a, b ∈ integrals,

0 ≤ a, b ≤ 255,

b− a > T.

Once the solution a = a′i and b = b′i have been determined, one data bit can be embedded into this
block. On the decoder side, because b′i − a′i > T, the decoder knows the visited block is complex and
thus the embedded data bit can be successfully extracted. The embedding and extraction of complex
block will be discussed in the next subsection.

3.4. Lossless Embedment Technique

If bi − ai > T, the block is classified as complex and the modification of quantization levels or
bitmap will produce significant distortion. Nevertheless, a data bit can still be embedded losslessly
using the method proposed in [24]. To losslessly embed a data bit into the trio (ai, bi, Bi), if the
to-be-embedded bit is 02, the trio is unmodified. If the to-be-embedded bit is 12, the trio is modified to
(bi, ai, Bi), where Bi is the flipped version of Bi. Note that the decoded blocks I(ai, bi, Bi) and I(bi, ai, Bi)

are identical. As a result, the embedment in the complex blocks results in no distortion but contribute
one bit to payload per block.

Figure 4a,b show the distribution of embedment using APPM (Section 3.2, marked by blue cross
marks), division-switching (Section 3.3, marked by red circle marks), and the lossless embedment
techniques proposed in this section (marked by black dots) using the parameters σ = 32, T = 3 and
σ = 32, T = 5, respectively. As seen from Figure 4a, when a large σ and a small T is set, the embedment
using the division-switching technique sparsely distributed. However, when T slightly increases to 5,
none of the division-switching technique is applied, and more blocks are classified as smooth ones. This is
reasonable because when T is small, the first and third constraints in Equation (9) are more difficult to
satisfy. As a result, the division-switching technique will be applied more often than larger T.
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3.5. Embedding Procedures

For a given payload P` and a notational system σ, the proposed method firstly finds a minimum
threshold T such that all the payload P` can be embedded. Let NS and NC be the number of smooth
and complex blocks, respectively. Since the proposed method embeds log2 σ + m×m bits into smooth
blocks and embeds one bit into complex block, therefore, the smallest T can be determined such that

NS(log2 σ + m×m) + NC ≥ P` (11)

Once the smallest T has been determined, the following procedures are employed to embed the
secret data:

Input: AMBTC codes {ai, bi, Bi}N
i=1, secret data S, block size m×m, and σ.

Output: AMBTC stego codes
{

aS
i , bS

i , BS
i
}N

i=1, threshold T.

Step 1: Use Equation (11) to determine the smallest threshold T.

Step 2: Scan the AMBTC trios {ai, bi, Bi}N
i=1.

Step 3: If bi − ai ≤ T, the scanned trio is smooth. The following three steps are performed to embed
log2 σ + m×m bits into the scanned trio:

(1) Extract m×m bits Sj from S, and replace Bi with Sj.

(2) Adjust the quantization pair (ai, bi) to (âi, b̂i) by solving the Equation (6) given in
Section 3.1.

(3) Extract log2 σ bits from S, convert the extracted bits to a digit sσ in σ − ary notational
system, and perform the APPM embedding technique to embed sσ into the quantization
pair (â′i, b̂′i) by solving Equation (9). In case the solution cannot be found, return the
previously extracted log2 σ + m × m to S, modify (ai, bi) to (a′i, b′i) according to the
Equation (10), and go to Step 4 for embedding one additional bit.

Step 4: If bi − ai > T, the scanned trio is complex. Extract one bit from S and losslessly embed the
extracted bit, as described in Section 3.4.

Step 5: Steps 2–4 are repeated until all bits in S are embedded.
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The embedding procedures are briefly illustrated in Figure 5. The final stego codes are denoted
by
{

aS
i , bS

i , BS
i
}N

i=1. The parameters σ, m, and T are recorded as the keys for data extraction, and use a
secret channel to transmit them to the receiver side.
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3.6. Extraction Procedures

Once the receiver has the stego codes
{

aS
i , bS

i , BS
i
}N

i=1 and the keys m, σ, and T, the secret data can
be extracted using the following procedures:

Input: AMBTC stego codes
{

aS
i , bS

i , BS
i
}N

i=1, T, σ, and block size m×m.
Output: Secret data S.

