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Abstract: Recent years have witnessed a growing interest in developing automatic parking systems
in the field of intelligent vehicles. However, how to effectively and efficiently locating parking-slots
using a vision-based system is still an unresolved issue. Even more seriously, there is no publicly
available labeled benchmark dataset for tuning and testing parking-slot detection algorithms. In this
paper, we attempt to fill the above-mentioned research gaps to some extent and our contributions are
twofold. Firstly, to facilitate the study of vision-based parking-slot detection, a large-scale parking-slot
image database is established. This database comprises 8600 surround-view images collected from
typical indoor and outdoor parking sites. For each image in this database, the marking-points and
parking-slots are carefully labeled. Such a database can serve as a benchmark to design and validate
parking-slot detection algorithms. Secondly, a learning-based parking-slot detection approach,
namely PSDL, is proposed. Using PSDL, given a surround-view image, the marking-points will be
detected first and then the valid parking-slots can be inferred. The efficacy and efficiency of PSDL
have been corroborated on our database. It is expected that PSDL can serve as a baseline when the
other researchers develop more sophisticated methods.
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1. Introduction

Owing to the increased demand for autonomous driving [1,2], the development of automatic
parking assistant systems (PAS) has become a topic of intense study. A typical automatic parking
system starts by target position designation, i.e., locating a vacant parking space for the vehicle.
To resolve the problem of target position designation, various solutions have been proposed in the
literature and they roughly fall into two categories, infrastructure-based ones and in-vehicle sensor
based ones.

A typical infrastructure-based method usually resorts to a pre-built map and infrastructure-level
sensors. Desirable target positions are designated based on the infrastructure and the vehicle
receives the parking information through vehicle-infrastructure communication [3–8]. Obviously,
the infrastructure-based methods have an advantage of managing all parking-slots; however, they may
not be applicable in a short time due to the requirement of additional hardware installation on current
park-sites and vehicles.

When the infrastructure is not available, the PAS may need to depend on an in-vehicle
sensor-based method to identify an appropriate parking space. Such methods can perceive the
available parking spaces during the movement of the vehicle by making only use of sensors it carries.
These methods can be categorized into two groups, the free-space-based ones and the parking-slot-
marking-based ones.
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A free-space-based approach designates a target position by recognizing a vacant space between
two adjacent vehicles. This is the most widely used approach as it can be implemented using
various range-finding sensors, such as ultrasonic sensors [9–15], laser scanners [16–18], short-range
radars [19–21], structured light [22], depth cameras [23], stereo cameras [24–29], etc. However,
the free-space-based approach has an inherent drawback in that it cannot find free spaces when
there is no adjacent vehicles and its accuracy depends on the positions and poses of adjacent vehicles.

Parking-slot-markings refer to the regular line segments painted on the ground, indicating
the valid areas for parking. Unlike the free-space-based approaches, a parking-slot-marking-based
approach finds parking spaces by recognizing visual slot-markings from image sequences acquired
by cameras mounted on the vehicle and thus its performance does not depend on the existence or
poses of adjacent vehicles. Moreover, in most cases, slot-markings can provide more accurate parking
information than “free-space”. Meanwhile, most car manufacturers have started to produce vehicles
equipped with wide FOV (field of view) imaging sensors, usually used in an AVM (around view
monitoring) system. For these reasons, the parking-slot-marking-based approach has began to draw a
lot of attention recently in the field of parking space detection, which is also our focus of this paper.

1.1. Related Work

In this paper, we focus on studying the problem of in-vehicle vision-based parking-slot detection.
Usually to fulfill this task, a bird’s-eye-view image or a surround-view image (obtained by synthesizing
multiple bird’s-eye-view images) is generated in real-time first and then the parking-slots are detected
from it. Representative work in this area will be reviewed here.

