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Abstract: In this paper, the solution of fuzzy differential equations is approximated numerically
using diagonally implicit multistep block method of order four. The multistep block method is
well known as an efficient and accurate method for solving ordinary differential equations, hence
in this paper the method will be used to solve the fuzzy initial value problems where the initial
value is a symmetric triangular fuzzy interval. The triangular fuzzy number is not necessarily
symmetric, however by imposing symmetry the definition of a triangular fuzzy number can be
simplified. The symmetric triangular fuzzy interval is a triangular fuzzy interval that has same
left and right width of membership function from the center. Due to this, the parametric form of
symmetric triangular fuzzy number is simple and the performing arithmetic operations become
easier. In order to interpret the fuzzy problems, Seikkala’s derivative approach is implemented.
Characterization theorem is then used to translate the problems into a system of ordinary differential
equations. The convergence of the introduced method is also proved. Numerical examples are given
to investigate the performance of the proposed method. It is clearly shown in the results that the
proposed method is comparable and reliable in solving fuzzy differential equations.
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1. Introduction

Modeling of real-world problems involves ordinary differential equations (ODEs) that are not
always perfect. For example, the initial value may not be known exactly and the function may contain
uncertain parameters. This inexactness leads to the necessity of fuzzy differential equations (FDEs)
to overcome the situation. Examples of FDEs application in real life include models such as in solid
waste management systems [1], hydraulic differential servo cylinders [2], population models [3],
hyperchaotic systems [4], and service composition [5].

Chang and Zadeh in [6] first introduced the fuzzy derivative concept. The concept was then
extended by Dubois and Prade [7] and the authors also addressed the problem of linearity. Goetschel
and Voxman [8] and Puri and Ralescu [9] studied and proposed several important definitions and
theorems in the fuzzy derivative. A significant contribution for fuzzy initial value problems (FIVPs) is
done by Seikkala [10] and Kaleva [11,12].

The exact solutions for certain FDEs are inconvenient and tedious to determine because of the
complexity of the FDE problems. Therefore, numerical methods are used for solving the FDEs.
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Ma et al. in [13] contribute an important work in solving FDEs by using a numerical method. They adopted
classical Euler’s method and solve the FIVPs.

Several researchers discussed predictor–corrector methods for solving FDEs [14–17].
Allahviranloo et al. in [15] developed a predictor–corrector method based on the Adams-Bashforth
three-step method as a predictor and the Adams-Moulton two-step method as a corrector.
The improvise method of [15] is then proposed in [14]. Shang and Guo [17] derived the
predictor–corrector method based on Adams-Bashforth four-step method and the Adams-Moulton
three-step method as a predictor and corrector respectively. Jayakumar [16] introduced Adams fifth
order predictor–corrector method for solving FDEs by considering the Adams-Bashforth five-step
method as a predictor and the Adam-Moulton four-step method as a corrector. All studies aimed to
determine better accuracy and efficiency in finding solutions to FDEs.

The multistep block method is an efficient method for solving ODEs. In this method, several
approximation points will be computed simultaneously on the x-axis in the block. Mehrkanoon et al.
in [18] and Isa and Majid in [19] solved FDEs by using the 2-point fully implicit multistep block method.
Diagonally implicit multistep block method is used by Zawawi et al. [20] and Ramli and Majid [21,22]
for solving FDEs. Zawawi et al. proposed diagonally implicit block backward differentiation formulas,
while Ramli and Majid developed an Adams-type diagonally implicit multistep block method, which
considered order four for first point and order five for the second point. Fook and Ibrahim in [23]
solved FDEs by using a 2-points hybrid block method.

This paper will discuss the implementation of a 2-point diagonally implicit multistep block
method to solve fuzzy differential equations. The method will compute the numerical solutions at
two points simultaneously using constant step size. The two formulas of the diagonally implicit block
method of Adams type will have the same order for the first and second formula.

This paper is organized as follows. Some basic definitions and notations are in Section 2. Definition
of FIVP in Section 3 and description of the 2-point diagonally implicit multistep block method of order
four (2PDO4) will be discussed in Section 4. In the next section, the implementation of the block method
for solving FIVP and its algorithm is proposed in Sections 5 and 6 respectively. The convergence of
the method is proved in Section 7. Numerical results are provided in Section 8 and conclusion of this
study is at the end of the paper.

2. Preliminaries

Some basic definitions and notations that are significant for this paper will be reviewed in this
section. For further details, refer [15,24–26] (to name a few).

Definition 1. Let η : R→ [0, 1] is a mapping of fuzzy number with R is set of all real numbers. The mapping
has following properties:

1. η upper semicontinuous,
2. η is fuzzy convex, that is, η(λx + (1− λ)y) ≥ min{η(x), η(y)}, for all x, y ∈ R, λ ∈ [0, 1],
3. η is normal, that is exist x0 ∈ R such that η(x0) = 1,
4. The support of η is supp η = { x ∈ R|η(x) > 0} and its closure cl(supp η) is compact.

Consider E as set of all fuzzy numbers on R.

Definition 2. The r-level set of a fuzzy number η ∈ E, 0 ≤ r ≤ 1 and denoted by [η]r, is defined as

[η]r =

{
{ x ∈ R|η(x) > r}, i f 0 ≤ r ≤ 1,

cl(supp η), i f r = 0,

and is closed and bounded interval by
[
η(r), η(r)

]
where η(r) and η(r) denotes the left-hand endpoint and

right-hand endpoint of [η]r respectively.
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The summation and scalar multiplication in E are defined as:

1. η ⊕ µ =
(

η + µ, η + µ
)

,

2. λ� η =


(

λη(r), λη(r)
)

, λ ≥ 0,(
λη(r), λη(r)

)
, λ < 0.

