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Abstract: The segmentation of medical images by computational methods has been claimed by
the medical community, which has promoted the development of several algorithms regarding
different tissues, organs and imaging modalities. Nowadays, skin melanoma is one of the most
common serious malignancies in the human community. Consequently, automated and robust
approaches have become an emerging need for accurate and fast clinical detection and diagnosis
of skin cancer. Digital dermatoscopy is a clinically accepted device to register and to investigate
suspicious regions in the skin. During the skin melanoma examination, mining the suspicious regions
from dermoscopy images is generally demanded in order to make a clear diagnosis about skin
diseases, mainly based on features of the region under analysis like border symmetry and regularity.
Predominantly, the successful estimation of the skin cancer depends on the used computational
techniques of image segmentation and analysis. In the current work, a social group optimization
(SGO) supported automated tool was developed to examine skin melanoma in dermoscopy images.
The proposed tool has two main steps, mainly the image pre-processing step using the Otsu/Kapur
based thresholding technique and the image post-processing step using the level set/active contour
based segmentation technique. The experimental work was conducted using three well-known
dermoscopy image datasets. Similarity metrics were used to evaluate the clinical significance of the
proposed tool such as Jaccard’s coefficient, Dice’s coefficient, false positive/negative rate, accuracy,
sensitivity and specificity. The experimental findings suggest that the proposed tool achieved
superior performance relatively to the ground truth images provided by a skin cancer physician.
Generally, the proposed SGO based Kapur’s thresholding technique combined with the level set
based segmentation technique is very effective for identifying melanoma dermoscopy digital images
with high sensitivity, specificity and accuracy.

Keywords: skin melanoma; social group optimization (SGO); Otsu; Kapur; level set; active contour

1. Introduction

Skin melanoma is one of the most critical widespread diseases that can affect people despite
their race, gender and age, causing high mortality rates. Premature stage detection of melanoma
can diminish these rates [1]. The skin melanoma commences in the interior regions as well as in
associated skin segments. The accessibility of the latest therapeutic technologies will lead to early
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detection and inspection of melanomas during routine pre-/post-screening processes. Once the
dimension and the stage of melanoma are known, then physicians can plan the most suitable treatment
procedure [2–5]. Typically, the melanoma screening practice involves the (i) visual examination
of skin regions by a physician and the (ii) visual/computational evaluation by an experienced
dermatologist. Most of the dermatologists examine the suspicious skin regions using the well-known
ABCD (Asymmetry, Border, Color and Diameter) rule [6]. After confirming the skin cancer by visual
inspection, the cancerous regions of skin are imaged by digital dermatoscopy for further investigation
and definition of the treatment planning process. Digital dermoscopy images are generally colored
RGB (red, green, blue) images that have been extensively adopted for automatic detection, boundary
extraction and skin cancer investigation [7,8].

The automated analysis of skin cancer in dermoscopy images has inspired researchers to
develop accurate computational techniques for such goal [9–17]. Xu et al. [18] proposed a boundary
based segmentation of skin lesions for RGB skin images. Amelard et al. [9] discussed the intuitive
feature mining from the Dermquest and Dermis image datasets. Silveira et al. [19] presented
a detailed comparative analysis on various segmentation approaches for dermoscopy images of
skin melanoma. This study suggests that the adaptive snake based segmentation combined with
the expectation–maximization level set technique enhanced the segmentation results compared to
the adaptive thresholding, gradient vector flow, level set method and fuzzy-based split-and-merge
techniques. However, the analysis of melanoma in images is a very challenging task, particularly
when the skin regions are disturbed by hair. The hair removal requires special image pre-processing
approaches, which is time-consuming and may affect the quality of the original dermoscopic image.
Hence, it is always recommended to have a simple and efficient automated procedure to analyze the
acquired digital dermoscopy images with robustness against phase, dimension, color and orientation of
the skin regions under analysis. Hence, in order to accomplish this goal, several image pre-processing
procedures have been developed. For example, Lee et al. [20,21] proposed a computer based tool
known as DullRazor to remove hair regions from skin cancer images. Wighton et al. [22] carried
out an alternative approach for the DullRazor to eliminate the hair regions based on the inpainting
technique. Mirzaalian et al. [23] proposed a filter to eliminate the same regions, and Satheesha et al. [24]
suggested a pixel interpolation technique for the same purpose. Detailed surveys of existing hair
regions removal and melanoma detection procedures are presented in [1,25].

Consequently, the main contribution of the present work is to propose an automated tool to mine
cancerous regions from dermoscopy images. A two step (pre-processing and post-processing) approach
was developed to mine the skin lesions. The pre-processing step is applied to enhance the melanoma
region based on social group optimization (SGO) to support the Otsu’s or Kapur’s multi-level
thresholding and image morphological operations. The post-processing step segments the enhanced
melanoma using the level set or active contour approach. The Matlab software (Version 7, Release 14,
License number 285705 with perpetual term, St. Joseph’s College of Engineering, Chennai, India) was
employed to implement the proposed tool. Well known melanoma image datasets, such as Dermis [26],
Dermquest [26] and ISBI2016 challenge (hairy images) [27], were used. In order to evaluate the
proposed tool, the mined image regions were compared against the ground truth (GT) provided
by a physician. Consequently, the efficiency of the proposed melanoma image processing tool was
confirmed using well-known similarity measures, including the Jaccard’s index, Dice’s coefficient, false
negative rate and false positive rate. Statistical parameters, namely precision, F-measure, sensitivity,
specificity, balanced classification rate, balanced error rate and accuracy, were also computed. Finally,
the severity level of the detected skin melanoma was measured using the SkinCAD tool developed by
Chang et al. [28].
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2. Materials and Methods

The current work was devoted to the development of an automated tool for extracting
infected skin regions from RGB dermoscopy images. The proposed tool integrates two main steps:
the pre-processing and post-processing steps, described in the following.