The research in this area started from Xu et al.’s pioneer work [30]. In [30], Xu et al. claimed
that the colors of parking-slot’s markings are quite uniform and different from the background and
thus they trained a neural network to segment parking-slot-markings. Then, they estimated two
perpendicular lines as the parking-slot contour. The drawback of this simple parking-slot model is that
the type (perpendicular or parallel) of the parking-slot cannot be obtained. In [31], Jung et al. presented
a one-touch method that recognizes the line segments of a parking-slot by checking the directional
gradient based on a manually designated point inside the target parking-slot. Since this method
can handle only a single type of parking-slot, Jung et al. [32] extended it to a two-touch method.
This method can recognize various types of parking-slot-markings based on two points of a parking-slot
entrance provided by the driver. In [33], Du and Tan developed a reverse parking system. To detect
the parking-slot, they first applied a ridge detector on the image and then medial axes of the slot
markings can be obtained after the steps of noise filtering, connected components labeling, and removal
of components with a small number of pixels. However, their system relies on human drivers to
identify an empty parking-slot first before initiating the parking process. The apparent drawback of
the methods in [31–33] is that they are not fully automatic.

Fully automatic parking-slot detection methods are developed along two main streams,
the line-based ones and the corner-based ones, according to the primitive visual features they
extract. In [34], Jung et al. assumed that marking-lines consist of lines with a fixed width and
recognized them by applying peak-pair detection and clustering in Hough space [35]. Separating
marking-line segments were at last recognized by a T-shaped template matching. Following the
similar idea as Jung et al.’s work [34], Wang et al. [36] proposed to detect marking-line segments in
Radon space [37] as they considered that Radon transform has a better noise-tolerance ability and
is more robust than Hough transform. One potential drawback of the methods in [34,36] is their
sensitiveness to the marking-line width. In [38], after obtaining the edge map of the surround-view
image, Hamada et al. made use of the probabilistic Hough transform [39] to extract all line segments
and then they inferred the valid parking-slots based on some geometric constraints. In [40], Suhr and
Jung designed a parking-slot detection approach specially for underground and indoor environments.
In their approach, the guide line is detected first and then the separating lines are detected. To detect
the guide line, they utilized the RANSAC (RANdom SAmpling Consensus) [35] algorithm for robust
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line fitting from edge pixels and to detect the separating lines, they used a distance transform-based
chamfer matching [41]. The limitations of Suhr and Jung’s method mainly lie in two points: (1) it can
only detect perpendicular parking-slots but cannot detect parallel ones; (2) it requires that the guide
line of the parking-slots should be visible. In [42], Lee and Seo proposed the so-called “cone-hat” filter
for line-marking extraction and then the extracted line features were assigned to parking-line segments
via entropy-based clustering. After that, the sequential RANSAC algorithm [43] was utilized to fit
parking-lines from clusters. At last, parking-slot candidates were generated and then validated by a
Bayesian network model [44].

Different from line-based ones, a few other parking-slot detection methods are based on corners
and among them Suhr and Jung’s work is a representative one [45,46]. The method proposed in [45,46]
detects corners via the Harris corner detector [47] first and then generates junctions by combining these
corners; finally, parking-slots are inferred from junction pairs. Thus, the success rate of this method
highly depends on the robustness of the Harris corner detector.

1.2. Our Motivations and Contributions

Having investigated the literature, we find that in the field of vision-based parking-slot detection,
there is still large room for further improvement in at least two aspects.

Firstly, vision-based parking-slot detection is not an easy problem. The backgrounds can vary
significantly in different parking sites as the ground surfaces can have various textures. More seriously,
the illumination condition can change greatly, especially at the outdoor parking sites. Though a
plethora of solutions have been proposed, nearly all the existing state-of-the-art ones are based on
low-level visual features, such as lines and corners, detected by some low-level vision algorithms
(such as Canny edge detector, Hough transform, Radon transform, Harris corner detector, etc.).
These features actually are not quite distinguishable and even worse, they are unstable and
unrepeatable to changes in environment aroused by noise, clutter, illumination variation, etc.
These serious drawbacks inevitably limit the performance of methods depending on low-level
features. Actually, how to efficiently and accurately detect parking-slots using vision-based methods
in uncontrolled environment is still a great challenge. In addition, none of the researchers have ever
published their source codes, which undoubtedly hinders the development of this field.