Given the Hausdorff distance D : E× E→ R+ ∪ 0 as the distance between two fuzzy numbers
and a metric in E as follows

D(η, µ) = supmax
r∈[0,1]

{∣∣∣η(r)− µ(r)
∣∣∣, |η(r)− µ(r)|

}
with the following properties

1. D(η ⊕ω, µ⊕ω) = D(η, µ), ∀η, µ, ω ∈ E,
2. D(λ� η, λ� µ) = |λ|D(η, µ), ∀λ ∈ R, ∀η, µ ∈ E,
3. D(η ⊕ µ, ω⊕ σ) ≤ D(η, ω) + D(µ, σ), ∀η, µ, ω, σ ∈ E,
4. D(η + µ, 0) ≤ D(η, 0) + D(µ, 0), ∀η, µ ∈ E,
5. (E, D) is a complete metric space.

Let f : R→ E be a fuzzy valued function.

Definition 3. If for arbitrary fixed t0 ∈ R and ε > 0, δ > 0 such that

|t− t0| < δ =⇒ D( f (t), f (t0)) < ε

is said to be continuous.

Hukuhara differentiability (H-derivative) for fuzzy mappings is introduced by Puri and Ralescu
in [9]. The differentiability is based on H-difference sets. Definitions 4 and 5 explained the concept.

Definition 4. Let x, y ∈ E. If there exist z ∈ E such that x = y⊕ z, then z is called the H-difference of x and
y, and it is denoted by x	 y. The sign “	” stands for H-difference and note that x	 y 6= x + (−1)y.

Definition 5. f is differentiable at t0 ∈ R if exist f ′( t0) ∈ E such that

lim
h→0+

f (t0 + h)	 f (t0)

h
and lim

h→0+

f (t0)	 f (t0 − h)
h

exist and are equal to f ′(t0).

Here, the limits are taken in the metric space (E, D) since we have defined h−1⊙( f (t0)	 f (t0− h))
and h−1⊙( f (t0 + h)	 f (t0)).

3. Fuzzy Initial Value Problems

In this paper, we will consider first order FIVP as follows

y′(t) = f (t, y(t)), y(t0) = y0, t ∈ [t0, T] (1)

where y is a fuzzy function of t, f (t, y) is a fuzzy function of crisp variable t and fuzzy variable y, and y′

is Hukuhara fuzzy derivative of y with the given initial value y(t0) = y0. Let y(t) =
[
y(t), y(t)

]
, if y(t)

is Hukuhara differentiable then y′(t) =
[
y′(t), y′(t)

]
, and f (t, y(t)) =

[
f
(

t, y(t), y(t)
)

, f
(

t, y(t), y(t)
)]

.



Symmetry 2018, 10, 42 4 of 21

The parametric form of y is given by

[y(t)]r =
[
y(t; r), y(t; r)

]
, t ∈ R, r ∈ [0, 1].

As referred to [21], the Seikkala derivative of a fuzzy function is defined by[
y′(t)

]
r =

[
y′(t; r), y′(t; r)

]
, t ∈ R, r ∈ [0, 1]

provided that the equation defines a fuzzy number.
For solving (1) by using numerical methods for ODEs, it must be translated to system of ODEs.

Bede in [27] proposed characterization theorems for the solutions of FDEs by using ODEs.

Theorem 1. Let f : (a, b)→ E be Hukuhara differentiable and denote [ f (y)]r =
[

f (y(t; r)), f (y(t; r))
]
.

Functions f (y(t; r)) and f (y(t; r)) are differentiable and based on Seikkala derivative

[
f ′(y)

]
r =

[
f ′(y(t; r)), f ′(y(t; r))

]
, r ∈ [0, 1].

Therefore (1) can be translated to the system of ODEs

y′(t; r) = f
(

t, y(t; r), y(t; r)
)

,

y′(t; r) = f
(

t, y(t; r), y(t; r)
)

,

y′(t0; r) = y′
0
(r),

y′(t0; r) = y′0(r).

(2)

Theorem 2. Consider FIVP (1) where f : [t0, t0 + a]× E→ E such that

1. [ f ′(t, y)]r =
[

f
(

t, y(t; r), y(t; r)
)

, f
(

t, y(t; r), y(t; r)
)]

,

2. f and f are equicontinuous (that is for any ε > 0 and any (t, η(t; r), µ(t; r)) ∈ [t0, t0 + a]× R2 we have∣∣∣ f (t, η(t; r), µ(t; r))− f (t1, η1(t; r), µ1(t; r))
∣∣∣ < ε and

∣∣∣ f (t, η(t; r), µ(t; r))− f (t1, η1(t; r), µ1(t; r))
∣∣∣ < ε

for all r ∈ [0, 1] whenever ||(t1, η1(t; r), µ1(t; r)) − (t, η(t; r), µ(t; r))||< δ) and uniformly bounded on
any bounded set,

3. there exist an L > 0 such that∣∣∣ f (t, η(t; r), µ(t; r))− f (t1, η1(t; r), µ1(t; r))
∣∣∣ ≤ Lmax{|η − η1|, |µ−, µ1|}, ∀r ∈ [0, 1] and∣∣∣ f (t, η(t; r), µ(t; r))− f (t1, η1(t; r), µ1(t; r))
∣∣∣ ≤ Lmax{|η − η1|, |µ−, µ1|}, ∀r ∈ [0, 1].

Then FIVP (1) and the system of ODEs (2) are equivalent.

4. Derivation of 2-Point Diagonally Implicit Multistep Block Method

Consider the initial value problems (IVPs) for ODEs of the form

y′ = f (x, y), y(x0) = y0, x ∈ [a, b] (3)

where a and b are finite. The interval [a, b] will be divided into a series of blocks. In this proposed
method, each block contained two points, yn+1 and yn+2 which will be computed simultaneously in a
block with the step size h at the points xn+1 and xn+2 respectively as in Figure 1.
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The Lagrange interpolation polynomial is applied for the derivation of predictor and corrector
formulas. To obtain the predictor formulas, the set of points {(xn−2, fn−2), (xn−1, fn−1), (xn, fn)} is
interpolated and the order of the formulas is one less than the corrector formulas. The corrector
formulas will use the set of interpolation points i.e., {(xn−2, fn−2), (xn−1, fn−1), (xn, fn), (xn+1, fn+1)}
for derivation of yn+1 and {(xn−1, fn−1), (xn, fn), (xn+1, fn+1), (xn+2, fn+2)} for derivation of yn+2.
The formulas of yn+1 will used three back values (xn, xn−1, xn−2), while the yn+2 will used two back
values i.e., (xn, xn−1).