2.1. Pre-Processing

The overall accuracy of the proposed tool depends mainly on the pre-processing step,
which includes the SGO and Otsu or Kapur based multi-level thresholding that is followed by the
application of the morphological procedure to improve the thresholded image.

2.1.1. Multi-Level Thresholding

Traditional and soft computing based multi-level thresholding techniques have great impact
in engineering and medical fields [29–32]. In multi-level thresholding, a gray or RGB image is
divided into different parts by relating similar pixels in order to trace and scrutinize significant
information in the input image. The implementation of the thresholding process is essential to
pre-process a raw image [33–35]. The Otsu and Kapur based image thresholding techniques have been
extensively adopted by the researchers to threshold traditional and clinical images [36]. The Otsu based
thresholding technique can provide the best threshold level for a given image by the maximization
of the between-class variance function [37]. Several optimization techniques can be employed to
support the multi-level thresholding. One of these optimization methods is the recently developed
SGO algorithm. Since several studies have confirmed that the SGO algorithm achieved superior results
compared to other existing meta-heuristic approaches [38,39], the current work carried out the SGO
algorithm to optimize the levels of the applied multi-level thresholding.

2.1.2. Social Group Optimization

SGO is a soft computing procedure recently developed by Satapathy and Naik [38]. It has been
developed by mimicking the behavior and knowledge transfer practice in human groups. The SGO
algorithm includes two main steps, namely the (i) improving step, which synchronizes the positions of
people (agents) based on the objective function, and the (ii) acquiring step that allows the agents to
discover the best potential solution for the problem under concern. The mathematical model for the
SGO is as follows [39].

Let us consider Xi as the initial knowledge of people in a group and i = 1, 2, 3, . . . , N, with N as
the total number of people in the group. If the optimization task needs a D-dimensional search space,
then the knowledge term can be expressed as Xi = (xi1, xi2,xi3, ... xiD). For any problem, the fitness
value can be defined as fj, with j = 1, 2, . . . , N. Thus, for the maximization problem, the fitness value
can be written as:

Gbestj = max {f (Xi) for i = 1,2, . . . N} (1)

In order to update the position (knowledge) of every individual in the group, the improving
phase considers the following relation:

Xnewi,j = c ∗ Xoldi,j + R ∗ (Gbestj − Xoldi,j), (2)

where Xnew is the new knowledge, Xold is the old knowledge, Gbest is the global best knowledge, R
is a random numeral [0,1], and c represents the self-introspection parameter [0,1]. The value of c is
chosen as 0.2 in [38,39], while, in the current work, the value of c was defined as 0.5 based on the trial
and error approach.
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During the acquiring phase, the agents will find the global solution based on knowledge updating
process by randomly select one person from the group (Xr) based on i 6= r. Once the fitness value
becomes f(Xi) < f(Xr), then the following knowledge procedure is executed:

Xnewi,j = Xoldi,j + Ra ∗ (Xi,j − Xr,j) + Rb ∗ (Gbestj − Xi,j), (3)

where Ra and Rb are random numbers having the range [0,1] and Xr,j is the knowledge (position) value
of the chosen individual. From Equations (2) and (3), it can be observed that the implementation of the
SGO algorithm is simple compared to other algorithms existing in the image processing domain [40–48].
The steps of the standard SGO algorithm can be described as in Algorithm 1.

Algorithm 1: Standard Social Group Optimization Algorithm

Start
Assume five agents (i = 1,2,3,4,5)
Assign these agents to find the Gbestj in a D-dimensional search space
Randomly distribute the entire agents in the group throughout the search space during initialization process
Computethe fitness value based on the problem under concern
Updatethe orientation of agents using Gbestj = max {f(Xi)}
Initiatethe improving phase to update the knowledge of other agents in order to reach the Gbestj
Initiatethe acquiring phase to further update the knowledge of agents by randomly choosing the agents with best fitness value
Repeatthe procedure till the entire agents move toward the best possible position in the D-dimensional search space
If all the agents have approximately similar fitness values (Gbestj)

Then
Terminate the search and display the optimized result for the chosen problem

Else
Repeat the previous steps
End

Stop

The working principle of the SGO algorithm is illustrated in the flow diagram presented in
Figure 1, where the blue agents are agents with Gbestj.