Secondly, vision-based parking-slot detection is actually a “pattern classification” problem.
To cope with it, a publicly-available large-scale benchmark dataset is highly desired, which in fact is
indispensable for researchers to design and compare the detection algorithms. Unfortunately, previous
researchers have never published their datasets and thus such a dataset is still lacking in this area.
Without a common benchmark dataset, it is impossible to make fair comparisons among different
parking-slot detection algorithms.

In this work, we make an attempt to fill the aforementioned research gaps to some extent.
Our contributions in this paper are summarized as follows:

(1) A data-driven learning-based approach, namely PSDL (Parking-Slot Detection based on Learning),
is proposed for parking-slot detection. Given a surround-view image, PSDL detects the marking-points
using a pre-trained detector first and then infers the valid parking-slots from them. Marking-points
are defined as the cross-points of parking-lines. In Figure 1, examples of marking-points on two
surround-view images are marked by yellow circles. The advantages of PSDL over the existing
parking-slot detection methods are twofold. Firstly, PSDL is built upon marking-point patterns, which
are more distinguishable and stable than primitive visual features, such as lines or corners. Secondly,
for detecting marking-points, PSDL adopts a data-driven learning-based strategy, which is much more
robust to changes of imaging conditions than low-level vision algorithms. To our knowledge, our
work is the first to use learning-based techniques to detect visual patterns in the field of parking-slot
detection. PSDL can detect both the perpendicular and the parallel parking-slots. Besides, it can work
equally well in indoor and outdoor environments. Its efficacy and efficiency have been thoroughly
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evaluated in experiments. As we have already published its source code, PSDL can serve as a baseline
when the other researchers develop more sophisticated algorithms.

(2) To facilitate the study of vision-based parking-slot detection, we have established a large-scale
benchmark dataset and have made it publicly available to the research community. This dataset
comprises 8600 surround-view images collected from typical indoor and outdoor parking sites with our
experimental car and all the images were manually labeled with care. Such a dataset can be employed
for training and testing new parking-slot detection algorithms. To our knowledge, this dataset is the
first of its kind in the field of vision-based parking-slot detection. Please refer to Section 4.1 for more
details about this dataset.

(a) (b)

Figure 1. (a,b) are two surround-view images taken from two typical parking sites. (a) is taken
from an underground parking site while (b) is taken from an outdoor parking site. Parking-slots in
(a) are perpendicular while the ones in (b) are parallel. Yellow circular marks indicate the positions of
marking-points.

To make the results reported in this paper fully reproducible, the collected benchmark dataset and
all the relevant source code have been made publicly available at https://cslinzhang.github.io/ps/.

The remainder of this paper is organized as follows. Section 2 presents the steps to generate
the surround-view image. Section 3 introduces our novel approach PSDL for parking-slot detection.
Experimental results are presented in Section 4. Finally, Section 5 concludes the paper.

2. Surround-View Generation

The high-level structure of a typical vision-based PAS system is shown in Figure 2. In such
a system, the surround-view image sequence is synthesized in real-time from outputs of multiple
wide-angle cameras mounted on the vehicle. Taking the surround-view image as input, the parking-slot
detection module detects the valid parking-slot(s) and then send the coordinates of parking-slot(s)
with respect to the vehicle coordinate system to the decision module for further process (For example,
usually the decision module will use an ultrasonic radar to test whether the parking-slot returned by
the parking-slot detection module is vacant or not). In this section, we briefly introduce the steps for
surround-view generation.

The automotive surround-view camera system normally consists of 4 to 6 wide-angle cameras
mounted around the vehicle, each facing a different direction. On our experimental car, 4 low-cost
fish-eye cameras are mounted. From these camera inputs, a 360◦ surround-view image around the
vehicle can be synthesized.

https://cslinzhang.github.io/ps/
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Figure 2. The high-level structure of a typical vision-based parking assistance system. It usually
comprises two key modules, the surround-view synthesis module and the parking-slot detection
module taking the surround-view image as input.