Formulas for yn+1 and yn+2 are derived by integrating (3) such that
w

y′dx =
w

f (x, y)dx (4)

where the interval of integration for yn+1 and yn+2 are [xn, xn+1] and [xn, xn+2] respectively. These are
equivalent to

yn+1 = yn +
w xn+1

xn
f (x, y)dx (5)

and
yn+2 = yn +

w xn+2

xn
f (x, y)dx. (6)

The function f (x, y) in (5) and (6) is replaced by the Lagrange polynomial which interpolates the
set of corresponding mentioned points. Evaluating the integral in (5) using MAPLE gives the formula
for the first and second point of the block multistep method as follows:

The first point,

yn+1 = yn +
h

24
(9 fn+1 + 19 fn − 5 fn−1 + fn−2) (7)

and the second point,

yn+2 = yn +
h
3
( fn+2 + 4 fn+1 + fn). (8)

As referred to [28,29],
j

∑
k=0

AkYn+k = h
j

∑
k=0

BkFn+k (9)

form the general matrix of linear multistep method where Ak and Bk are r by r matrices with elements
alm and blm for l, m = 1, 2, ..., r. The associated difference operator L is given by

L[z(x); h] =
j

∑
k=0

[
Akz(x + h)− hBkz′(x + kh)

]
(10)

where z(x) is the exact solution and assume to be sufficiently differentiable. If C0 = C1 = ... = Cq = 0,
Cp+1 6= 0, L is said to be order p and Cp+1 is called the error constant.
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The general form of constant Cq is defined as

C0 =
j

∑
k=0

Ak,

C1 =
j

∑
k=0

[kAk − Bk],

...
...

...

Cq =
j

∑
k=0

[
1
q! k

q Ak − 1
(q−1)! k

q−1Bk

]
, q = 2, 3, ..., p + 1.

(11)

To determine the order of the method, (7) and (8) is written in matrix form as follows
[

1 0
0 1

][
yn+1

yn+2

]
=

[
0 1
0 1

][
yn−1

yn

]
+ h

{[
9

24 0
4
3

1
3

][
fn+1

fn+2

]
+

[
− 5

24
19
24

0 1
3

][
fn−1

fn

]
+

[
0 1

24
0 0

][
fn−3

fn−2

]}
(12)

From (12), A2 =

[
0
0

]
, A3 =

[
−1
−1

]
, A4 =

[
1
0

]
, A5 =

[
0
1

]
, B0 =

[
0
0

]
, B1 =

[
1

24
0

]
,

B2 =

[
− 5

24
0

]
, B3 =

[
19
24
1
3

]
, B4 =

[
9

24
4
3

]
and B5 =

[
0
1
3

]
. Hence, by applying (11), C0 = C1 =

C2 = C3 = C4 =

[
0
0

]
and C5 =

[
− 19

720
− 1

90

]
. Since C5 6=

[
0
0

]
the method is concluded as order four

and the error constant is

[
− 19

720
− 1

90

]
.

5. Implementation for Solving FIVPs

Consider the FIVP (1) and let the exact solution is denoted by
[
Y(t; r), Y(t; r)

]
while

[
y(t; r), y(t; r)

]
is the approximate solution. To integrate the system (2), from t0 let T > t0, and replace [t0, T] by

t0 < t1 < t2 < ... < tn = T. (13)

Yn(t; r) =
[
Yn(t; r), Yn(t; r)

]
denoted as the exact solution at tn, with the approximate solution yn(t; r) =[

y
n
(t; r), yn(t; r)

]
. Given tn = t0 + h where 0 ≤ n ≤ N and h = T−t0

N .
The general fuzzy 2PDO4 method by considering (7) and (8) is written as

Y(tn+1; r) ≈ Y(tn; r) + h
24

[
9 f
(
tn+1, Yn+1(r), Yn+1(r)

)
+ 19 f

(
tn, Yn(r), Yn(r)

)
−5 f

(
tn−1, Yn−1(r), Yn−1(r)

)
+ f

(
tn−2, Yn−2(r), Yn−2(r)

)]
,

Y(tn+1; r) ≈ Y(tn; r) + h
24

[
9 f
(
tn+1, Yn+1(r), Yn+1(r)

)
+ 19 f

(
tn, Yn(r), Yn(r)

)
−5 f

(
tn−1, Yn−1(r), Yn−1(r)

)
+ f

(
tn−2, Yn−2(r), Yn−2(r)

)]
,

(14)

Y(tn+2; r) ≈ Y(tn; r) + h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
+ 4 f

(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(
tn, Yn(r), Yn(r)

)]
,

Y(tn+2; r) ≈ Y(tn; r) + h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
+ 4 f

(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(
tn, Yn(r), Yn(r)

)]
,

(15)
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for the exact solutions and

y(tn+1; r) = y(tn; r) + h
24

[
9 f
(

tn+1, y
n+1

(r), yn+1(r)
)
+ 19 f

(
tn, y

n
(r), yn(r)

)
−5 f

(
tn−1, y

n−1
(r), yn−1(r)

)
+ f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

y(tn+1; r) ≈ y(tn; r) + h
24

[
9 f
(

tn+1, y
n+1

(r), yn+1(r)
)
+ 19 f

(
tn, y

n
(r), yn(r)

)
−5 f

(
tn−1, y

n−1
(r), yn−1(r)

)
+ f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

(16)

y(tn+2; r) ≈ y(tn; r) + h
3

[
f
(

tn+2, y
n+2

(r), yn+2(r)
)
+ 4 f

(
tn+1, y

n+1
(r), yn+1(r)

)
+ f
(

tn, y
n
(r), yn(r)

)]
,

y(tn+2; r) = y(tn; r) + h
3

[
f
(

tn+2, y
n+2

(r), yn+2(r)
)
+ 4 f

(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(

tn, y
n
(r), yn(r)

)]
,

(17)

for the approximate solutions.

