
symmetryS S

Article

Construction of Fullerenes and Pogorelov Polytopes
with 5-, 6- and one 7-Gonal Face

Nikolai Erokhovets † ID

Steklov Mathematical Institute of Russian Academy of Sciences, 119991 Moscow, Russia;
erochovetsn@hotmail.com
† The author is a Young Russian Mathematics award winner.

Received: 19 January 2018; Accepted: 9 March 2018; Published: 15 March 2018

Abstract: A Pogorelov polytope is a combinatorial simple 3-polytope realizable in the Lobachevsky
(hyperbolic) space as a bounded right-angled polytope. These polytopes are exactly simple
3-polytopes with cyclically 5-edge connected graphs. A Pogorelov polytope has no 3- and 4-gons
and may have any prescribed numbers of k-gons, k ≥ 7. Any simple polytope with only 5-, 6- and
at most one 7-gon is Pogorelov. For any other prescribed numbers of k-gons, k ≥ 7, we give
an explicit construction of a Pogorelov and a non-Pogorelov polytope. Any Pogorelov polytope
different from k-barrels (also known as Löbel polytopes, whose graphs are biladders on 2k vertices)
can be constructed from the 5- or the 6-barrel by cutting off pairs of adjacent edges and connected
sums with the 5-barrel along a 5-gon with the intermediate polytopes being Pogorelov. For fullerenes,
there is a stronger result. Any fullerene different from the 5-barrel and the (5, 0)-nanotubes can be
constructed by only cutting off adjacent edges from the 6-barrel with all the intermediate polytopes
having 5-, 6- and at most one additional 7-gon adjacent to a 5-gon. This result cannot be literally
extended to the latter class of polytopes. We prove that it becomes valid if we additionally allow
connected sums with the 5-barrel and 3 new operations, which are compositions of cutting off adjacent
edges. We generalize this result to the case when the 7-gon may be isolated from 5-gons.

Keywords: fullerenes; right-angled polytopes; truncation of edges; connected sum; k-belts; p-vector;
cyclically 5-edge connected graph
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1. Introduction

By an n-polytope, we mean a combinatorial convex n-dimensional polytope, that is a class of
combinatorial equivalence of convex n-dimensional polytopes. For details on the theory of polytopes,
we recommend the books [1,2]. A 3-polytope P is called a Pogorelov polytope (Pog-polytope; see [3,4]),
if it can be realized in the Lobachevsky (hyperbolic) space L3 as a bounded polytope with right
dihedral angles (see [5]). An n-polytope is called simple if any of its vertex is contained in exactly n
facets. A flag polytope is a simple polytope such that any of its set of pairwise intersecting facets has a
non-empty intersection. A k-belt is a cyclic sequence of facets with empty common intersection such
that two facets are adjacent if and only if they follow each other (in [6], it is called a k-gonal prismatic
element, in [7] a ring, and in [8,9] the corresponding object in the dual polytope is called a separating
k-circuit). It can be shown that a 3-polytope P is flag if and only if it is different from the simplex ∆3

and has no 3-belts. Results by A.V. Pogorelov [10] and E.M. Andreev [6] imply that a 3-polytope P is
a Pog-polytope if and only if it is flag and has no 4-belts. Moreover, a right-angled realization in the
Lobachevsky space is unique up to isometries.

Recently, Pog-polytopes attracted the attention of specialists in toric topology [11] and hyperbolic
geometry. To each simple 3-polytope P with m faces, the toric topology assigns an (m + 3)-dimensional
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manifold ZP with an action of the compact torus Tm. If was proven in [12] (see also [13]) that if the
cohomology rings of ZP and ZQ are isomorphic as graded rings and P is a Pog-polytope, then P and
Q are equal as combinatorial polytopes. For given mappings Λ and Λ2 from the set of faces of P to Z3

and Z3
2, respectively (where by Z2, we mean Z/2Z), such that the images of any three faces intersecting

in a vertex form a basis, the toric topology assigns a 6-dimensional manifold M(P, Λ) with an action of
T3 and a 3-dimensional manifold R(P, Λ) with an action of Z3