Actually, the surround-view is the composite view of four bird’s-eye-views, the front-view, the left
view, the rear view, and the right view. Two adjacent bird’s-eye-views overlap with each other. The key
step for generating the bird’s-eye-view image is to build an off-line lookup table TB→F, mapping a
point xB on the bird’s-eye-view image to a position xF on the input fish-eye image, by conducting a set
of calibration operations. To determine TB→F, we need to determine PB→W the transformation matrix
from the bird’s-eye-view coordinate system to the world coordinate system, PW→U the transformation
matrix from the world coordinate system to the undistorted input image coordinate system, and TU→F
the lookup table mapping a point on the undistorted input image to a position on the original input
fish-eye image. Figure 3 illustrates the relationships among the coordinate systems involved in
bird’s-eye-view generation.

The distortion coefficients of the fish-eye camera can be estimated by Zhang’s calibration
method [48,49] and accordingly, the mapping table TU→F can be obtained.
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Figure 3. The relations among the coordinate systems involved in surround-view generation. “CS” is
short for “coordinate system”.

PB→W is a similarity transformation matrix, which can be determined straightforwardly if the
size (measured by pixels) of the bird’s-eye-view image and the corresponding physical visible range
(measured by millimeters) are determined beforehand. As illustrated in Figure 4, suppose that the size
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of the bird’s-eye-view image is M× N and the height of the corresponding physical area is H mm, it is
easy to verify that PB→W can be expressed as,

PB→W =

 H
M 0 − HN

2M
0 − H

M
H
2

0 0 1

 (1)

To estimate the homography matrix PW→U , a calibration field is used, in which the world
coordinates of the feature points are known beforehand. An image of the calibration field is captured
and then undistorted using TU→F. Then, on the undistorted image, NF feature points (NF cannot be
smaller than 4 and based on our experience it is usually set between 10 and 20.) can be manually
selected as illustrated in Figure 5. Of course, for each selected feature point i we know its coordinates
xi

W in the world coordinate system and its coordinates xi
U in the undistorted image coordinate system.

The relationship between xi
W and xi

U is xi
U = PW→U xi

W . Therefore, PW→U can be estimated by solving

a least-square problem based on correspondence pairs
{

xi
W , xi

U
}NF

i=1.

X

Y

X

Y

H

(mm)
M 

(pixels)

N (pixels)

bird’s-eye-view coordinate system world coordinate system

B WP
→

Figure 4. The relationship between the bird’s-eye-view coordinate system and the world coordinate system.

(a) (b)

Figure 5. Illustration for the calibration process to obtain the homography matrix PW→U between the
world coordinate system and the undistorted image coordinate system. (a) is the original fish-eye
image of the calibration field and its undistorted version is shown in (b); On (b), NF feature points are
manually selected as marked by yellow circles. For the selected feature points, their coordinates xi

W
in the world coordinate system and their coordinates xi

U in the undistorted image coordinate system
are known.

When the matrices PB→W and PW→U , and the mapping table TU→F are ready, the mapping table
TB→F can be finally determined. In our case, we use four fish-eye cameras and thus we can have four
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mapping tables
{

Ti
B→F

}4
i=1, each being responsible for generating one bird’s-eye-view. To synthesize

the surround-view, at last we need to determine the stitching line between each pair of adjacent
bird’s-eye-views. With the four stitching lines, for a point on the surround-view, we can know which
bird’s-eye-view it should come from and accordingly, which mapping table and the associated input
fish-eye image should be used to determine its pixel value.

In Figure 6, we show an example for surround-view generation. Figure 6a–d is four fish-eye
images and Figure 6e is the surround-view image synthesized from Figure 6a–d.