6. Algorithm

The following algorithm is based on using 2PDO4 method. To approximate the solution of the
following FIVP

y′(t) = f (t, y(t)), y(t0) = y0, t0 ≤ t ≤ T.

For N as an arbitrary positive integer,

• Step 1. Let h = T−t0
N . The initial value y(t0) = y0 is obtained from the FIVP and Runge–Kutta

order four is used to determine the two starting points. Hence,

y(t0; r) = y
0
, y(t1; r) = y1, y(t2; r) = y

2
,

y(t0; r) = y0, y(t1; r) = y1, y(t2; r) = y2.

• Step 2. Let n = 2.
• Step 3. Let tn+1 = t1 + nh and tn+2 = t2 + nh.
• Step 4. Let the predictor formulas

yP(tn+1; r) = y(tn; r) + h
12

[
23 f
(

tn, y
n
(r), yn(r)

)
− 16 f

(
tn−1, y

n−1
(r), yn−1(r)

)
+5 f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

yP(tn+1; r) ≈ y(tn; r) + h
12

[
23 f
(

tn, y
n
(r), yn(r)

)
− 16

(
tn−1, y

n−1
(r), yn−1(r)

)
+5 f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

yP(tn+2; r) = y(tn; r) + h
3

[
19 f
(

tn, y
n
(r), yn(r)

)
− 20

(
tn−1, y

n−1
(r), yn−1(r)

)
+7 f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

yP(tn+2; r) ≈ y(tn; r) + h
3

[
19 f
(

tn, y
n
(r), yn(r)

)
− 20

(
tn−1, y

n−1
(r), yn−1(r)

)
+7 f

(
tn−2, y

n−2
(r), yn−2(r)

)]
.
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• Step 5. Let the corrector formulas

yC(tn+1; r) = y(tn; r) + h
24

[
9 f P

(
tn+1, y

n+1
(r), yn+1(r)

)
+ 19 f

(
tn, y

n
(r), yn(r)

)
−5 f

(
tn−1, y

n−1
(r), yn−1(r)

)
+ f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

yC(tn+1; r) ≈ y(tn; r) + h
24

[
9 f

P
(

tn+1, y
n+1

(r), yn+1(r)
)
+ 19 f

(
tn, y

n
(r), yn(r)

)
−5 f

(
tn−1, y

n−1
(r), yn−1(r)

)
+ f

(
tn−2, y

n−2
(r), yn−2(r)

)]
,

yC(tn+2; r) ≈ y(tn; r) + h
3

[
f P
(

tn+2, y
n+2

(r), yn+2(r)
)
+ 4 f P

(
tn+1, y

n+1
(r), yn+1(r)

)
+ f
(

tn, y
n
(r), yn(r)

)]
,

yC(tn+2; r) = y(tn; r) + h
3

[
f

P
(

tn+2, y
n+2

(r), yn+2(r)
)
+ 4 f

P(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(

tn, y
n
(r), yn(r)

)]
.

• n = n + 2.
• If n ≤ N − 2, go to Step 3.

• Algorithm is completed and
[
yC(tn; r), yC(tn; r)

]
approximates

[
Y(tn; r), Y(tn; r)

]
.

7. Convergence

From (16) and (17)

y(t; h; r) =
{[

t0, y
0
(r)
]
,
[
t1, y

1
(r)
]
, ...,

[
tN , y

N
(r)
]}

,

y(t; h; r) =
{
[t0, y0(r)], [t1, y1(r)], ..., [tN , yN(r)]

}
,

(18)

are the 2PDO4 method over the interval t0 ≤ t ≤ tN and approximate to Y(t; r) and Y(t; r)
respectively. Given

lim
h→0

y(t; h; r) = Y(t; r), lim
h→0

y(t; h; r) = Y(t; r), (19)

is the convergence condition for the approximates. The following lemma is considered to proof the
convergence.

Lemma 1. [9] Let {wn}N
n=0 (a sequence of numbers) satisfy:

|wn+1| ≤ A|wn|+ B|wn−1|+ C, 0 ≤ n ≤ N − 1

for some given positive constants A, B and C. Then

|wn| ≤
(

An−1 + β1 An−3B + β2 An−5B2 + ... + βl B[n/2]
)
|w1|

+
(

An−2B + γ1 An−4B2 + ... + γm AB[n/2]
)
|w0|

+
(

An−2 + An−3 + ... + 1
)
C

+
(
δ1 An−4 + δ2 An−5 + ... + δp A + 1

)
BC

+
(
ζ1 An−6 + ζ2 An−7 + ... + ζq A + 1

)
B2C

+
(
λ1 An−8 + λ2 An−9 + ... + λs A + 1

)
B3C + ..., n odd
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and
|wn| ≤

(
An−1 + β1 An−3B + β2 An−5B2 + ... + βl B[n/2]−1

)
|w1|

+
(

An−2B + γ1 An−4B2 + ... + γm AB[n/2]
)
|w0|

+
(

An−2 + An−3 + ... + 1
)
C

+
(
δ1 An−4 + δ2 An−5 + ... + δp A + 1

)
BC

+
(
ζ1 An−6 + ζ2 An−7 + ... + ζq A + 1

)
B2C

+
(
λ1 An−8 + λ2 An−9 + ... + λs A + 1

)
B3C + ..., n even

where for all l, m, p, q and s, βl, γm, δp, ζq and λs are constants. The proof by using mathematical induction
is straightforward.

Theorem 3. For arbitrary fixed r, (r ∈ [0, 1]), approximate solutions (16) and (17) converge to the exact
solutions Y(t; r) and Y(t; r) for Y, Y ∈ C4[t0, T].

Proof. By applying (19), it is sufficient to show

lim
h→0

y
N
(r) = Y(T; r), lim

h→0
yN(r) = Y(T; r).

