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Abstract: Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent
coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit
form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified
coefficients to the system of ordinary differential equations (ODEs) and an example of the exact
solution with a biological interpretation are found.
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1. Introduction

It is widely known that A.J. Lotka and V. Volterra were the prominent investigators who created
the mathematical background of ecology. Volterra proposed the classical model [1]

du
dt = u(a− bv),
dv
dt = v(−c + du)

(1)

for the predation of one species by another to explain the oscillatory levels of certain fish catches in
the Adriatic. In (1), the functions u(t) and v(t) describe the time evolution of the numbers of prey
and predators, respectively; the derivatives with respect to t represent the growth rates of the two
populations over time; a, b, c and d are positive real parameters describing the interaction of the two
species. In words, one may formulate system (1) as follows [2]:

[Rate of change of u] = [net rate of growth of u without predation] − [net rate of loss of u due
to predation],

[Rate of change of v] = − [net rate of loss of v without prey] + [net rate of growth of v due
to predation].

Lotka proposed the same model [3] to describe chemical reaction, which exhibit periodic behaviour
in the chemical concentrations. Thus, system (1) is known as the Lotka–Volterra model.

A natural generalization of system (1) follows if one takes into account diffusion of two species in
a one-dimensional space. As a result, the diffusive Lotka–Volterra (DLV) system is obtained

ut = d1uxx + u( f1 + g1u + h1v),
vt = d2vxx + v( f2 + g2u + h2v),

(2)

where fi, gi and hi are arbitrary constants (i = 1, 2, h2
1 + g2

2 6= 0), d1 and d2 are diffusion coefficients
(d1d2 6= 0).

It is well-known that the DLV system (2) models several types of interaction between two
populations of species. Three common types are the predator-prey interaction, the competition (for food,
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space, etc.) of species and mutualism. Each type of the species interaction is defined by coefficients’
signs in system (2). For example, the coefficients

fi > 0, gi ≤ 0, hi ≤ 0, i = 1, 2

are used in order to describe the competition, while the cases h1g2 < 0 and h1 > 0, g2 > 0 model the
predator-prey interaction and mutualism, respectively (see (Chapter 3) [4] for details).

Nowadays many works (see, e.g., monograph (Chapter 3) [5] and papers [6–11]) are devoted to
investigation of the DLV system (2) by analytical (in particular symmetry-based) methods. The existence
of plane wave solutions of the DLV system (2) were examined in [6,7], while the works [8–11] are devoted
to construct such solutions in an explicit forms. Note that the Lie symmetry classification problem for
the DLV system (2) are completely solved in paper [8]. Moreover, such problem for the two-component
reaction-diffusion system

ut = d1uxx + f (u, v) ,
vt = d2vxx + g (u, v)

(3)

(here f (u, v) and g(u, v) are the given smooth functions) was completed in paper [12].
In this paper, we examine a generalization of system (2) in the form

Uτ = D1(τ)Uxx + U (F1(τ) + G1(τ)U + H1(τ)V) ,
Vτ = D2(τ)Vxx + V (F2(τ) + G2(τ)U + H2(τ)V) ,

(4)

where Fi, Gi, Hi and Di are arbitrary smooth functions (H2
1 + G2

2 6= 0, D1D2 6= 0), and at least one of
the coefficients of system (4) is not constant.

System (4) was investigated in many works (see, e.g., [13–17] and references cited therein).
Chapter 2 of the book [13] is dedicated to some asymptotic stability questions concerning
Lotka–Volterra type systems (D1 = D2 = 0) with periodic coefficients, while other papers are devoted
to examination the Lotka–Volterra type systems of the form (4) with D1D2 6= 0. However, to the best
of our knowledge, there are no papers devoted to the search for the Lie symmetry of system (4).

The paper is organized as follows. In Section 2, the Lie symmetry classification of the DLV system
with time-dependent coefficients is derived. In Section 3, the most important (from applicability point
of view) cases of system (4) with nontrivial Lie symmetry are examined. In particular, a nontrivial Lie
ansatz is derived and applied for reducing the system in question to a system of ODEs. The reduced
systems are analyzed in order to construct exact solutions with a biological meaning. Finally, we briefly
discuss the result obtained and present some conclusions in the last section.