Figure 6. Images (a–d) is captured from the front, the left, the back, and the right fish-eye cameras,
respectively; (e) is the surround-view image synthesized from (a–d).

3. PSDL: A Learning Based Approach for Detecting Parking-Slots

In this section, our proposed parking-slot detection approach PSDL will be presented in detail. It is
designed to detect typical perpendicular and parallel parking-slots as illustrated in Figure 7. Based on
Figure 7, it can be seen that the entrance-lines of parking-slots that can be correctly detected by our
PSDL approach are composed of “T-shaped” or “L-shaped” marking-point patterns. PSDL actually
comprises two phases, detecting marking-points and then inferring valid parking-slots from detected
marking-point patterns.
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Figure 7. Typical types of parking-slots that the proposed algorithm PSDL can detect.

3.1. Marking-Point Detection

A marking-point pattern refers to a local image patch centered at a cross-point of parking-line
segments, as indicated by the yellow circular marks in Figure 7. To detect marking-point patterns,
a binary classifier is designed, which takes a local image patch as input and outputs a binary value
indicating whether the input is a marking-point pattern or not. Based on the labeled benchmark
dataset (see Section 4.1 for details), the positive training image patches can be simply extracted from
labeled surround-view images while the negative training patches are extracted using a bootstrapping
process during training. It needs to be stressed that based on our experience, chrominance information
is unstable for parking-slot detection since the lighting conditions can vary significantly in different
parking occasions. Hence, the colorful training surround-view images are first converted to their
gray-scale versions. Similarly, at the testing stage, the input surround-view image will also be converted
to gray-scale.

To train the marking-point detector, features and the classifier model need to be determined.
With respect to features, three types of features are used. The first feature is the normalized intensity.
The second feature is the gradient magnitude. Given an image I(x), its partial derivatives Gx(x)
and Gy(x) can be computed by filtering I(x) with Sobel gradient operators [35]. Then, the gradient

magnitude of I(x) is computed as GM(x) =
√

G2
x(x) + G2

y(x). The last type of feature is the oriented

gradient magnitudes [50]. The ith oriented gradient magnitude map Qi(x) of I(x) is defined as,

Qi(x) = GM(x) · 1 (Θ(x) == i) , i = 1, 2..., NO (2)

where 1 (·) is the indicator function, Θ(x) is the quantized gradient angle of I(x) and the range of Θ(x)
values is [1, NO]. Given an image patch, its normalized intensity map, its gradient magnitude map,
and its oriented gradient maps are vectorized and then concatenated together as the final feature vector.

With respect to the classifier, we adopt the popular AdaBoost framework [51]. A boosted classifier
H consisting of M weak classifiers can be represented as,

H(x) =
M

∑
t=1

αtht(x) (3)
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where each ht is a weak classifier and αt is its associated weight. x is classified as positive if H(x) > 0
and H(x) serves as the confidence. In terms of the weak classifier, we use the shallow decision tree.
The training is conducted in several stages and after each stage a bootstrapping process is performed
to extract negative samples for the next stage.

At the detection stage, if the base AdaBoost classifier is utilized, it would be quite slow. A cascade
structure is a common way to reduce the computational burden of evaluating a complex classifier over
an entire image [52]. To simplify training, we use the “constant soft-cascade” strategy [53] instead of a
real cascade structure. During training, for the node i of the tree ht, we record its weighted log-ratio
defined as,

li
t =

1
2

αt ln
pi

1− pi
(4)

where pi is the ratio of positive samples to all the samples reaching this node. li
t can measure the

“positiveness” of samples reaching the node i of the tree ht. At the testing stage, when a testing sample
t reaches a node whose associated weighted log-ratio is smaller than a pre-defined constant threshold
θ, the testing stops since the probability of t being positive will be quite low. Major steps for training
the marking-point detector and applying it on a given surround-view image to detect marking-points
are illustrated in Figure 8.
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Figure 8. Processing flows for training the marking-point detector and applying it on a surround-view
image to detect marking-points.