In the present work, the SGO algorithm is considered to pre-process the input dermascopic image
based on the Otsu’s/Kapur’s thresholding technique. The initial SGO parameters were assigned as
follows: N was chosen as 20, i.e., the total number of people in the group was 20, D was assigned as
three-dimensional space, c was fixed as equal to 0.5 denoting the self-introspection parameter and the
number of iteration was set as 500.This optimization algorithm is used to find the optimal threshold
value when using the Otsu/Kapur based thresholding technique during the segmentation process.

During the optimization search, the SGO algorithm adjusts randomly the thresholds of the input
image and computes the Jmax value of the Otsu/Kapur threholding technique. When Jmax is reached,
the SGO stops the search and provides the output image of the pre-processing step.
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Figure 1. The working principle of the social group optimization (SGO) algorithm.

2.1.3. Otsu Based Thresholding

The Otsu based thresholding can provide the best threshold for a given image by maximizing
the between-class variance function. Here, it is adopted for RGB image thresholding using the RGB
histogram of the input image, which has a complex data size of [0, L-1]3, where each color R, G and B
has the range of [0, L-1]. Additionally, the SGO meta-heuristic algorithm is employed to formalize the
meta-heuristic based segmentation procedure as follows [30,31].

In the range [0,1,2, . . . , L-1], assume L intensity levels with probability distribution PE
o , which is

given by:

pE
o =

hE
o

M

L−1

∑
o=0

pE
o = 1, (4)

where I is a precise intensity level of range {0 ≤ o ≤ L− 1} for the color component E = {R,G,B}, M is
the total number of image pixels, and hE

o is the number of pixels for the analogous intensity level O in
the component C. For each component, the total mean of the image is given by:

µE
T =

L−1

∑
i=0

opE
o = 1. (5)

The m-level thresholding procedure requires m-1 threshold levels tE
p , where p = 1,2, . . . ,m−1,

for a single color component R/G/B, and a similar process is repeated for other color components.
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The image thresholding operation for a single color component is performed as:

FE(w, h) =



0,

1
2 (t

E
1 + tE

2 ),
f E(x, y) ≤ tE

1
tE
1 < f E(x, y) ≤ tE

2
...

...

1
2 (t

E
m−2 + tE

m−1),
tE
m−2 < f E(x, y) ≤ tE

m−1
f E(x, y) > tE

m−1
L− 1,

, (6)

wherein h and w represent the height and width of the image with size H ×W. The probabilities of
occurrence wE

p of classes DE
p , . . . ,DE

m are:

wE
p =


∑

tE
p

o=0 Po
E, P = 1

∑
tE

p

o=tE
p−1

+1 Po
E, 1 < p < m

∑L−1
o=tE

p−1
+1 Po

E, p = m

. (7)

For each class, µE
p can be calculated using the following expression:

µE
p =


∑

tE
p

o=0
pE

o
wE

p q
, p = 1
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p
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+1 pE
o

wE
p

, 1 < p < m

∑L−1
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p−1
+1 pE

o
wE

p
, p = m

. (8)

Finally, the Otsu’s between-class variance components are obtained as:

σE2

B =
m

∑
p=1

wE
p

(
µE

p − µE
T

)2
, (9)

where wE
p is the occurrence probability. The m-level thresholding is summarized to an optimization

problem in order to find the optimal threshold value that maximizes the fitness (Jmax) of each image
component E = {R,G,B} defined as:

Jmax = max
1<tE

o <,··· ,L−1
σE2

B (tE
p ). (10)

Here, a tri-level image thresholding procedure was implemented to pre-process the image under
analysis based on the recent work by Rajinikanth et al. [8]. The tri-level approach enhances the input
image effectively and the pre-processed image is then considered for the segmentation task.

2.1.4. Kapur Based Thresholding

The Kapur based segmentation technique has been initially proposed for segmenting gray scale
images using the histogram entropy [49]. The proposed technique determines the optimal Th that
maximizes the overall entropy [50–53]. Thus, for the image thresholds vector Th = [t1, t2, ...,tk-1],
the Kapur’s entropy is given by:

Jmax = fKapur(Th) =
k

∑
p=1

HC
j , (11)
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where C = {R,G,B}, for the three components. Typically, the entropy of each component is calculated
independently based on the chosen threshold t value. For tri-level thresholding, the entropy can be
given by:

(12)

where PhE
p is the intensity levels’ probability distribution and ωE

0 , ωE
1 , . . . ωE

k−1 the occurrence
probability for k levels. Detailed descriptions about the Kapur based thresholding technique are
presented in [52,53], and an implementation is described in [51].

2.1.5. Image Morphology

In image processing, morphological operations are generally used to improve the visual
appearance of input images. Usually, the quality and the appearance of skin melanoma images
are poor due to several factors such as multiple colors, irregular shapes and associated hair regions.
Hence, in this work, morphological operations, such as line based structuring element (strel) and
image fill (imfill), were used to enhance the edges and appearance of the pre-processed skin melanoma
images. This morphological procedure enhances the suspicious regions of the thresholded images and
guarantees faster segmentations during the post-processing step.

2.2. Post-Processing

The post-processing step is implemented to extract the abnormal regions from the pre-processed
dermoscopy images. In the current work, the well-known level set and active contour segmentation
approaches were independently studied and their results compared in terms of segmentation accuracy,
speed and complexity.