2. Main Results

It can be noted that the DLV system (4) is reduced to the system

ut = uxx + u (b1(t)u + c1(t)v) ,
vt = d(t)vxx + v (b2(t)u + c2(t)v)

(5)

by the change of variables

t =
∫

D1(τ)dτ, u = U exp
(
−
∫

F1(τ)dτ

)
, v = V exp

(
−
∫

F2(τ)dτ

)
,

where d(t) = D2(τ)
D1(τ)

, bi(t) = Gi(τ)
D1(τ)

exp (
∫

F1(τ)dτ) and ci(t) = Hi(τ)
D1(τ)

exp (
∫

F2(τ)dτ) , i = 1, 2,

τ = (
∫

D1(t)dt)−1 (the superscript −1 means inverse function).
In contrast to (4), the class of the DLV systems (5) contains only five arbitrary functions. Thus,

the problem of a complete description of all possible Lie symmetries arises (one is also called group
classification problem [18]). In order to solve this problem, we can apply the Lie–Ovsiannikov
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approach (the name of Ovsiannikov arises because he published a remarkable paper [19] in this
direction). This approach is based on the classical Lie scheme and a set of equivalence transformations,
which maps each system from one class to another one from this class.

Theorem 1. An arbitrarily given DLV system of the form

Uτ = Uyy + U (G1(τ)U + H1(τ)V) ,
Vτ = D(τ)Vyy + V (G2(τ)U + H2(τ)V)

(6)

can be reduced to a system from class (5) by the equivalence transformations of the form either

t = α2
1τ + α2, x = α1y + α3,

u = α4U, v = α5V,
d = D, b1 = G1

α4α2
1
, b2 = G2

α4α2
1
, c1 = H1

α5α2
1
, c2 = H2

α5α2
1
,

(7)

or
t = α2

1
∫

D(τ)dτ + α2, x = α1y + α3,
u = α4V, v = α5U,
d = 1

D , b1 = H2
α4α2

1D
, b2 = H1

α4α2
1D

, c1 = G2
α5α2

1D
, c2 = G1

α5α2
1D

,
(8)

where αj (j = 1, . . . , 5) are arbitrary constants such that α1α4α5 6= 0.

Sketch of the proof of Theorem 1. Proof of this theorem is based on the direct method of constructing
a group of equivalence transformations (see, e.g., [20]).

Let
t = α(τ, y, U, V), x = β(τ, y, U, V),
u = Φ(τ, y, U, V), v = Ψ(τ, y, U, V)

(9)

be an invertible smooth change of variables that transforms a system from class (6) into a system
from (5).

First of all we note that for each nondegenerate change of variables (9) should satisfy the condition

∆1 =

∣∣∣∣∣∣∣∣∣
ατ αy αU αV
βτ βy βU βV
Φτ Φy ΦU ΦV
Ψτ Ψy ΨU ΨV

∣∣∣∣∣∣∣∣∣ 6= 0. (10)

The main idea of the proof is based on substituting the expressions for Uyy, Vyy, Uτ , Vτ

(see formulae (9)) into system (6) and on analysis conditions when the system obtained is equivalent
to (5).

The expressions for the first-order derivatives Uτ and Uy have the form

Uτ =

∣∣∣∣∣∣Φτ − ατut − βτux αVut + βVux −ΦV
Ψτ − ατvt − βτvx αVvt + βVvx −ΨV

∣∣∣∣∣∣∣∣∣∣∣∣αUut + βUux −ΦU αVut + βVux −ΦV
αUvt + βUvx −ΨU αVvt + βVvx −ΨV

∣∣∣∣∣∣
,

Uy =

∣∣∣∣∣∣Φy − αyut − βyux αVut + βVux −ΦV
Ψy − αyvt − βyvx αVvt + βVvx −ΨV

∣∣∣∣∣∣∣∣∣∣∣∣αUut + βUux −ΦU αVut + βVux −ΦV
αUvt + βUvx −ΨU αVvt + βVvx −ΨV

∣∣∣∣∣∣
.

Since derivatives Vτ and Vy have the same structure, the relevant formulae are omitted here.
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The expressions for the second-order derivatives are very cumbersome and are skipped here.
However, it can be noted that they contain the derivatives utt, vtt, utx and vtx. Thus, the coefficient
next to these derivatives must vanish, otherwise system (5) is not obtainable. These coefficients vanish
if and only if the following equalities take place:

αy = αU = αV = βU = βV = 0 ⇒ α = α(τ), β = β(τ, y). (11)

Moreover, taking into account (10), the restriction

α′βy

∣∣∣∣∣ΦU ΦV
ΨU ΨV

∣∣∣∣∣ 6= 0 (12)

is also obtained.
Having the set of equalities (11), the expressions for Uyy and Uτ can be essentially simplified, namely:

Uyy =
ΨV β2

y

∆2
uxx −

ΦV β2
y

∆2
vxx +

(ΨV βy)y∆2 − (∆2)yΨV βy

∆2
2

ux −
(ΦV βy)y∆2 − (∆2)yΦV βy

∆2
2

vx+

(ΨyΦV −ΨVΦy)y∆2 − (∆2)y(ΨyΦV −ΨVΦy)