Consider the exact solutions (14) and (15), then

Y(tn+1; r) = Y(tn; r) + h
24

[
9 f
(
tn+1, Yn+1(r), Yn+1(r)

)
+ 19 f

(
tn, Yn(r), Yn(r)

)
−5 f

(
tn−1, Yn−1(r), Yn−1(r)

)
+ f

(
tn−2, Yn−2(r), Yn−2(r)

)]
− 19

720 h5Y(5)
(

ξn

)
,

Y(tn+1; r) = Y(tn; r) + h
24

[
9 f
(
tn+1, Yn+1(r), Yn+1(r)

)
+ 19 f

(
tn, Yn(r), Yn(r)

)
−5 f

(
tn−1, Yn−1(r), Yn−1(r)

)
+ f

(
tn−2, Yn−2(r), Yn−2(r)

)]
− 19

720 h5Y(5)(
ξn
)
,

(20)

Y(tn+2; r) = Y(tn; r) + h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
+ 4 f

(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(
tn, Yn(r), Yn(r)

)]
h5 − 1

90 Y(5)
(

ξn

)
,

Y(tn+2; r) ≈ Y(tn; r) + h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
+ 4 f

(
tn+1, Yn+1(r), Yn+1(r)

)
+ f
(
tn, Yn(r), Yn(r)

)]
− 1

90 h5Y(5)(
ξn
)

(21)
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where tn < ξn, ξn < tn+1. Therefore, by subtracting (20) and (16), and (21) and (17) yield

Y(tn+1; r)− y(tn+1; r) = Y(tn; r)− y(tn; r)

+ 9h
24

[
f
(
tn+1, Yn+1(r), Yn+1(r)

)
− f

(
tn+1, y

n+1
(r), yn+1(r)

)]
+ 19h

24

[
f
(
tn, Yn(r), Yn(r)

)
− f

(
tn, y

n
(r), yn(r)

)]
− 5h

24

[
f
(
tn−1, Yn−1(r), Yn−1(r)

)
− f

(
tn−1, y

n−1
(r), yn−1(r)

)]
+ h

24

[
f
(
tn−2, Yn−2(r), Yn−2(r)

)
− f

(
tn−2, y

n−2
(r), yn−2(r)

)]
− 19

720 h5Y(5)
(

ξn

)
,

Y(tn+1; r)− y(tn+1; r) = Y(tn; r)− y(tn; r)

+ 9h
24

[
f
(
tn+1, Yn+1(r), Yn+1(r)

)
− f

(
tn+1, y

n+1
(r), yn+1(r)

)]
+ 19h

24

[
f
(
tn, Yn(r), Yn(r)

)
− f

(
tn, y

n
(r), yn(r)

)]
− 5h

24

[
f
(
tn−1, Yn−1(r), Yn−1(r)

)
− f

(
tn−1, y

n−1
(r), yn−1(r)

)]
+ h

24

[
f
(
tn−2, Yn−2(r), Yn−2(r)

)
− f

(
tn−2, y

n−2
(r), yn−2(r)

)]
− 19

720 h5Y(5)(
ξn
)
,

(22)

and
Y(tn+2; r)− y(tn+2; r) = Y(tn; r)− y(tn; r)

+ h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
− f

(
tn+2, y

n+2
(r), yn+2(r)

)]
+ 4h

3

[
f
(
tn+1, Yn+1(r), Yn+1(r)

)
− f

(
tn+1, y

n+1
(r), yn+1(r)

)]
+ h

3

[
f
(
tn, Yn(r), Yn(r)

)
− f

(
tn, y

n
(r), yn(r)

)]
− 1

90 h5Y(5)
(

ξn

)
,

Y(tn+2; r)− y(tn+2; r) = Y(tn; r)− y(tn; r)

+ h
3

[
f
(
tn+2, Yn+2(r), Yn+2(r)

)
− f

(
tn+2, y

n+2
(r), yn+2(r)

)]
+ 4h

3

[
f
(
tn+1, Yn+1(r), Yn+1(r)

)
− f

(
tn+1, y

n+1
(r), yn+1(r)

)]
+ h

3

[
f
(
tn, Yn(r), Yn(r)

)
− f

(
tn, y

n
(r), yn(r)

)]
− 1

90 h5Y(5)(
ξn
)
.

(23)

Denote wn = Y(tn; r)− y(tn; r) and vn = Y(tn; r)− y(tn; r). Then (22) and (23) becomes

|wn+1| ≤
(

1 + 19hL2
24

)
|wn|+ 9hL1

24 |wn+1|+ 5hL3
24 |wn−1|+ hL4

24 |wn−2|+ 19
720 h5M,

|vn+1| ≤
(

1 + 19hL6
24

)
|vn|+ 9hL5

24 |vn+1|+ 5hL7
24 |vn−1|+ hL8

24 |vn−2|+ 19
720 h5M,

(24)

and
|wn+2| ≤

(
1 + hL11

3

)
|wn|+ hL9

3 |wn+2|+ 4hL10
3 |wn+1|+ 1

90 h5M,

|vn+2| ≤
(

1 + hL14
3

)
|vn|+ hL12

3 |vn+2|+ 4hL13
3 |vn+1|+ 1

90 h5M,
(25)

where M = max
t0≤t≤T

∣∣∣Y(5)(t; r)
∣∣∣ and M = min

t0≤t≤T

∣∣∣Y(5)
(t; r)

∣∣∣.
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Consider the first point (24), let L = max{L1, ..., L8} < 24
9h , then

|wn+1| ≤
(

1 + 28hL
24−9hL

)
|wn|+ 5hL

24−9hL |wn−1|+ hL
24−9hL |wn−2|+ 19

30(24−9hL)h5M,

|vn+1| ≤
(

1 + 28hL
24−9hL

)
|vn|+ 5hL

24−9hL |vn−1|+ hL
24−9hL |vn−2|+ 19

30(24−9hL)h5M,

are resulted. Let |un| = |wn|+ |vn|, then by Lemma 1 and w0 = v0 = 0 (also w1 = v1 = 0):

|un| ≤
(1+ 28hL

24−9hL )
n−1−1

28hL
24−9hL

× 19
30(24−9hL)h5(M + M

)
+

{
δ1

(
1 + 28hL

24−9hL

)n−4
+ δ2

(
1 + 28hL

24−9hL

)n−5
+ ... + δp

(
1 + 28hL

24−9hL

)
+ 1
}

×
(

5hL
24−9hL

)(
19

30(24−9hL)