Another issue needs to be considered is that since marking-point patterns can be of any directions,
a single detector would not be accurate enough. Thus, we train multiple detectors, each of them
being responsible for detecting marking-point patterns whose directions are within a specific range.
To keep the balance between the detection accuracy and the speed, we train four detectors

{
detj

}4
j=1

and detj is responsible for detecting marking-point patterns whose directions are within the range[
− 3π

4 + π
2 j,−π

4 + π
2 j
]
. In order to train multiple detectors, when we label positive samples of

marking-point patterns, their directions are also labeled besides their positions. The directions of
marking-slot patterns are labeled in a way as illustrated in Figure 9. When positive image patches
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are extracted, they are first rotated to make their directions equal to 0. To train detj, we rotate each

positive image patch with a set of angles
{

j−1
2 π + π

4 rk

}K

k=1
, where rk is a random number uniformly

distributed over [−1, 1] and K defines the number of possible rotations. It can be known that if NP
positive samples are labeled, there will be KNP positive samples for training detj.

In Figure 10, marking-point detection results on two typical surround-view images are shown.

Figure 9. Directions of the marking-point patterns.

328.7

275.8

226.6

315.3

292.2 145.3

Figure 10. Marking-point detection results on two typical surround-view images.

3.2. Parking-Slot Inference

Having detected the marking-points, we then can infer valid parking-slots from them based on
some rules.

Given two marking-points P1 and P2, we need to check whether the line
−−→
P1P2 can be a valid

entrance-line of a parking-slot. At first, the length of
−−→
P1P2 should satisfy some length constraints

obtained from the prior knowledge. Then, we check whether the image patterns around P1 and P2

conform to the parking-slot model. By examining the ideal parking-slot models shown in Figure 7,
it can be seen that to be a valid parking-slot entrance-line, image patterns around P1 and P2 should
conform to one of the pattern models as shown in Figure 11. Inspired by this analysis, we propose
to use Gaussian line templates to check the image patterns around P1 and P2. Six Gaussian line
templates are used and their positions and orientations relative to P1 and P2 are illustrated in Figure 12.
By checking the six responses r1∼r6 with a set of simple rules, whether

−−→
P1P2 can be a valid entrance-line

can be determined. Besides, whether the parking-slot is at the clockwise side or the anti-clockwise side
of
−−→
P1P2 can also be determined. The checking-rules are summarized in Algorithm 1.

After completing the abovementioned steps, we can get a set of “entrance-line” candidates.
However, there is one case that they may contradict with each other as illustrated in Figure 13.
In Figure 13,

−−→
P1P2 and

−−→
P2P3 are two entrance-line candidates for two perpendicular parking-slots while−−→

P1P3 is an entrance-line candidate for a parallel parking-slot. However, in fact,
−−→
P1P3 is an invalid

entrance-line. Hence, when the entrance-line candidates are ready, we need to remove the ones passing
any valid marking-points to annihilate contradictions.
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1P

(a) (b)

2P

1P 2P

Figure 11. If P1P2 is a valid parking-slot entrance-line, the local image patterns around P1 and P2

should satisfy the pattern models (a) or (b). In (a), the parking-slot is at the clockwise side of P1P2

while in (b) the parking-slot is at the anti-clockwise side of P1P2.

Figure 12. Six Gaussian line templates are used to examine the local image patterns around the
marking-points P1 and P2.

1
P 2

P 3
P

Figure 13. P1P2 and P2P3 are two entrance-line candidates for two perpendicular parking-slots while
P1P3 is an entrance-line candidate for a parallel parking-slot. Actually, P1P3 is invalid and should
be removed.