2.2.1. Level Set

Level set (LS) approach has been broadly used in image segmentation problems as, for example,
in the ones described in [54,55]. Here, the advantage of the LS technique was taken into account
to enhance the active contour approach, since the LS technique can produce contours of complex
topology able to handle split and merge operations that can occurduring the image segmentation
process. The recent version of the LS technique suggested in [56] was implemented in the proposed
tool, the curve evolution being given by:

BZ =
∂ε(s, t)

∂t
, (13)

with ε denoting the curve vector with spatial parameter s and temporal variable t, B the speed function
and Z the inmost curve normal vector ε. The curve evolution given by Equation (13) can be converted
into the LS technique using the dynamic contour ε(s, t) as the zero of a time charged level set function
φ (x,y,t). The LS function is then used to track the similar pixel group in a pre-processed image based
on its boundary. The function φ generates positive values outside the zero level contour and negative
values inside. The inner most normal vector Z can be given as:

Z =
−∇φ

∇φ
, (14)
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where ∇ represents the gradient operator. Thus, the LS evolution can be expressed as:

∂φ

∂t
= B|∇φ|. (15)

More details regarding the used LS function can be found in [57].

2.2.2. Active Contour

Active contour (AC) is an essential segmentation procedure to extract suspicious region from
a pre-processed image. Here, the deformable snake based global active contour (GAC) [58] and the
localized active contour (LAC) [59] were used to extract the suspicious region from the pre-processed
image. This procedure has two essential steps, namely the initialization, and the boundary detection
and extraction based on energy minimization. This approach tracks the similar pixel groups existing
in a pre-processed input image based on an energy minimization concept [60].The energy function of
the active contour can be described as:

θGAC(U) =
∫ L(U)

0
g(|∇I0U(s)|)ds, (16)

where ds is the Euclidean component of the contour length and L(U) is the length of curve U,
which satisfies L(U) =

∫ L(U)
0 ds. The parameter g is an edge indicator, which can be defined as:

g(|∇I0|) =
1

1 + β|∇I0|2
, (17)

where β is an arbitrary constant andI0 represents the input image. The energy value decreases
rapidly based on the edge value, which is based on the gradient descent criterion. This procedure is
mathematically represented as:

∂tU = (kg−
〈
∇g, Q

〉
)Q, (18)

where ∂tU = ∂U/∂t represents the deformation in the snake model and t is the iteration time.
The normal and curvature of the snake U are Q and k, respectively. In this procedure, the snake
silhouette is continuously corrected until the minimal value of the energy θGAC is reached.

During the post-processing operation, the level set and the active contour segmentation techniques
were separately used to extract the abnormal skin region from the SGO assisted Otsu/Kapur based
pre-processed image. In order to confirm the segmentation accuracy, a comparative evaluation between
the level set and the active contour based segmentation results was performed.

2.3. Implementation of the Proposed Tool

The implementation of the proposed pre-processing and post-processing approach is presented
here. Initially, the Otsu based thresholding technique combined with the level set segmentation
technique is discussed. Then, considerations are presented concerning the Kapur based
thresholding technique.

The implementation of the Otsu based thresholding technique combined with the level set
segmentation technique can be summarized as:

Step 1: Initialize the SGO algorithm with the initial algorithm parameters and using the Otsu
tri-level pre-processing based approach;

Step 2: Arbitrarily, adjust the R, G, and B channel threshold values until the between class variance
is maximized (Jmax). When the optimal thresholds are reached, finish the heuristic search and record
the pre-processed image;

Step 3: Perform morphological operations in order to improve the pre-processed image;
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Step 4: Initiate the post-processing technique in order to extract the abnormal skin region using
the level set based segmentation technique;

Step 5: After extracting the region of interest, a comparative analysis is performed between the
ground truth and the extracted skin region using well known image quality and similarity measures;

Step 6: By considering the segmented region, the severity of the skin cancer is further examined
with the SkinCAD tool and the performance value is recorder.

A similar procedure was adopted concerning the Kapur based thresholding technique combined
with the other segmentation procedures considered in this article: the active contour segmentation
technique. Finally, a detailed comparative analysis between the results obtained by the level set and the
active contour based approaches was performed in order to choose the appropriate image processing
approaches to examine the skin cancer dataset.

2.4. Image Quality Assessment

During the extracted lesion and ground truth comparison process, the image similarity
measurements, like Jaccard Index (JI), Dice Coefficient (DC), false negative rate (FNR) and false
positive rate (FPR) were calculated [61] using the following mathematical expressions:

J I(Igt, It) = Igt ∩ It/Igt ∪ It, (19)

DC(Igt, It) = 2
(

Igt ∩ It
)
/
∣∣Igt
∣∣ ∪ |It|, (20)

FPR(Igt, It) =
(

Igt/It
)
/(Igt ∪ It), (21)

FNR(Igt, It) =
(

It/Igt
)
/(Igt ∪ It), (22)

where Igt represents the corresponding ground truth, It stands for the extracted lesion, ∪ is the union
operation and ∩ is the intersection operation. Furthermore, the image statistical metrics precision
(PRE), F-measure (FM), sensitivity (SEN), specificity (SPE), balanced classification rate (BCR), balanced
error rate (BER) and accuracy (ACC), were also computed [62–66] using the following mathematical
expressions:

PRE = TP/(TP + FP),
FM = 2 TP/(2 TP + FP + FN),

SEN = TP/(TP + FN),
SPE = TN/(TN + FP),

BCR = 1/2 (TP/(TP + FN) + TN/(TN + FP)),
BER = 1− BCR,

ACC = (TP + TN)/(TP + TN + FP + FN),

(23)

where TP, TN, FP and FN denote the true positive, true negative, false positive and false
negative, respectively.