∆2
2

,

Uτ = 1
∆2

(ΨV(α
′ut + βτux −Φτ)−ΦV(α

′vt + βτvx −Ψτ)) ,

(13)

where ∆2 =

∣∣∣∣∣ΦU ΦV
ΨU ΨV

∣∣∣∣∣ . Substituting (13) into the first equation of (6) we note that the expression

obtained contains the terms

−ΦVα′

∆2

(
β2

y

α′
vxx − vt

)
and

ΨVα′

∆2

(
β2

y

α′
uxx − ut

)
,

while other terms do not depend on vxx, uxx, vt, and ut.
Now one realizes that there are two possibilities. Case (i): the first equation of (6) is transformed

into the first one of (5). As a result, we obtain

α′ = β2
y, ΦV = 0. (14)

In this case, the second equation of (6) is transformed into the second one of (5) and the
following conditions

d = D, ΨU = 0 (15)

take place.
Case (ii): the first equation of (6) is transformed into the second one of (5). As a result, the conditions

dα′ = β2
y, ΨV = 0, d =

1
D

, ΦU = 0

must be satisfied.
Here we consider in detail only Case (i). Taking into account (12) and ΦV = 0, the restriction

ΦUΨV 6= 0 springs up.
On the other hand,

β(τ, y) = β1(τ)y + β2(τ), (16)

(here β1 and β2 are arbitrary smooth functions) follows from (14).
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Substituting (14) and (15) into expressions for Uyy and Uτ (see formulae (13)), one obtains

Uyy =
β2

1
ΦU

uxx − 2
β1ΦyU

Φ2
U

ux +
2ΦyΦyU −ΦUΦyy

Φ2
U

− ΦUU

Φ3
U

(β1ux −Φy)2,

Uτ =
1

ΦU
(β2

1ut + (β′1y + β′2)ux −Φτ).
(17)

Since the first equation of system (5) does not contain the terms ux and u2
x, the relevant coefficient

should vanish, namely:

2
β1ΦyU

Φ2
U

+
β′1y + β′2

ΦU
= 0,

ΦUU = 0.

The general solution of this system can be easily constructed and has the form

Φ = f (τ) exp
(
− 1

4β1
(β′1y2 + 2β′2y)

)
U + P(τ, y), (18)

where f (τ) 6= 0 and P(τ, y) are arbitrary functions. Thus, taking into account (9), (16) and (18), one can
express the function U via the function u, namely:

U =
u− P

f
exp

(
β′1(x− β2)

2

4β3
1

+
β′2(x− β2)

2β2
1

)
. (19)

Substituting (17)–(19) into the first equation of system (6), we obtain the term

G1

f β2
1

exp

(
β′1(x− β2)

2

4β3
1

+
β′2(x− β2)

2β2
1

)
u2,

while other terms don’t contain u2. Since the coefficients of system (5) do not depend on the variable x,
we arrive at

β′1 = 0⇒ β1 = α1, β′2 = 0⇒ β2 = α3,

where α1 6= 0 and α3 are arbitrary constants. Now we find α(τ) = α2
1τ + α2 from the first

equation of (14). Therefore, the transformations for the variables t and x presented in (7) are obtained.
As a result, the structure of the functions Φ and Ψ are essentially simplified, namely:

Φ = f (τ)U + P(τ, y), Ψ = g(τ)V + Q(τ, y), (20)

where g(τ) 6= 0 and Q(τ, y) are arbitrary functions. Thus, the expressions for the derivatives
Uτ , Vτ , Uyy and Vyy have the forms:

Uτ = 1
f

(
α2

1ut − u−P
f f ′ − Pτ

)
, Uyy = 1

f
(
α2

1uxx − Pyy
)

,

Vτ = 1
g

(
α2

1vt − v−Q
g g′ −Qτ

)
, Vyy = 1

g
(
α2

1vxx −Qyy
)

.
(21)

Substituting (20) and (21) into (6), we arrive at the system

ut = uxx + (u− P)

(
G1

α2
1 f

(u− P) +
H1

α2
1g

(v−Q)

)
+

u− P
α2

1 f
f ′ +

Pτ − Pyy

α2
1

,

vt = Dvxx + (v−Q)

(
G2

α2
1 f

(u− P) +
H2

α2
1g

(v−Q)

)
+

v−Q
α2

1g
g′ +

Qτ −Qyy

α2
1

,
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which coincides with system (5) if the restrictions

P = Q = 0, f ′ = 0⇒ f = α4, g′ = 0⇒ g = α5

and the notations
d = D, b1 =

G1

α4α2
1

, b2 =
G2

α4α2
1

, c1 =
H1

α5α2
1

, c2 =
H2

α5α2
1

hold (here α4 6= 0 α5 6= 0 are arbitrary constants). Thus, the equivalence transformations of the form (7)
are derived.

The examination of Case (ii) is quite similar and leads to the equivalence transformations of the
form (8).