Finally, valid entrance-lines are remained, each of which represents a valid parking-slot.
Their information is then sent to the decision-making module. It needs to be noted that the “depth” of
the parking-slot is determined by prior knowledge. Moreover, if multiple parking-slots are detected
on the current surround-view image, it is the responsibility of the decision-marking module to choose
the most appropriate one. In Figure 14, six typical surround-view images with marked parking-slots
detected by PSDL are shown. From these samples, it can be seen that the proposed algorithm PSDL has
a strong capability for accurately detecting different types of parking-slots under various conditions.
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Algorithm 1: Checking-Rules for Determining the Validity of P1P2 for Being an Entrance-Line
and the Parking-Slot Orientation

t is a predefined threshold;
if r1 >> r3 and r2 >> r3 and r4 >> r6 and r5 >> r6 and r1 > t and r2 > t and r4 > t and r5 > t
then
−−→
P1P2 is an entrance-line candidate;
The parking-slot is at the clockwise side of

−−→
P1P2;

end
else if r3 >> r1 and r2 >> r1 and r6 >> r4 and r5 >> r4 and r3 > t and r2 > t and r6 > t and

r5 > t then
−−→
P1P2 is an entrance-line candidate;
The parking-slot is at the anti-clockwise side of

−−→
P1P2;

end
else
−−→
P1P2 is not an entrance-line candidate.

end

(c) (d)

(e) (f)

(a) (b)

Figure 14. Six surround-view image samples (a–f) with marked parking-slots detected by PSDL.
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4. Experimental Results

4.1. Benchmark Dataset

In order to train and test our proposed parking-slot detection approach PSDL, we have established
a large-scale benchmark dataset, which is publicly available at https://cslinzhang.github.io/ps/.
Surround-view images contained in this dataset were collected from typical indoor and outdoor
parking sites using our self-developed AVM system equipped on a SAIC Roewe E50 (SAIC MOTOR,
Shanghai, China) electric car [54]. Two types of parking-slots, the perpendicular ones and the parallel
ones, are included. The spatial resolution of each surround-view image is 600× 600, corresponding
to a 9600 mm × 9600 mm square region on the physical ground. This dataset comprises two subsets,
the training set and the testing set.

In the training set, we labeled 5100 surround-view images for extracting positive marking-point
patterns. For each marking-point pattern, we recorded its center and its local orientation (as illustrated
in Figure 9). Altogether, we have 13,364 positive marking-point pattern samples. In addition,
we labeled 2400 images for extracting negative samples used for training the marking-point detector.
Specifically, on each image, all the possible marking-points were marked by bounding-boxes.
During training, patches sampled from these images can be used as negative samples if they do
not overlap with any bounding boxes.

The testing set comprises 500 labeled surround-view images. It can be used for testing the
accuracy of a marking-point detection algorithm and also can be used for testing the final accuracy of
a parking-slot detection algorithm.

4.2. Evaluating the Performance of Marking-Point Detection

In our proposed parking-slot detection approach PSDL, marking-point detection is a crucial
step. In this experiment, we evaluated the performance of our marking-point detection algorithm
and also compared it with several other classical methods in the field of object detection, VJ [52],
HoG + SVM [55], HoG + LBP [56], PLS [57], HIKSVM [58], MultiFtr [59] and Roerei [60].

For a ground-truth marking-point gi, if there is a detected marking point di satisfying
‖gi − di‖ < δ, where δ is a predefined threshold, we deem that gi is correctly detected and di is
a true positive. In our experiments, δ was set as 10. To compare various detectors, we plot miss rate
against false positives per image (FPPI) using log-log plots by varying the threshold on detection
confidence. The plots are shown in Figure 15. As recommended in [61], we use the log-average miss
rate (LAMR) to summarize detector performance, computed by averaging miss rate at nine FPPI rates
evenly spaced in log-space in the range 10−2 to 100. Log-average miss rates achieved by different
methods are also shown in Figure 15.

From the results shown in Figure 15, it can be seen that for the task of marking-point detection,
our proposed method can achieve much higher accuracy than the other widely used methods in the
field of object detection. Specifically, the LAMR of our approach is 18.82% while Roerei [60] is the
runner-up whose LAMR is 23.77%.

https://cslinzhang.github.io/ps/
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Figure 15. Marking-point detection results by using different methods.