2.5. Proposed Tool

The aforementioned methodologies were used in the current work to segment and analyze
dermoscopy images as depicted in Figure 2.

Figure 2 depicted that initially the SGO assisted Otsu/Kapur based tri-level thresholding is
performed on the RGB input image in order to group the similar pixels as healthy skin, lightly
spread lesion and acutely spread lesion. In order to group the pixels of the light and deep lesions,
the thresholded RGB image is transformed into a gray scale image and a morphological procedure
is applied to smooth the separated skin regions. Later, the grouped area of light and deep lesions
is extracted using the level set/active contour based segmentation approach. Finally, the extracted
melanoma region is compared against the corresponding ground truth to validate the ability of the
proposed computational tool.
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In addition, analysis using the SkinCAD tool, which is a computer aided diagnosis tool for digital
dermoscopy images developed by Chang et al. [28], was performed. This tool supports inbuilt facilities
to analyze both melanocytic and non-melanocytic skin lesions based on shape, texture and color
features. By using this tool, it is easy to extract the complete information of RGB skin melanoma
images in order to analyze the probability and risk of lesion malignancy based on the Asymmetry
(A), Border (B), Color (C) and Diameter (D) criteria, which are defined by the well-known ABCD rule.
This tool initially extracts the suspicious region of the input dermoscopy image based on a pattern
matching concept. During this process, the input image is compared against a mask image. The mask
can be manually generated using the skinCAD or obtained using another image processing technique.
Chang et al. reported better values of sensitivity (85.63%), specificity (87.65%) and accuracy (90.64%)
using manually generated masks. These values can be enhanced by using masks obtained using
the most recent image segmentation procedures. Consequently, the current proposed approach was
compared to the solution developed by Chang et al. in order to prove its efficiency.

The Matlab 7 software was used to implement the proposed approach. In order to test the
developed tool, melanoma images existing in Dermis (44 images), Dermquest (76 images) and
ISBI2016 challenge (20 images) were used. All these melanoma image datasets are provided with the
corresponding ground truth images provided by an expert. Initially, the test images as well as the
ground truth images of Dermis and Dermquest image databases were resized to 256 × 256 pixels.
From the ISBI2016 challenge dataset, the most complex images, i.e., the dermoscopy images with hair,
were used in their original size.

3. Results and Discussion

In the present work, the SGO algorithm is employed to select the optimal threshold values of
the Otsu/Kapur based multi-level thresholding technique. Compared with other existing algorithms
in the literature, the SGO algorithm is very simple in terms of implementation, since it only requires
few initial parameters, namely the iteration value, the number of agents and the self-introspection
value ‘c’. In the previous works regarding the SGO algorithm, a value of 0.2 for the parameter c [29,30]
was suggested, but, here, a trial and error procedure was performed and the value that offered
the best convergence rate along with the optimized result was found to be 0.5. The experimental
study also confirmed that the proposed SGO algorithm offered better execution time compared to
other well-known heuristic algorithms such as PSO [52], FA [42,47] and BA [41] based thresholding
procedures. Examples of the used RGB images are presented in Figure 3 along with the corresponding
histogram of the three channels (i.e., R, G and B components) and the associated ground truth.
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Figure 3. Sample test images from the chosen skin cancer image dataset: (a) test images; (b) RGB
histograms (x- axis represents the threshold distribution and y-axis denotes the pixel distribution) and
(c) corresponding ground truths of the images.

Previous works from the literature confirm that finding the optimal threshold value for a RGB
input image is more complex comparatively to the corresponding gray scale image due to its complex
and nonlinear histograms. In order to find the optimal threshold for a color image, it is necessary to
examine the R, G, and B channels separately by a suitable pre-processing approach. Here, the SGO
algorithm combined with the Otsu based thresholding technique is used to identify the optimal
threshold for the image under analysis and the corresponding outputs are recorded. Then, a similar
pre-processing procedure is repeated with the SGO algorithm combined with the Kapur based
thresholding technique and the outcomes are recorded. The overall quality of the proposed image
processing tool relies on the pre-processing approach. Hence, an attempt was made to examine
the performance of the Otsu and Kapur based thresholding techniques widely used in the image
processing community to pre-process input images [47–53].
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Figure 4 illustrates the obtained results of the proposed optimized Otsu and level set based
segmentation approach when applied to the test images. Initially, the proposed SGO based Otsu based
tri-level thresholding procedure is performed on the sample images; results of these steps were presented
in the second column of Figure 4. Considering the obtained results for image NM3, it can be reported
that at the end of the SGO based Otsu search, the SGO continuously explores the RGB histograms until
the between class values is maximized. At the end, the search offers the optimized thresholds, such as R
[52, 187, 224], G [74, 147, 206] and B [39, 170, 231]. This search also offered a maximized Otsu’s between
class variance value of 2107.85 [47]. From a visual assessment of the original NM3 test image and the
thresholded image, it is observed that the thresholding process enhance the melanoma region based on
pixel grouping concept. This image is then further processed using the morphological procedure discussed
in Section 2. After completing the pre-processing task, the well-known segmentation procedures based on
level set, global active contour and local active contour were applied to mine the region of interest from the
dermoscopy image and their results compared.