It is well-known that the Lie–Ovsiannikov approach leads to very long list of equations (systems)
with nontrivial Lie symmetry provided the given equation (system) contains several arbitrary functions
(system (5) involves five such). Applying this approach to the DLV system (5), we obtain 51 inequivalent
systems (up to equivalent representations generated by transformations of the form (7) and (8)).
To essentially reduce the number of inequivalent systems, we use the algorithm based on so called
form-preserving (admissible) transformations [21–23] (local substitutions, which can map some systems
from a given class to other those belonging to the same class). During recent years, the application
of admissible transformations to the Lie symmetry classification problems becomes more common
because it enables one to decrease substantially the number of obtained cases [24–27] (see also an
extensive discussion on this matter in the very recent monograph [28]). Here, this approach will be
essentially used because the Lie–Ovsiannikov approach leads to many locally-equivalent systems of
the form (5).

We start from a preliminary analysis of so-called determining equations. Applying the criterion
of Lie’s invariance (see monographs and textbooks [18,28–31]) and making a preliminary analysis of
the system of determining equations (DEs), we obtain the general form of the Lie symmetry operator
of the DLV system (5).

Theorem 2. Each invariance operator of any system from the class (5) has the following form:

X = ξ0(t)∂t + ξ1(t, x)∂x +
(
r1(t, x)u + q1(t)v + p1(t, x)

)
∂u+(

r2(t, x)v + q2(t)u + p2(t, x)
)

∂v,
(22)

where ξ0, ξ1, ri, qi and pi (i = 1, 2) are unknown smooth functions, which can be found from the system

d′(t) ξ0 = 0, (23)

(1− d)q1 = 0, (1− d)q2 = 0, (24)

(c1 − c2)q1 = 0, (b1 − b2)q2 = 0, (25)

ξ0
t − 2ξ1

x = 0, ξ1
t + 2r1

x = 0, ξ1
t + 2dr2

x = 0, (26)

b1(r1 + ξ0
t ) + c1q2 + ξ0b′1 = 0, b2(r1 + ξ0

t ) + (2c2 − c1)q2 + ξ0b′2 = 0, (27)

c1(r2 + ξ0
t ) + (2b1 − b2)q1 + ξ0c′1 = 0, c2(r2 + ξ0

t ) + b2q1 + ξ0c′2 = 0, (28)

r1
t − r1

xx − 2b1 p1 − c1 p2 = 0, r2
t − dr2

xx − b2 p1 − 2c2 p2 = 0, (29)

p1
t − p1

xx = 0, p2
t − dp2

xx = 0, (30)

q1
t − c1 p1 = 0, q2

t − b2 p2 = 0. (31)

Since the proof of this theorem is based on the known facts from Lie symmetry analysis and does
not contain nontrivial steps, we omit the relevant calculations.
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Obviously, the DLV system (5) for arbitrary functions bi, ci and d admits the one-dimensional Lie
algebra, called a principal (trivial) algebra, with the basic operator ∂x. To find all possible extensions of
the principal algebra in the case of system (5), one needs to solve the system of DEs (23)–(31).

We present the result of integration of system (23)–(31) with the additional restriction q1q2 = 0 in
the form of the theorem, which is the main result of the paper.

Theorem 3. All possible maximal algebras of invariance (up to equivalent representations generated by
transformations of the form (7) and (8)) with the restriction q1q2 = 0 of the DLV system (5) are presented in
Tables 1 and 2. Any other system of the form (6) with nontrivial Lie symmetry is reduced by a local substitution
of the form

t = α2
1τ + α2, x = α1y + α3,

u = α4eα5t f α6 gα7U + α8V + α9eα10t f α11 gα12 ,
v = α13 exp

(
α14t + α15eα16t) f α17 gα18 V + α19eα20t f α21 gα22U + α23 f α24 gα25

(32)

either to one of those given in Tables 1 and 2, or to the DLV system with constant coefficients, or to a correctly-
specified reaction-diffusion system of the form (3). Here, the functions f and g take one of the following forms:

τ, sin(τ + α26), sinh (α27 ln τ + α28τ) , cosh (α29 ln τ + α30τ) ,

while the constants α with subscripts are determined by the form of the system in question.

Sketch of the proof of Theorem 3. In order to prove the theorem, one needs to solve the system of
DEs (23)–(31). The differential consequences of Equations (27) and (28) with respect to x lead to

bir1
x = 0, cir2

x = 0, i = 1, 2.

Since c2
1 + b2

2 6= 0 (otherwise the DLV system (5) contains two independent equations, which are
excluded from consideration) and taking into account (26), one arrives at

r1
x = r2

x = 0, ξ0 = 2α2t + α0, ξ1 = α2x + α1,

where α0, α1 and α2 are arbitrary constants.
First of all, we note that two essentially different cases, d′(t) 6= 0 and d′(t) = 0, follow from

Equation (23).
Assuming d′(t) 6= 0, Equations (23) and (24) immediately lead to

ξ0 = q1 = q2 = 0.