Step 1: Scan the stego codes
{

aS
i , bS

i , BS
i
}N

i=1 sequentially.
Step 2: If

∣∣aS
i − bS

i

∣∣≤ T , extract m × m bits from the bitmap. Other log2 σ bits can be extracted by
obtaining sσ = Rσ(aS

i , bS
i ) first, and then convert sσ to its binary representation.

Step 3: If
∣∣aS

i − bS
i

∣∣> T , one bit is embedded in this block. If aS
i < bS

i , a bit 02 is extracted. If aS
i > bS

i ,
a bit 12 is extracted.

Step 4: Repeat Steps 2–4 until all the embedded data are extracted.

3.7. A Simple Example

The following is an example to show the procedures of embedding and extraction of the
proposed method. For simplicity, the determination of threshold and the division-switching technique
introduced in Section 3.3 are not demonstrated in this example. Suppose two AMBTC trios
{ai, bi, Bi}2

i=1 are to be embedded with secret data S = 0010001001100000101112. The two trios and
the corresponding AMBTC block are shown in Figure 6a–c, respectively. Let T = 20 and σ = 16 be
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the embedding parameters used, and the required reference table R16 is shown in Figure 2. In this
example, the bitmap is capable of carrying 16 bits while the pair of quantization levels are able to carry
log2 16 = 4 bits.

For the first trio, because b1 − a1 = 39− 23 = 16 ≤ T, we embed 16 bits into the bitmap B1

by replacing B1 with the first 16 bits 00100010011000002 of S. Since the bitmap is replaced, a pair
of quantization levels (â1, b̂1) has to find such that the distortion due to the bitmap replacement is
the smallest. â1 = 31 and b̂1 = 23 can be obtained by solving Equation (6) with few calculations.
Now, â1 and b̂1 can be modified to carry four additional bits. Extract the 17-th to 20-th bits 10112

from S and convert it to the 16-ary notational system, we have s16 = 11. Because the coordinate
(33, 23) is the nearest coordinate to (31, 23) satisfying R16(33, 23) = 11 and |23− 33|< 20 , we have
â′1 = 33 and b̂′1 = 23. As a result, the final stego trio for the first AMBTC block is (aS

1 , bS
1 , BS

1 ) =

(33, 23, 0010 0010 0110 00002). For the second block, because b2 − a2 = 86− 65 = 21 > T, one bit can be
embedded into this block losslessly. Because the 21-th bit is 12, swapping the value of a2 and b2, and
flipping the bitmap of B2, we have the stego code (aS

2 , bS
2 , BS

2 ) = (86, 65, 0011 00110000 11112). The final
stego trios and the corresponding stego AMBTC block are shown in Figure 6d–f.

To extract the embedded bits, because
∣∣aS

1 − bS
1

∣∣= ∣∣33− 23
∣∣= 10 < T , 16 bits are embedded in

the bitmap and four bits are embedded in the quantization pair. Extract the 16 bits from the bitmap
BS

1 , we have 00100010011000002. Moreover, because R16(33, 23) = 1116 = 10112, four bits 10112 can
be extracted. For the second block, since

∣∣aS
2 − bS

2

∣∣= ∣∣86− 65
∣∣> T and aS

2 > bS
2 , a bit 12 is extracted.

Concatenate these extracted bits, the embedded secret data 0010001001100000101112 can then be
successfully extracted.
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2 = 65; (f) Stego image block.

4. Experimental Results

In this section, several experiments are conducted to show the performance of the proposed
method. Eight test images shown in Figure 7, including Lena, Jet, Tiffany, Peppers, Tank, Boat, House,
and Baboon, were used in the experiment. These test images are 8-bit of size 512× 512, which can be
obtained from the USC-SIPI image database [35].
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These test images were compressed to obtain the AMBTC codes with block size 4× 4, and then the
embedding performance was tested on these compressed codes. The secret data were simulated using
a pseudo random number generator, and the peak signal-to-noise ratio (PSNR) metric is employed to
evaluate the image quality, which is defined by

PSNR = 10 log10
2552

1
M

M
∑

i=1
(pi − p′i)

2
, (12)

where M is the total number of pixels in the image, and pi, p′i are the pixel values of the reference
image and the to-be-measured image, respectively. A higher PSNR shows that the measured image
quality is visually closer to the reference image.