)
h5(M + M

)
+

{
ζ1

(
1 + 28hL

24−9hL

)n−6
+ ζ2

(
1 + 28hL

24−9hL

)n−7
+ ... + ζq

(
1 + 28hL

24−9hL

)
+ 1
}

×
(

hL
24−9hL

)(
19

30(24−9hL)

)
h5(M + M

)
+

{
λ1

(
1 + 28hL

24−9hL

)n−8
+ λ2

(
1 + 28hL

24−9hL

)n−9
+ ... + λs

(
1 + 28hL

24−9hL

)
+ 1
}

×
(

5hL
24−9hL

)2( 19
30(24−9hL)

)
h5(M + M

)
+ ...

are obtained. If h→ 0 then wn → 0 and vn → 0 which concludes the proof.
Consider the second point (25), let L = max{L9, ..., L14} < 3

h , then

|wn+2| ≤ 4hL
3−hL |wn+1|+

(
1 + 2hL

3−hL

)
|wn|+ 1

30(3−hL)h5M,

|vn+2| ≤ 4hL
3−hL |vn+1|+

(
1 + 2hL

3−hL

)
|vn|+ 1

30(3−hL)h5M,

are resulted. Let |un| = |wn|+ |vn|, then by Lemma 1 and w0 = v0 = 0 (also w1 = v1 = 0):

|un| ≤
( 4hL

3−hL )
n−1−1

1+hL
3−hL

× 1
30(3−hL)h5(M + M

)
+

{
δ1

(
4hL

3−hL

)n−4
+ δ2

(
4hL

3−hL

)n−5
+ ... + δp

(
4hL

3−hL

)
+ 1
}

×
(

1 + 2hL
3−hL

)(
1

30(3−hL)

)
h5(M + M

)
+

{
ζ1

(
4hL

3−hL

)n−6
+ ζ2

(
4hL

3−hL

)n−7
+ ... + ζq

(
4hL

3−hL

)
+ 1
}

×
(

1 + 2hL
3−hL

)2( 1
30(3−hL)

)
h5(M + M

)
+

{
λ1

(
4hL

3−hL

)n−8
+ λ2

(
4hL

3−hL

)n−9
+ ... + λs

(
4hL

3−hL

)
+ 1
}

×
(

1 + 2hL
3−hL

)3( 1
30(3−hL)

)
h5(M + M

)
+ ...

are obtained. If h→ 0 then wn → 0 and vn → 0 which concludes the proof. �

Remark 1. Above theorem results that convergence order is O
(

h3
)

.
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8. Results and Discussion

To implement the 2PDO4 method, PE(CE)m mode is used where P, C and E stands for predictor,
corrector and evaluation of a function respectively. The CE implementation is repeated m times for
each step and step size h = 0.1 is considered in the numerical results.

The following FIVPs were tested to show the performance of the proposed method:

Problem 1. (Ma et al. [13]) Consider linear FIVP:

y′(t) = y(t), y(0) = [0.75 + 0.25r, 1.125− 0.125r], t, r ∈ [0, 1].

Exact solution: Y(t, r) =
[
(0.75 + 0.25r)et, (1.125− 0.125r)et].

Problem 2. (Pallingkinis et al. [30]) Consider linear FIVP:

y′(t) = cy(t), y(0) = (8/8.5/9), t, r ∈ [0, 1]

where triangular fuzzy number c = (1/2/3).
[c is a triangular fuzzy number where the basis of the membership function of c is in the interval [c1, c3]

with the known summit c2. Hence, the triangular fuzzy numbers are denoted by c = (c1/c2/c3)].

Exact solution: Y(t, r) =
[
(8 + 0.5r)e(1+r)t, (9− 0.5r)e(3−r)t

]
.

Problem 3. (Ghanbari [31]) Consider nonlinear FIVP:

y′(t) = 2y(t) + t2 + 1, y(0) = [r, 2− r], t, r ∈ [0, 1].

Exact solution:

Y(t, r) =
[(

r +
3
4

)
e2t − 1

4

(
2t2 + 2t + 3

)
,
(

11
4
− r
)

e2t − 1
4

(
2t2 + 2t + 3

)]
.

Problem 4. (Dizicheh et al. [32]) Consider nonlinear FIVP:

y′(t) = k1y2(t) + k2, y(0) = [−0.0012 + 0.0012r, 0.0012− 0.0012r],

where ki > 0 for i = 1, 2 t, r ∈ [0, 1]. Given

k1(r) = [0.5 + 0.5r, 1.5− 0.5r] and k2(r) = [0.75 + 0.25r, 1.25− 0.25r].

Exact solution:

Y(t, r) =

A tan
(

At
4 + tan−1

(
−3+3r2

1250A

))
2 + 2r

,
−
√

2B tan
(√

2
4

[
Bt + 2

√
2 tan−1

(
3
√

2(−3+r)(−1+r)
2500B

)])
−6 + r

 .

Problem 5. (Ma et al. [13]) Consider nonlinear FIVP:

y′(t) = e−y2(t), y(0) = [0.75 + 0.25r, 1.5− 0.5r], t, r ∈ [0, 1].

The following notations are used in the tables:
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r: Fuzzy numbers with bounded r-level intervals
Y, Y: Lower and upper bounded exact solution
y, y: Lower and upper bounded approximated solution

FCN: Total function calls
TS: Total steps taken
TIME: The execution time taken in seconds
2PDO4: 2-point diagonally implicit multistep method of order four
ERK4: Extended Runge–Kutta-like formulae of order 4 [26]
RK4: Runge–Kutta method of order 4 [33]
ANN: Artificial neural network approach [34]

Absolute error is defined as |Yn(t; r)− yn(t; r)|, where Yn(t; r) =
[
Yn(t; r), Yn(t; r)

]
, denoted as

the exact solutions and yn(t; r) =
[
y

n
(t; r), yn(t; r)

]
as approximate solutions at tn. The code is written

in C language by using Microsoft visual C++ platform.
The numerical results of 2PDO4 compared to ERK4, RK4 and ANN are display in Tables 1–5

when solving Problem 1–5. Note that these results are at t = 1 with h = 0.1.
From Tables 1–3, it is obvious that 2PDO4 gives better results compared to ERK4, RK4 and ANN

in terms of accuracy. It is also observed that the execution times of 2PDO4 for solving Problem 3 and 5
are faster than the RK4. Table 4 shows that 2PDO4 used less number of function evaluations to obtain
comparable accuracy compared to ERK4 and RK4.