Under the above equalities Equations (27) and (28) essentially simplify and take the forms

bir1 = 0, cir2 = 0, i = 1, 2. (33)

Thus, two different subcases should be examined : (i) c1b2 6= 0; (ii) c1 = 0, b2 6= 0. Formally
speaking, there is a third subcase b2 = 0, c1 6= 0; however, it is equivalent to (ii) up to transformation (8).

Let us assume that c1b2 6= 0. Equations (31) and (33) immediately produce

r1 = r2 = p1 = p2 = 0.

Thus, only the trivial algebra is obtained. The examination of subcase (ii) leads to Cases 1 and 2
of Table 1. Therefore, the case d′(t) 6= 0 is completely examined.
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Now we consider the case d′(t) = 0. One notes from Equations (24) that two possibilities d = d0

(d0 is an arbitrary constant) and d = 1 should be analysed. Here we examine in detail only the first
possibility d = d0.

Equations (24) lead to q1 = q2 = 0. The further analysis of the system of DEs depends on the
functions b2 and c1. Thus, subcases (i) and (ii) should be considered.

Firstly, we note that ξ0 6= 0 (otherwise only the trivial algebra or the particular subcases of Cases
1 and 2 of Table 1 are obtained).

Subcase (i). Equations (29) and (31) produce p1 = p2 = 0, r1 = λ1 and r2 = λ2, where λ1 and λ2

are arbitrary constants. Therefore, Equations (27) and (28) can be rewritten as

b1 = b0b2, c2 = c0c1,
b′2
b2

= − λ1 + 2α2
2α2t+ α0

, c′1
c1

= − λ2 + 2α2
2α2t+ α0

.
(34)

Last two equations of system (34) can be easily integrated depending on the constant α2. Thus,
Case 3 of Table 1 is obtained provided α2 6= 0. If α2 = 0 the DLV system

ut = uxx + u
(

β1ektu + γ1eltv
)

,

vt = d0vxx + v
(

β2ektu + γ2eltv
) (35)

(here βi, γi, k and l are arbitrary constants, k2 + l2 6= 0) and the relevant Lie symmetries

∂x, ∂t − ku∂u − lv∂v (36)

are derived. Using the simple transformation ektu→ u, eltv→ v to (35) and (36), we obtain the DLV
system with constant coefficients

ut = uxx + u (k + β1u + γ1v) ,
vt = d0vxx + v (l + β2u + γ2v)

and its trivial algebra < ∂x, ∂t > . Therefore, subcase (i) is completely examined.
Subcase (ii). The system of DEs (23)–(31) takes the form:

r1
t = 2λb1, r2

t = λb2, (37)

b1(r1 + 2α2) + (2α2t + α0)b′1 = 0, b2(r1 + 2α2) + (2α2t + α0)b′2 = 0, (38)

c2(r2 + 2α2) + (2α2t + α0)c′2 = 0, (39)

and
p1 = λ, p2 = 0.

Note that system (37)–(39) can be easily integrated provided λb1 = 0 and eight different cases
(up to equivalent transformations of the form (7) and (8)) are derived. Four of them (in which α2 = 0)
are reduced to the DLV systems with constant coefficients by the form-preserving transformations of
the form (32), while others are presented in Table 1 (see Cases 4–7).

Let us assume that λb1 6= 0. Substituting the function b1 =
r1

t
2λ into the first equation of (38),

we arrive at the nonlinear second-order ODE

r1
t (r

1 + 2α2) + (2α2t + α0)r1
tt = 0,

that can be rewritten as (
(2α2t + α0)r1

t

)
t
+

(
1
2

(
r1
)2
)

t
= 0.
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Integrating the above equation, we obtain

(2α2t + α0)r1
t = −1

2

((
r1
)2

+ δ

)
,

where δ is arbitrary constant. Depending on the constants α2 and δ, one can find

r1(t) =



2α0
t , if δ = 0,

γ tan
(
− γt

2α0

)
, if δ = γ2,

γ tanh
(

γt
2α0

)
, if δ = −γ2,

γ coth
(

γt
2α0

)
, if δ = −γ2,

(40)

if α2 = 0, and

r1(t) =



4α2
ln t , if δ = 0,

γ tan
(
− γ ln t

4α2

)
, if δ = γ2,

γ tanh
(

γ ln t
4α2

)
, if δ = −γ2,

γ coth
(

γ ln t
4α2

)
, if δ = −γ2,

(41)

if α2 6= 0, up to transformation t→ t+ t0. Having r1 we find the functions b2, r2 and c2 from the second
equation of (38), the second equation of (37) and Equation (39), respectively. As a result, Cases 8–13 of
Table 1 are derived. Note that all systems admitting Lie symmetry with the functions r1 from (40) are
reduced either to the DLV system with constant coefficients or to the reaction-diffusion system of the
form (3). Moreover, the system corresponding to the last case of (41)

ut = uxx + t−1 sinh−2 (k ln t) u2,

vt = d0vxx + v
(

βt−1 sinh−2 (k ln t) u + δtl sinh−β (k ln t) v
)

,

is reduced to the system from Cases 10 (if δ 6= 0) and 11 (if δ = 0) of Table 1 by the form-
preserving transformation

u→ tanh2 (k ln t) u + k tanh (k ln t) , v→ tanhβ (k ln t) v.