It should be noted that in the following subsections, the image quality of the stego AMBTC
compressed images was measured by referencing the original images. Table 1 shows the image
qualities of the AMBTC compressed images when comparing to the original images. Once the data are
embedded into the AMBTC codes, the PSNR of the stego AMBTC images should be smaller than the
ones listed in this table.

Table 1. Image quality (in dB) of the absolute moment block truncation coding (AMBTC)
compressed images.

Image Lean Jet Tiffany Peppers Tank Boat House Baboon

PSNR 33.27 31.97 35.77 33.42 34.73 31.16 30.89 26.98

4.1. Performance of the Proposed Method

In this section, we compare the embedding performance of the proposed method when the
parameter σ is chosen to be 2, 4, 8, 16, or 64, respectively. The results of the test images Lena and
Baboon are shown in Figure 8, where the curves are plotted by varying the threshold for a given
payload. In this figure, the legend σ = 0 denotes the optimized quantization levels are used to obtain
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the PSNR but they are not used to carry data. It is interesting to note that the decrease in PSNR of the
Lena image at low payload is smaller than that of the Baboon image. This is because the Lena image
possesses more smooth blocks than complex ones, and at low payload, only part of the smooth blocks
are used for carrying m×m + log2 σ bits, and other blocks are used to carry one bit losslessly. As a
result, the decrease in PSNR is insignificant when comparing the Baboon image, where smooth blocks
are far less than those in the Lena image.
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Figure 8. Performance comparison of various σ. (a) Lena image; (b) Baboon image.

Figure 8 also shows that for the Lena image at a small payload, a smaller σ provides a slightly
higher image quality. On the contrary, a larger σ at large payload offers significantly better image
quality than smaller ones. For example, when the payload is 160,000 bits for the Lena image, the PSNR
at σ =2, 4, 8, 16, 32, and 64 are 32.79, 32.85, 32.86, 32.88, 32.82, and 32.69 dB respectively. However,
when the payload is increased to 260,000 bits, the PSNR at σ = 2, 4, 8, 16, 32, and 64 are 29.98, 30.99,
31.56, 31.88, 31.96, and 31.94 dB respectively. Complex images such as Baboon at large payload
have similar trends. The better embedding performance at high payload is due to the utilization of
quantization levels for data embedment. Although Figure 8 only shows the comparison results of two
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test images, the similar results are obtained in other test images. The results suggest that the best σ

can be selected for a given payload to minimize the image distortion in the proposed method. In real
applications with a given payload P`, the best σ that result in the highest PSNR can be calculated
by substituting various σ into using Equation (11) to find minimum thresholds T and subsequently
obtain various PSNRs. The σ and T that result in the highest PSNR are selected as the parameter for
data embedment.

4.2. Comparison with Previous Schemes

In this section, the embedding performance of the proposed method is compared with other
recently published methods, including Huang et al.’s [28], Ou and Sun’s [26], Hong et al.’s [25],
and Chuang et al.’s [23] methods. In Huang et al.’s method, threshold values are set to 2, 4, 8,
and 16, respectively, to accommodate the given payload. In Ou and Sun’s method, the lossless
embedding is also implemented to achieve the best performance. In Hong et al.’s and Chuang et al.’s
methods, a threshold is used to control the payload such that the image distortion is the smallest.
In the proposed method, the parameter σ that results in the best image quality is selected for data
embedment. Figure 9a–c show the performance comparison of the Lena, Boat, and Baboon images,
respectively, and Figure 9d is the averaged payload–PSNR curves of the eight test images.
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Figure 9 shows that the Chuang and Chang’s method has the lowest image quality because
this method embeds data simply by bitmap replacement. Hong et al.’s method performs better than
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Chuang and Chang’s method because the quantization levels are modified according to the number of
different bits between secret data and bitmap. Ou and Sun’s method gives an optimal modification to
the quantization levels to minimize distortion. However, the aforementioned methods do not utilize
the quantization levels to carry data bits, and thus the payload is limited to m× m× N. Huang’s
method effectively embeds data into quantization levels while keeping the distortion low. As a result,
the method achieves a better performance over prior works. Nevertheless, the proposed method
provides the best embedding result for various payloads, especially at high payloads. The increased
PSNR is due in part to the proposed method efficiently embedding data bits into quantization levels
using APPM, and due part to the embedding parameters σ can be selected to minimize the distortion.