4.3. Evaluating the Performance of Parking-Slot Detection

In this experiment, the detection accuracy of our proposed parking-slot detection algorithm
PSDL was evaluated on the test set. Besides, the performance of several state-of-the-art methods in
this field, including Jung et al.’s method [34], Wang et al.’s method [36], Hamda et al.’s method [38],
and Suhr&Jung’s method [45], was also evaluated for comparison. We use the precision-recall rates as
the performance measure, which are defined as,

precision = true positives
true positives+ f alse positives

recall = true positives
true positives+ f alse negatives

(5)

Each labeled parking-slot is represented as PSi =
{

Pi
1, Pi

2, oi}, where Pi
1 and Pi

2 are the coordinates
of the two marking-points forming the entrance-line and oi represents the parking-slot’s orientation.
If oi is 1, it means that the parking-slot PSi is at the anticlockwise side of

−−→
P1P2; if oi is −1, it means

that PSi is at the clockwise side of
−−→
P1P2. Suppose that PSd =

{
Pd

1 , Pd
2 , od

}
is a detected parking-slot

and PSl =
{

Pl
1, Pl

2, ol
}

is a labeled ground-truth parking-slot. If Pd
1 matches with Pl

1, Pd
2 matches with

Pl
2, and od is equal to ol , PSd is regarded as a true positive; if Pd

1 matches with Pl
2, Pd

2 matches with Pl
1,

and od is equal to −ol , PSd is also regarded as a true positive; otherwise, PSd is a false positive.
In order to make the results achieved by different approaches comparable, we carefully adjusted

the parameters of all the competing methods to make them achieve nearly the same high precision
rates. Then, we could compare their recall rates. In this case, the approach that can achieve the highest
recall rate is the best. The results are summarized in Table 1. From Table 1, it can be observed that
when operating at a high precision rate, PSDL can achieve a much higher recall rate than all the other
competitors. The superiority of PSDL over the other state-of-the-art competitors corroborates that:
(1) marking-point patterns are more stable and distinguishable than primitive visual features (lines or
corners); and (2) data-driven learning-based detection strategy is more robust to imaging condition
variations than low-level vision algorithms.

PSDL was implemented in C++ and tested on an in-vehicle industrial computer with a 2.4 GHZ
Intel Core i5 CPU and 4G RAM. It can process 20∼25 surround-view image frames per second and
thus it can satisfy the requirements of most automatic PASs.
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Table 1. Performance evaluation of vision-based parking-slot detection methods.

Method Precision Rate Recall Rate

Jung et al. [34] 98.70% 59.13%
Wang et al. [36] 98.59% 61.76%

Hamada et al. [38] 98.61% 63.82%
Suhr&Jung [45] 98.70% 76.22%

PSD_L 98.87% 92.38%

4.4. Discussion about the Usability of Our Parking-Slot Detection System

Parking-slot detection is a key component in a self-parking system. Most of the commercial
parking-slot detection systems are based on ultrasonic radars. These systems share an inherent
drawback that they rely on vehicles which have already been properly parked as references.
In addition, they cannot detect parking-slots defined by parking line segments painted on the ground
either. The vision-based technology is a useful complement to ultrasonic radar based ones. In our
work, a vision-based parking-slot detection system using low-cost imaging sensors was developed.
With respect to the parking-slot detection algorithm, a learning-based approach PSD_L was proposed.
Our system has been internally tested by SAIC MOTOR and it works quite well in practice.

5. Conclusions

Vision-based parking-slot detection is still an unresolved challenging problem. In this paper,
we made two contributions to this field. Firstly, we collected and labeled a large-scale surround-view
image dataset and have made it publicly available to the research community. Such a dataset will
for sure benefit the study of parking-slot detection. Secondly, we proposed a novel learning-based
parking-slot detection approach PSDL. Its high efficacy and efficiency have been corroborated by
comprehensive experiments and it has already been deployed in practice on our experimental car.
PSDL can serve as a baseline when the other researchers develop more advanced approaches.
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