For Problem 5, the exact solutions cannot be calculated analytically. Hence, we compared the
approximate solutions of 2PDO4 and RK4. The approximate solutions of Problem 5 at t = 1 with
h = 0.1 are presented in Table 5. It can be observed that 2PDO4 is applicable to solve Problem 5 with
an advantage of less total steps and faster execution times compared to RK4.

It is obvious in 1−5 that 2PDO4 required less number of total steps compared to other methods.
This is expected since 2PDO4 approximates the solutions at two points simultaneously.

Table 1. Numerical results of 2PDO4, ERK4, RK4 and ANN for solving Problem 1.

∣∣∣Yn(t; r)− y(t; r)
∣∣∣

r 2PDO4 ERK4 1 RK4 1 ANN 1

0.0 7.112242(-7) 1.969260(-6) 1.492423(-6) 8.862866(-5)
0.1 7.349317(-7) 2.090533(-6) 1.375277(-6) 2.941706(-5)
0.2 7.586392(-7) 1.734969(-6) 1.734969(-6) 4.646277(-5)
0.3 7.823466(-7) 2.094660(-6) 1.856242(-6) 2.449152(-5)
0.4 8.060541(-7) 1.500678(-6) 1.739096(-6) 4.445810(-6)
0.5 8.297616(-7) 2.337206(-6) 1.621951(-6) 5.440010(-5)
0.6 8.534691(-7) 1.743224(-6) 1.743224(-6) 2.835439(-5)
0.7 8.771765(-7) 2.579752(-6) 1.626078(-6) 4.669132(-5)
0.8 9.008840(-7) 2.462607(-6) 1.985770(-6) 9.726296(-5)
0.9 9.245915(-7) 2.345461(-6) 2.107043(-6) 1.421725(-5)
1.0 9.482990(-7) 1.751478(-6) 1.989897(-6) 5.582846(-5)
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Table 1. Cont.

∣∣Yn(t; r)− yn(t; r)
∣∣

r 2PDO4 ERK4 1 RK4 1 ANN 1

0.0 1.066836(-6) 2.834681(-6) 2.596262(-6) 5.994298(-5)
0.1 1.054983(-6) 2.297207(-6) 2.058788(-6) 1.465839(-6)
0.2 1.043129(-6) 1.998152(-6) 2.236570(-6) 2.598870(-5)
0.3 1.031275(-6) 3.129608(-6) 2.175934(-6) 8.511551(-6)
0.4 1.019421(-6) 2.115298(-6) 2.115298(-6) 3.403441(-5)
0.5 1.007568(-6) 3.008335(-6) 2.293079(-6) 1.444274(-5)
0.6 9.957139(-7) 2.232443(-6) 2.232443(-6) 4.208012(-5)
0.7 9.838602(-7) 1.933388(-6) 2.171806(-6) 5.160297(-5)
0.8 9.720064(-7) 9.190771(-7) 1.872751(-6) 3.012583(-5)
0.9 9.601527(-7) 2.050534(-6) 2.050534(-6) 1.543513(-4)
1.0 9.482990(-7) 1.751478(-6) 1.989897(-6) 2.817154(-5)

FCN 451 451 451 -
TS 66 110 110 -

TIME 0.675 - - -
1 Results of ERK4, RK4 and ANN as referred in [26].

Table 2. Numerical results of 2PDO4, ERK4 and RK4 for solving Problem 2.

∣∣∣Yn(t; r)− y(t; r)
∣∣∣

r 2PDO4 ERK4 1 RK4 1

0.0 7.586392(-6) 1.401183(-5) 1.591918(-5)
0.1 1.366979(-5) 2.666611(-5) 3.238815(-5)
0.2 2.357892(-5) 5.232929(-5) 4.851460(-5)
0.3 3.919819(-5) 8.186697(-5) 8.377432(-5)
0.4 6.313677(-5) 1.334720(-4) 1.296573(-4)
0.5 9.894536(-5) 2.104650(-4) 2.104650(-4)
0.6 1.513830(-4) 3.134706(-4) 3.134706(-4)
0.7 2.267426(-4) 4.676179(-4) 4.638032(-4)
0.8 3.332447(-4) 6.934862(-4) 6.858569(-4)
0.9 4.815107(-4) 9.960255(-4) 9.960255(-4)
1.0 6.851258(-4) 1.419590(-3) 1.423405(-3)∣∣Yn(t; r)− yn(t; r)

∣∣
r 2PDO4 ERK4 1 RK4 1

0.0 1.260390(-2) 2.848404(-2) 2.849930(-2)
0.1 9.798071(-3) 2.185179(-2) 2.185179(-2)
0.2 7.561266(-3) 1.664276(-2) 1.662750(-2)
0.3 5.790072(-3) 1.253006(-2) 1.257584(-2)
0.4 4.397464(-3) 9.443902(-3) 9.421014(-3)
0.5 3.310672(-3) 7.054700(-3) 7.039441(-3)
0.6 2.469226(-3) 5.211172(-3) 5.211172(-3)
0.7 1.823209(-3) 3.812939(-3) 3.805309(-3)
0.8 1.331682(-3) 2.773261(-3) 2.773261(-3)
0.9 9.613063(-4) 1.989020(-3) 1.996649(-3)
1.0 6.851258(-4) 1.419590(-3) 1.423405(-3)

FCN 451 451 451
TS 66 110 110

TIME 0.639 - -
1 Results of ERK4 and RK4 as referred in [26].
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Table 3. Numerical results of 2PDO4 and RK4 for solving Problem 3.