Finally, to complete the proof we need to consider the possibility d = 1. If q1 = q2 = 0 then we
obtain Lie symmetry operators presented in Table 1. So, new results are obtainable only under the
restriction (q1)2 + (q2)2 6= 0. This restriction immediately leads to

b1 = b2 = b, c1 = c2 = c.

System (27)–(31) take the form:

b(r1 + ξ0
t ) + cq2 + ξ0b′ = 0, (42)

c(r2 + ξ0
t ) + bq1 + ξ0c′ = 0, (43)

r1
t = 2λ1b + λ2c, r2

t = λ1b + 2λ2c, (44)

q1
t = λ1c, q2

t = λ2b (45)

and
p1 = λ1, p2 = λ2.

Note that we can integrate system (42)–(45) in general only for the semi-coupled DLV systems
(bc = 0, b2 + c2 6= 0). Supposing c = 0 and b 6= 0 (the case c 6= 0, b = 0 is equivalent up to
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transformation (8)), one can obtain q1 = 0 from Equation (43). As a result, Cases 5–9 of Table 2
were found.

In the case bc 6= 0, we cannot integrate system (42)–(45) in general. To solve this system we make
additional restriction q1q2 = 0. Supposing q1 = 0, q2 6= 0 (the case q1 6= 0, q2 = 0 is equivalent up to
transformation (8)), we obtain Cases 1–4 of Table 2.

Table 1. Lie symmetries of system (5) with arbitrary d.

d Reaction Terms Basic Operators of Maximal Algebra of Invariance

1. d(t) b1(t)u2 ∂x, v∂v
b2(t)uv

2. d(t) 0 ∂x, v∂v, ∂u +
∫

b(t)dt v∂v
b(t)uv

3. d0 u
(

β1tku + γ1tlv
)

∂x, 2t∂t + x∂x − 2(k + 1)u∂u − 2(l + 1)v∂v

v
(

β2tku + γ2tlv
)

4. d0 βtku2 ∂x, 2t∂t + x∂x − 2(k + 1)u∂u, v∂v
tkuv

5. d0 0 ∂x, 2t∂t + x∂x − 2(k + 1)u∂u, v∂v, ∂u +
∫

tkdt v∂v
tkuv

6. d0 0 ∂x, 2t∂t + x∂x − 2
(
(k + 1)u + β(k + 1)2) ∂u−

v
(

tku + tl exp
(

βtk+1
)

v
)

2
(

l + 1 + β(k + 1)tk+1
)

v∂v

7. d0 0 ∂x, 2t∂t + x∂x − 4β∂u − 2 (l + 1 + 2β ln t) v∂v

v
(

t−1u + tl exp
(

β ln2 t
)

v
)

8. d0 t−1 cos−2 (k ln t) u2 ∂x, 2t∂t + x∂x − 2k(k + 2 tan(k ln t) u)∂u−

v

(
β t−1

cos2 (k ln t)
u +

tl

cosβ (k ln t)
v

)
2 (l + 1 + kβ tan(k ln t)) v∂v

9. d0 t−1 cos−2 (k ln t) u2 ∂x, v∂v, 2t∂t + x∂x − 2k(k + 2 tan(k ln t) u)∂u−
β t−1 cos−2 (k ln t) uv 2kβ tan(k ln t) v∂v

10. d0 t−1 cosh−2 (k ln t) u2 ∂x, 2t∂t + x∂x + 2k(k + 2 tanh(k ln t) u)∂u−

v

(
β t−1

cosh2 (k ln t)
u + tl

coshβ(k ln t)
v

)
2 (l + 1− kβ tanh(k ln t)) v∂v

11. d0 t−1 cosh−2 (k ln t) u2 ∂x, v∂v, 2t∂t + x∂x + 2k(k + 2 tanh(k ln t) u)∂u+

β t−1 cosh−2 (k ln t) uv 2kβ tanh(k ln t) v∂v

12. d0 t−1 ln−2 t u2 ∂x, 2t∂t + x∂x + 2(−1 + 2 ln−1 t u)∂u+

v
(

β t−1 ln−2 t u + tl ln−β t v
)

2
(

β ln−1 t− l − 1
)

v∂v

13. d0 t−1 ln−2 t u2 ∂x, v∂v, 2t∂t + x∂x+

β t−1 ln−2 t uv 2(−1 + 2 ln−1 t u)∂u + 2β ln−1 t v∂v



Symmetry 2018, 10, 41 11 of 15

Table 2. Lie symmetries of system (5) with d = 1.