With the intention of evaluating the proposed approach superiority, complex dermoscopic images,
mainly images with hair, such as SSM21, 229 and 9953, were studied. The results in Figure 4 suggest
that the proposed pre-processing approach is very efficient in eliminating the hair regions from the input
images and can be used as an interesting alternative to the existing hair removing procedures [20,22–25].

Symmetry 2018, 10, x  12 of 20 

 

presented in the second column of Figure 4. Considering the obtained results for image NM3, it can 
be reported that at the end of the SGO based Otsu search, the SGO continuously explores the RGB 
histograms until the between class values is maximized. At the end, the search offers the optimized 
thresholds, such as R [52, 187, 224], G [74, 147, 206] and B [39, 170, 231]. This search also offered a 
maximized Otsu’s between class variance value of 2107.85 [47]. From a visual assessment of the 
original NM3 test image and the thresholded image, it is observed that the thresholding process 
enhance the melanoma region based on pixel grouping concept. This image is then further processed 
using the morphological procedure discussed in Section 2. After completing the pre-processing task, 
the well-known segmentation procedures based on level set, global active contour and local active 
contour were applied to mine the region of interest from the dermoscopy image and their results 
compared. 

With the intention of evaluating the proposed approach superiority, complex dermoscopic 
images, mainly images with hair, such as SSM21, 229 and 9953, were studied. The results in Figure 4 
suggest that the proposed pre-processing approach is very efficient in eliminating the hair regions 
from the input images and can be used as an interesting alternative to the existing hair removing 
procedures [20,22–25]. 

N
M

3 

  

N
M

5 

  

SS
M

31
 

  

SS
M

21
 

  

22
9 

    

99
53

 

 
(a) (b) (c) (d) (e) (f) 

Figure 4. Results obtained with Otsu and level set based segmentation approaches: (a) Pseudo name 
of image as in database; (b) output of the tri-level thresholding technique; (c) output of the 
morphological procedure; (d) initial contour of the level set segmentation; (e) final contour of the level 
set segmentation; and (f) extracted region. 

Afterwards, the performance of well-known active contour approaches, such as the GAC and 
LAC, were tested on the SGO based Otsu pre-processed images, Figure 5. 
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Figure 4. Results obtained with Otsu and level set based segmentation approaches: (a) Pseudo name of
image as in database; (b) output of the tri-level thresholding technique; (c) output of the morphological
procedure; (d) initial contour of the level set segmentation; (e) final contour of the level set segmentation;
and (f) extracted region.



Symmetry 2018, 10, 51 13 of 21

Afterwards, the performance of well-known active contour approaches, such as the GAC and
LAC, were tested on the SGO based Otsu pre-processed images, Figure 5.Symmetry 2018, 10, x  13 of 20 
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Figure 5. Active contour based segmentation results for the sample image with pseudo name NM3:
(a,b) are the results of the (global active contour) GAC, while (c,d) are the results of the (localized active
contour) LAC.

Along with Figure 5, the results demonstrated that the total required run time by the LAC is quite
large compared to the GAC. Moreover, these active contour approaches require a seed initialization
procedure in order to begin the segmentation task, whereas the level set is an automated approach
that does not require any initialization. Afterwards, image similarity metrics and statistical metrics
were computed to evaluate the LS, GAC and LAC performance by comparing the extracted melanoma
regions with the corresponding found truths existing in the test datasets. Tables 1 and 2 report the
image similarity indices and image statistical measures, respectively, which were computed from the
segmentation results obtained using the proposed SGO based Otsu and the LS/GAC/LAC.

The results in Tables 1 and 2 indicated that the proposed approach is very efficient in analyzing
the melanomas from the dermoscopic image datasets. It can be established that, for most of the image
cases, the LS based segmentation procedure offered better results than the GAC and LAC. Afterwards,
the proposed segmentation approach was then repeated for the used image datasets with SGO based
Kapur based threshold, Figure 6.

Figure 6 suggests that the LS and GAC provides superior results compared to LAC. This finding
is confirmed by the values indicated in Table 3.

Table 1. Image similarity measure of SGO based Otsu pre-processing procedure. JI: Jaccard Index; DC:
Dice Coefficient; FPR: false positive rate; FNR: false negative rate; LS: level set.