∣∣∣Yn(t; r)− y(t; r)
∣∣∣

r 2PDO4 RK4

0.0 6.963978(-5) 1.010956(-4)
0.1 7.770009(-5) 1.177814(-4)
0.2 8.576039(-5) 1.344671(-4)
0.3 9.382069(-5) 1.511528(-4)
0.4 1.018810(-4) 1.678386(-4)
0.5 1.099413(-4) 1.845243(-4)
0.6 1.180016(-4) 2.012100(-4)
0.7 1.260619(-4) 2.178957(-4)
0.8 1.341222(-4) 2.345815(-4)
0.9 1.421825(-4) 2.512672(-4)
1.0 1.502428(-4) 2.679529(-4)∣∣Yn(t; r)− yn(t; r)

∣∣
r 2PDO4 RK4

0.0 2.308459(-4) 4.348102(-4)
0.1 2.227856(-4) 4.181245(-4)
0.2 2.147253(-4) 4.014387(-4)
0.3 2.066649(-4) 3.847530(-4)
0.4 1.986046(-4) 3.680673(-4)
0.5 1.905443(-4) 3.513816(-4)
0.6 1.824840(-4) 3.346958(-4)
0.7 1.744237(-4) 3.180101(-4)
0.8 1.663634(-4) 3.013244(-4)
0.9 1.583031(-4) 2.846386(-4)
1.0 1.502428(-4) 2.679529(-4)

FCN 451 451
TS 66 110

TIME 0.530 0.718

Note: Simulation results of 2PDO4 and RK4 have been obtained in the same platform.

Table 4. Numerical results of 2PDO4, ERK4 and RK4 for solving Problem 4.

∣∣∣Yn(t; r)− y(t; r)
∣∣∣

r 2PDO4 ERK4 1 RK4 1

0.0 2.459944(-6) 1.9100(-5) 2.6100(-5)
0.1 3.707531(-6) 2.5100(-5) 3.0000(-5)
0.2 5.461503(-6) 2.9100(-5) 3.2200(-5)
0.3 7.872724(-6) 2.9000(-5) 4.2000(-5)
0.4 1.110316(-5) 3.5000(-5) 4.8000(-5)
0.5 1.529207(-5) 3.8000(-5) 5.5000(-5)
0.6 2.047821(-5) 3.9000(-5) 6.8000(-5)
0.7 2.643397(-5) 3.5000(-5) 7.6000(-5)
0.8 3.232537(-5) 3.4000(-5) 8.9000(-5)
0.9 3.602703(-5) 1.6000(-5) 1.0400(-4)
1.0 3.275027(-5) 1.0900(-4) 2.0000(-6)
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Table 4. Cont.

∣∣Yn(t; r)− yn(t; r)
∣∣

r 2PDO4 ERK4 1 RK4 1

0.0 6.395992(-2) 3.7712(-2) 8.7760(-3)
0.1 2.778184(-2) 1.7758(-2) 3.8480(-3)
0.2 1.248250(-2) 9.0110(-3) 1.8570(-3)
0.3 5.710280(-3) 4.8090(-3) 1.0570(-3)
0.4 2.616533(-3) 2.7230(-3) 6.4900(-4)
0.5 1.175996(-3) 1.6230(-3) 4.2000(-4)
0.6 5.009738(-4) 9.9600(-4) 3.1600(-4)
0.7 1.875370(-4) 6.3700(-4) 2.3300(-4)
0.8 4.657100(-5) 4.3100(-4) 1.8400(-4)
0.9 1.228793(-5) 2.9100(-4) 1.5000(-4)
1.0 3.275027(-5) 1.0900(-5) 2.0000(-6)

FCN 363 451 451
TS 66 110 110

TIME 0.748 - -
1 Results of ERK4 and RK4 as referred in [32].

Table 5. Numerical results of 2PDO4 and RK4 for solving Problem 5.

y(t, r)

r 2PDO4 RK4

0.0 0.795170 0.795172
0.1 0.846301 0.846303
0.2 0.894275 0.894276
0.3 0.940192 0.940193
0.4 0.984968 0.984969
0.5 1.029399 1.029399
0.6 1.074198 1.074198
0.7 1.120029 1.120029
0.8 1.167520 1.167520
0.9 1.217275 1.217275
1.0 1.269868 1.269868

yn(t; r)

r 2PDO4 RK4

0.0 2.017674 2.017674
0.1 1.925744 1.925744
0.2 1.836622 1.836622
0.3 1.750863 1.750863
0.4 1.668972 1.668972
0.5 1.591344 1.591344
0.6 1.518228 1.518228
0.7 1.449698 1.449698
0.8 1.385652 1.385652
0.9 1.325836 1.325836
1.0 1.269868 1.269868

FCN 451 451
TS 66 110

TIME 0.390 0.468

Note: Simulation results of 2PDO4 and RK4 has been obtained in the same platform.

Figures 2–5 is a plot of the exact and approximate solutions by using 2PDO4 for Problems 1–4. It is
clear in the figures that the solutions by the 2PDO4 method almost coincide with the exact solutions.
While the plot of approximate solutions for Problem 5 by using 2PDO4 and RK4 is shown in Figure 6.
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Figures 7–10 is a plot of the absolute errors versus r for lower and upper bounds of Problems 1–4.
It can be seen in Figures 7–9 that the errors of 2PDO4 are smaller than the comparison methods, but in
Figure 10 the errors of 2PDO4 are smaller at certain points.
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In this paper, the diagonally implicit block method of order four (2PDO4) has been implemented 
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9. Conclusions

In this paper, the diagonally implicit block method of order four (2PDO4) has been implemented
for solving linear and nonlinear FDEs. Numerical results have shown that the proposed method gave
comparable results in terms of accuracy and fewer total steps. The total functions are comparable
or less compared to the existing method. The 2PDO4 is able to obtain less execution time than RK4
when solving two tested problems. Hence, the 2PDO4 method can be named in the literature as an
additional and reliable method for solving FDEs.
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