Reaction Terms Basic Operators of Maximal Algebra of Invariance

1. u
(

tk ln t u + tk v
)

∂x, 2t∂t + x∂x − 2(k + 1)u∂u − 2 (u + (k + 1)v) ∂v

v
(

tk ln t u + tk v
)

2. u

(
tk−1(1− k ln t)

ln2 t
u + t−1 ln−2 t v

)
∂x, 2t∂t + x∂x + 2

(
ln−1 t− k

)
u∂u + 2 2v+tku−ln t

ln t ∂v

v

(
tk−1(1− k ln t)

ln2 t
u + t−1 ln−2 t v

)

3. u

(
tk−1 (k + l tan (l ln t))

cos (l ln t)
u +

t−1

cos2 (l ln t)
v

)
∂x, 2t∂t + x∂x − 2 (l tan (l ln t) + k) u∂u−

v

(
tk−1 (k + l tan (l ln t))

cos (l ln t)
u +

t−1

cos2 (l ln t)
v

)
2

(
2l tan (l ln t) v +

l2tk

cos (l ln t)
u + l2

)
∂v

4. u

(
tk−1 (k− l tanh (l ln t))

cosh (l ln t)
u +

t−1

cosh2 (l ln t)
v

)
∂x, 2t∂t + x∂x + 2 (l tanh (l ln t)− k) u∂u+

v

(
tk−1 (k− l tanh (l ln t))

cosh (l ln t)
u +

t−1

cosh2 (l ln t)
v

)
2

(
2l tanh (l ln t) v +

l2tk

cosh (l ln t)
u + l2

)
∂v

5. b(t)u2 ∂x, u∂v, v∂v, (1 +
∫

b(t)dt u)∂v
b(t)uv

6. tku2 ∂x, u∂v, v∂v, (1 +
∫

tkdt u)∂v,
tkuv 2t∂t + x∂x − 2(k + 1)u∂u

7. t−1 cos−2(β ln t) u2 ∂x, u∂v, v∂v, (β + tan(β ln t) u)∂v,
t−1 cos−2(β ln t) uv 2t∂t + x∂x − 2β tan(β ln t) v∂v−

2(β2 + 2β tan(β ln t) u)∂u

8. t−1 cosh−2(β ln t) u2 ∂x, u∂v, v∂v, (β + tanh(β ln t) u)∂v,
t−1 cosh−2(β ln t) uv 2t∂t + x∂x + 2β tanh(β ln t) v∂v+

2(β2 + 2β tanh(β ln t) u)∂u

9. t−1 ln−2 t u2 ∂x, u∂v, v∂v, (1− ln−1 t u)∂v, 2t∂t + x∂x+

t−1 ln−2 t uv 2(−1 + 2 ln−1 t u)∂u + 2 ln−1 t v∂v

Remark 1. In Tables 1 and 2, β 6= 0, βi, γi (i = 1, 2), d0 > 0, k and l are arbitrary constants,
while b(t), b1(t), b2(t) and d(t) are arbitrary smooth functions; k 6= −1 in Case 6 of Table 1; k 6= −2
and k 6= 0 in Cases 2 and 7 of Table 2, respectively.

Note that (32) is not a general form of the admissible transformations of class (5). It is only the
substitutions that are used for reducing the DLV systems of the form (5) with nontrivial Lie symmetries
to other systems described in Theorem 3. The problem of constructing all possible form-preserving
transformations for class (5) is a difficult task and will be studied elsewhere.

3. Exact Solutions of the DLV System

If one compares the DLV systems with the reaction terms arising in Tables 1 and 2 with its general
form (5) then it is clear that Case 3 of Table 1 is the most interesting from the applicability point of view.
In fact, all the other cases of Table 1 lead to the systems that are semi-coupled, i.e., contain autonomous
equations. Notably, the coupled DLV systems corresponding to Cases 1–4 of Table 2 involve equations
with identical structure (the same diffusivity d = 1 and the reaction terms with b1 = b2 and c1 = c2).
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Using the simple transformation β2u → u, γ1v → v to the system from Case 3 (γ1β2 6= 0) of
Table 1 and renaming the constants β1 and γ2, we obtain the DLV system

ut = uxx + u
(

βtku + tlv
)

,

vt = d0vxx + v
(

tku + γtlv
) (46)

and the relevant Lie symmetry

X = 2t∂t + x∂x − 2(k + 1)u∂u − 2(l + 1)v∂v. (47)