Image Segmentation Approach JI DC FPR FNR

NM3
LS 0.8794 0.9305 0.1285 0.0101

GAC 0.8728 0.9310 0.1004 0.0073
LAC 0.8744 0.9311 0.1026 0.0193

NM5
LS 0.8395 0.9004 0.0885 0.0064

GAC 0.8226 0.8917 0.1743 0.0110
LAC 0.8106 0.8853 0.1006 0.0097

SSM31
LS 0.8652 0.9106 0.0713 0.0093

GAC 0.8408 0.9274 0.0945 0.0115
LAC 0.8511 0.9037 0.0836 0.0284

SSM21
LS 0.8316 0.8925 0.0814 0.0377

GAC 0.8014 0.8818 0.1004 0.0604
LAC 0.8028 0.8674 0.0560 0.0840

229
LS 0.8284 0.8911 0.0106 0.0947

GAC 0.8004 0.8972 0.0219 0.0956
LAC 0.8084 0.8779 0.0724 0.0821

9953
LS 0.7827 0.8922 0.0084 0.0726

GAC 0.8173 0.9105 0.0202 0.0622
LAC 0.8091 0.9007 0.0115 0.0519
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Table 2. Image statistical values of SGO based Otsu pre-processing procedure.PRE: precision; FM:
F-measure; SEN: sensitivity; SPE: specificity; BCR: balanced classification rate; BER: balanced error rate;
ACC: accuracy.

Image Approach PRE FM SEN SPE BCR BER% ACC

NM3
LS 0.9981 0.9813 0.9652 0.9939 0.9793 2.0606 0.9792

GAC 0.9941 0.9852 0.9765 0.9799 0.9782 2.1781 0.9782
LAC 0.9930 0.9843 0.9758 0.9759 0.9759 2.4114 0.9759

NM5
LS 0.9980 0.9911 0.9844 0.9888 0.9866 1.3403 0.9866

GAC 0.9998 0.9774 0.9561 0.9990 0.9775 2.2420 0.9773
LAC 0.9998 0.9789 0.9589 0.9992 0.9791 2.0882 0.9789

SSM31
LS 0.9988 0.9847 0.9709 0.9964 0.9837 1.6268 0.9836

GAC 0.9986 0.9822 0.9663 0.9957 0.9810 1.8980 0.9809
LAC 0.9993 0.9825 0.9662 0.9980 0.9821 1.7858 0.9820

SSM21
LS 0.9975 0.9983 0.9990 0.8585 0.9288 7.1187 0.9261

GAC 0.9966 0.9978 0.9990 0.8087 0.9038 9.6129 0.8988
LAC 0.9968 0.9979 0.9991 0.8194 0.9092 9.0752 0.9048

229
LS 0.8629 0.9261 0.9993 0.7867 0.8930 10.6964 0.8866

GAC 0.9641 0.9703 0.9767 0.9511 0.9639 3.6049 0.9638
LAC 0.9646 0.9723 0.9802 0.9517 0.9659 3.4019 0.9658

9953
LS 0.8465 0.8967 0.9531 0.7139 0.8335 16.6418 0.8249

GAC 0.8946 0.9436 0.9982 0.8053 0.9018 9.8166 0.8966
LAC 0.8919 0.9424 0.9990 0.7996 0.8993 10.0619 0.8938
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Figure 6. Outcomes of the Kapur based thresholding approach: (a) tri-level thresholding; (b) 
morphological procedure; (c) extracted region using LS; (d) extracted region using GAC; and (e) 
extracted region using LAC. 

Figure 6. Outcomes of the Kapur based thresholding approach: (a) tri-level thresholding;
(b) morphological procedure; (c) extracted region using LS; (d) extracted region using GAC;
and (e) extracted region using LAC.
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The values in Table 3 indicate that the JI, DC, FPR and FNR values obtained with the SGO based
Kapur and LS are better than the ones obtained with the SGO based Kapur and GAC or SGO based
Kapur and LAC. Additionally, the overall average results for all the (44 + 76 + 20) 140 test images are
reported in Tables 4 and 5 regarding the average values of the image similarity indexes, including JI,
DC, FPR and FNR, and the statistical indexes, such as PRE, FM, SEN, SPE, BCR, NER and ACC.

Table 3. Image similarity measures concerning the Kapur based pre-processing procedure.

Image Segmentation Approach JI DC FPR FNR

NM3
LS 0.8852 0.9391 0.1225 0.0064

GAC 0.8669 0.9287 0.1174 0.0312
LAC 0.8401 0.9131 0.1079 0.0692

NM5
LS 0.8111 0.8957 0.2320 7.10 × 10−4

GAC 0.8004 0.8891 0.2482 9.13 × 10−4

LAC 0.6695 0.8020 0.2226 0.1815

SSM31
LS 0.9102 0.9530 0.0948 0.0035

GAC 0.8971 0.9458 0.1099 0.0043
LAC 0.8989 0.9468 0.1102 0.0020

SSM21
LS 0.8157 0.8985 0.0525 0.1415

GAC 0.7792 0.8759 0.0516 0.1806
LAC 0.7658 0.8674 0.0560 0.1913

229
LS 0.8031 0.8908 0.0029 0.1946

GAC 0.7985 0.8879 0.0015 0.2003
LAC 0.7355 0.8476 0.0908 0.1977

9953
LS 0.7253 0.8408 0.0000 0.2747

GAC 0.9271 0.9622 0.0266 0.0483
LAC 0.9223 0.9596 0.0313 0.0488

Table 4. Overall results for the image similarity metrics with the proposed approach.
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Table 5. Overall results for the image statistical metrics with the proposed approach.