It is interesting to note that although Huang et al.’s method offers a good embedding performance,
their method provides no mechanism to deal with the overflow and underflow problems. As a
result, if the threshold is large, or the image itself possesses any saturated pixel (pixels valued 0 or
255), the embedded data cannot be extracted correctly due to the occurrence of overflow/underflow.
Figure 10a–c show the overflowed pixels (represented by black cross marks) of the Tiffany image using
Huang et al.’s method when the threshold is set to 4, 8, and 16, respectively. As a comparison with
Figure 10c, we also show the embedding result of the proposed method when approximately the same
payload is embedded.
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bits 33.53 dB (σ = 32).

As shown in Figure 10a–c, since the Tiffany image contains a considerable number of saturated
pixels, the number of overflowed pixels increases as the threshold increases. On the contrary,
the proposed method subtly employs the quantization levels to carry additional data bits, and provides
mechanisms to avoid pixel from overflow or underflow. Therefore, the proposed method achieves an
excellent performance while the embedded data can be successfully extracted.

In addition to the eight test images, we also perform the test on 200 images randomly selected
from [36]. These images are 8-bit of size 512 × 512. Because the maximum payload of Chuang
and Chang’s, Hong et al.’s, and Ou and Sun’s methods are 262,144 bits, we test the performance
on two payloads: 200,000, and 262,144 bits. The results are sorted in ascending order according
to PSNR values of Chuang and Chang’s method, as shown in Figure 11. The results show that
the proposed method offers the best image quality among these five methods for most of the test
images. Moreover, it is quite obvious that the increase in PSNR of the proposed method is more
significant than other methods when P` = 262, 144 bits. This is due to the subtle APPM usage on
the quantization levels for carrying additional data bits. Note that the increase in PSNR of proposed
method at P` = 200, 000 bits is not so obvious at high PSNR (from 35 to 45 dB). This is because these
high-PSNR images contain a significant number of flat blocks, which is relatively favorable to those
methods only using bitmap replacement for embedment. Nevertheless, the proposed method still
offers a comparable image quality for most flat images. We perform the test on another set of randomly
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selected images, which also shows similar results, indicating that the proposed method indeed offers a
better performance than the recently published state-of-the-art works.Symmetry 2018, 10, x FOR PEER REVIEW  16 of 18 
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Notice that in the proposed method, the embedded digit sσ in the i-th block is extracted via
sσ = Rσ(âi, b̂i), and thus any modification to âi or b̂i will cause incorrect data extraction. Therefore,
the embedded information is fragile and sensitive to the alteration of the marked AMBTC trios.
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Meanwhile, because the proposed method provides an excellent image quality with adjustable
payload, it can be utilized as a fragile watermarking technique for the purpose of authentication
of the AMBTC codes.

5. Conclusions

In this paper, we propose a novel data hiding method based on AMBTC compressed images.
The proposed method embeds data into the bitmap if the block is smooth, and the quantization levels
are adjusted to minimize the distortion while carrying additional bits. For those complex blocks,
one data bit is embedded losslessly. Since the proposed method effectively exploits the quantization
levels for data embedment using the APPM technique, the distortion can be effectively minimized
and the payload is adjustable. Besides this, the proposed embedding method will never cause the
overflow or underflow problems. The results show that the proposed method offers better image
quality than previous schemes at high payload, and provides a comparable or better image quality
at low payload. Since the proposed work efficiently embeds data into the AMBTC codes with least
distortion, the method can be exploited in other applications such as authentication of AMBTC codes.
The future work of this study is to incorporate the proposed technique to develop a new AMBTC
authentication method with adjustable fault tolerance.

Conflicts of Interest: The authors declare no conflicts of interest.
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