The ansatz corresponding to operator (47) is

u =
ϕ(ω)

tk+1 , v =
ψ(ω)

tl+1 , ω =
x2

t
, (48)

where ϕ(ω) and ψ(ω) are new unknown functions. In order to construct the reduced system,
we substitute ansatz (48) into (46). This means that we simply calculate the derivatives ut, vt, uxx, vxx,
and insert them into (46). After the relevant simplifications, one arrives at the ODE system

4ωϕ′′ + (2 + ω)ϕ′ + ϕ (1 + k + βϕ + ψ) = 0,
4d0ωψ′′ + (2d0 + ω)ψ′ + ψ (1 + l + ϕ + γψ) = 0

(49)

to find the functions ϕ and ψ.
Of course, (49) is a complicated nonlinear ODE system and to the best of our knowledge its

general solution is unknown. We have solved system (49) assuming that the functions ϕ and ψ are
linearly dependent. Omitting straightforward calculations, we present only the exact solution

u =
1

x2tk , v = −kt−kγ − kt1−kγ

(1 + kγ)x2 , (50)

of the DLV system (46) with l = −1 + kγ, β = −6 + k
1+kγ and d0 = − 1

6(1+kγ)
> 0.

Using the transformation U = eα1tu, V = −e−α2tv to system (46) and its exact solution (50),
we obtain the DLV system

Ut = Uxx + U
(

α1 − βe−α1ttkU − eα2ttlV
)

,

Vt = d0Vxx + V
(
−α2 + e−α1ttkU − γeα2ttlV

) (51)

(here β = 6− k/(1 + kγ), while α1 and α2 are arbitrary constants) and its exact solution

U =
eα1t

x2tk , V = kt−kγ

(
1− 6d0

t
x2

)
e−α2t. (52)

Let us provide a biological interpretation of this result. System (51) with nonnegative parameters
α1, α2, β and γ can be treated as a prey–predator model because one has the same structure as the
classical prey-predator system [2,4]

ut = d1uxx + u (a1 − b1u− c1v) ,
vt = d2vxx + v (−a2 + b2u− c2v) .

(53)

It is widely accepted that (53) can contain time-depended coefficients (see, e.g., [32] and references
cited therein). Here, the structure of these coefficient follows from the Lie symmetry classification
(not from specific ecological processes with the known empirical data).
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Thus, the species U in system (51) is prey and described by the first equation, while the second
equation describes the predator density V. It can be established that the components of solution (52)
with correctly-specified parameters are bounded and nonnegative in the relevant domains. For instance,
the components of solution (52) with k < − 1

γ (otherwise d0 < 0) are bounded and nonnegative in

the domain
{
(t, x) ∈

[
1

6d0
, t0

]
× [x0, 1]

}
, where t0 > 1

6d0
and x0 > 0 are arbitrary constants. Such

a solution is presented in Figure 1 (t0 = 20, x0 = 0.25). One notes that the highest concentration of
preys (component U) mostly corresponds to the lowest concentration of predators (component V). It is
plausible behaviour of the species.

Figure 1. Solution (52) of system (51) with α1 = 0.1, α2 = 0.75, β = 5, γ = 2, k = −1, l = −3 and
d0 = 1/6.

Let us consider the second possible type of interaction between two species, which can be
described by system (46). Applying the transformation

U = e−α1tu, V = e−α2tv (54)

to system (46), we obtain the DLV system

Ut = Uxx + U
(
−α1 + βeα1ttkU + eα2ttlV

)
,

Vt = d0Vxx + V
(
−α2 + eα1ttkU + γeα2ttlV

)
,

(55)

that can describe symbiosis of two populations of species provided the parameters α1, α2, β and γ are
positive. Using (50) and (54), one can obtain the corresponding exact solution of system (55).

4. Conclusions

In this paper, Lie symmetries of the DLV system (2) with time-dependent coefficients are studied.
First of all the system was transformed to the form (5) in order to reduce the number of arbitrary
functions. The main result is presented in Theorem 3 giving the exhaustive lists (Tables 1 and 2) of
the systems admitting the nontrivial Lie symmetries. All possible Lie symmetries of system (5) with
arbitrary d (constant and nonconstant) were identified and presented in Table 1, while the DLV systems
with d = 1 and the relevant Lie symmetries and presented in Table 2. We note that for the coupled DLV
system of the form (5) with d = 1 (Cases 1–4 of Table 2) Lie symmetry operators were found under the
restriction q1q2 = 0 (see the general form (22) of the Lie symmetry operator).
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Finally, we have applied the Lie symmetry operator to reduce the Lotka–Volterra system (46)
to the ODE system and to find an interesting exact solution. The exact solution obtained can satisfy
the typical requirements occurring in biologically motivated problems describing the interaction of
prey–predator type between two species.
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