Approach PRE FM SEN SPE BCR BER% ACC

Otsu based threshold
LS 0.9812 0.9795 0.9827 0.9014 0.9331 5.7715 0.9517

GAC 0.9796 0.9727 0.9803 0.8958 0.9186 6.0843 0.9416
LAC 0.9685 0.9736 0.9774 0.8971 0.9158 5.8025 0.9481

Kapur based threshold
LS 0.9826 0.9805 0.9841 0.9116 0.9284 4.9963 0.9619

GAC 0.9803 0.9772 0.9825 0.9028 0.9188 5.8670 0.9571
LAC 0.9715 0.9758 0.9781 0.8987 0.9172 5.7016 0.9486

The overall average results reported in Tables 4 and 5 prove that the average values of the image
similarity indexes and of the statistical indexes, respectively, are better by using the SGO based Kapur
and LS approach compared to the other procedures considered in this study. Generally, the proposed
approach using SGO based Kapur supports the image pre-processing and LS segmentation more
efficiently in order to extract the skin lesions both from simple and complex dermoscopic images
comparatively to the other studied alternatives. The results of Table 5 indicate that this approach offers
superior sensitivity of98.41%, specificity of91.16% and accuracy of 96.19% on the used image datasets.
Furthermore, the classification and detection accuracy of the SGO based Otsu and LS as well as SGO
based Kapur and LS were tested using the skinCAD tool [28]. The corresponding results are illustrated
in Figure 7 and indicated in Table 6.
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Figure 7. Prediction of melanoma severity in image NM3 using SkinCAD: (a) test image; (b) extracted 
melanoma region; (c) initial trace; and (d) final trace. 
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Figure 7. Prediction of melanoma severity in image NM3 using SkinCAD: (a) test image; (b) extracted
melanoma region; (c) initial trace; and (d) final trace.
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Table 6. Results obtained with SkinCAD tool.

Image Segmentation Approach
Lesion Malignancy

Otsu Kapur

Probability Risk Probability Risk

NM3
LS 0.8363

High

0.8784

High

GAC 0.7947 0.8216
LAC 0.8144 0.8027

NM5
LS 0.8153 0.8639

GAC 0.8271 0.8406
LAC 0.8026 0.8013

SSM31
LS 0.8246 0.8815

GAC 0.8116 0.8217
LAC 0.8075 0.8015

SSM21
LS 0.7260 0.8037

GAC 0.7826 0.8110
LAC 0.7624 0.8046

229
LS 0.8016 0.8218

GAC 0.8261 0.8639
LAC 0.8136 0.7915

9953
LS 0.7940 0.8125

GAC 0.8003 0.8016
LAC 0.8117 0.7918

The skinCAD tool compares the input test image (Figure 7a) and the mask (Figure 7b) to create the
initial and final trace as shown in Figure 7c,d. After creating the final trace, the skinCAD tool considers
the inner region of the trace and applies the ABCD rule as discussed previously. The tool analyzes the
traced region with various features along with image similarity measures and statistical measures and
provides the probability of lesion malignancy and the risk rate. Based on the probability as well as the
risk rates, the suitable treatment procedure can be planned during routine clinical examination.

Consequently, it can be suggested that if the proposed approach is combined with the skinCAD
tool, then the sensitivity, specificity and accuracy of the skin melanoma discovery practice can be
improved and skin lesions can be efficiently diagnosed irrespective of the image complexities. Thus,
the proposed approach can be considered to analyze routine clinical skin melanoma images based on
the comparative analysis that is carried out between the Otsu and Kapur threshold techniques based
on the SGO algorithm.

4. Conclusions

In the current work, a novel tool was proposed to extract suspicious region from RGB dermoscopic
images. This tool included a two steps procedure with SGO based Otsu/Kspur tri-level based
thresholding as the pre-processing stage and level set/active contour based segmentation as the
post-processing stage. In order to test the proposed computational tool, three well-known skin
melanoma datasets, namely Dermis (44 images), Dermquest (76 images) and ISBI2016 challenge
(20 images), were used. Initially, the SGO based Otsu and LS approach was implemented and then the
proposed approach was also used with the prominent active contour approaches, namely GAC and
LAC. Similar experiments were performed with the SGO based Kapur.

The performances of Otsu/Kapur as well as LS/GAC/LAC were assessed using well-known
image similarity metrics and images statistical metrics. The results confirmed that the proposed tool is
very effective in extracting lesion sections from hairy skin images. The comparative study performed
between the extracted melanoma regions and the corresponding ground truths confirmed that the SGO
based Kapur and LS based approach achieved superior results compared to the alternatives studied in
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the present study. Finally, the detection accuracy of the proposed tool was validated using the skinCAD
tool and the probabilities of the lesion malignancy and the risk factors were obtained.

From the experimental results, it could be established that the proposed SGO based Kapur and
LS based approach is very efficient in extracting melanoma regions from digital dermoscopic images
with high values of sensitivity, specificity and accuracy.

In the near future, the proposed tool should be further evaluated using larger image datasets,
including dermoscopic images acquired in real medical scenarios. On the other hand, additionally
to the ABCD rule, other assessment rules, like the 7-point checklist and Menzies’ method, should
be studied.
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