2. For a Pog-polytope P, the mapping Λ2

defines a subgroup in the right-angled Coxeter group of the polytope P such that the factor-space of
the action of this subgroup on the Lobachevsky space can be identified with R(P, Λ). Such hyperbolic
manifolds were introduced in [14]. An example of mappings Λ and Λ2 can be constructed from any
regular coloring of faces of a polytope in four colors. In [3], it was proven that an isomorphism of
graded cohomology rings of M(P, ΛP) and M(Q, ΛQ) (respectively of graded Z2-cohomology rings of
R(P, Λ2,P) and R(Q, Λ2,Q)), where P is a Pog-polytope, implies that P and Q are equal as combinatorial
polytopes, and the mappings are equivalent in a natural sense.

The notions of flag and Pog-polytopes are closely related to the notion of cyclic k-edge connectivity
in graph theory. A graph G is called cyclically k-edge connected (ck-connected) if G cannot be separated
into two components, each containing a cycle, by deletion of fewer than k edges (see [2,15]). Following
[8,9,16,17], we additionally assume that for k = 4, 5, the complete graph on four vertices is not
ck-connected. Then, a simple 3-polytope P is flag if and only if its graph is c4-connected. A simple
3-polytope P is a Pog-polytope if and only if its graph is c5-connected. The notion of a ck-connectivity
arose during attempts to prove the four color problem (now the four color theorem due to K. Appel and
W. Haken [18–20]) for planar graphs, which states that any planar graph can be colored in four colors
in such a way that any two faces with common edge have different colors. In particular, results by
G.D. Birkhoff [7] imply that the four color problem can be reduced to the graphs of Pog-polytopes with
any 5-belt surrounding a face. We will call such polytopes Pog∗-polytopes. Graphs of these polytopes
are strongly cyclically 5-edge connected (abbreviated c∗5-connected), that is they are c5-connected,
and any separation of the graph by cutting five edges leaves one component that is a simple circuit of
five edges [9].

An example of Pog-polytopes is given by fullerenes, simple 3-polytopes with only 5- and 6-gonal
faces. It follows from the results by T. Dǒslić that fullerenes are flag [21] (see also [22,23]) and have no
4-belts [24] (see also [4,25,26]). They are mathematical models for spherical-shaped carbon molecules
discovered in 1985 by R.F. Curl [27], H.W. Kroto [28] and R.E. Smalley [29] (Nobel Prize 1996 in
Chemistry). For surveys on the mathematical theory of fullerenes, see [30–32]. For mathematical,
physical and chemical aspects of fullerenes, see [33–35]. We also recommend a remarkable paper by
W.P. Thurson [36], who gives a parametrization for the set of all fullerenes. In particular, the results
of [36] imply that the number of fullerenes with given number m faces grows like m9. Another example
of Pog-polytopes is given by k-barrels, k ≥ 5 (or Löbel polytopes [5,14,37]; see Figure 1 for k = 9),
simple 3-polytopes with the boundary glued from two equal parts consisting of a k-gon surrounded
by 5-gons. In [17], the graphs of these polytopes are called biladders on 2k vertices.

Figure 1. The 9-barrel.
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A nice characterization of flag and Pog-polytopes is given by the following result. For flag and
Pog-polytopes it was noted in [3,4], and for Pog∗-polytopes – in [7].

Proposition 1. A simple 3-polytope is flag if and only if any its face is surrounded by a belt.
A simple 3-polytope is a Pog-polytope if and only if any pair of its adjacent faces is surrounded by a belt.
A simple 3-polytope is a Pog∗-polytope if and only if any its face is surrounded by two belts.

There are two operations transforming Pog-polytopes into Pog-polytopes. The first of them is a
cutting off of s subsequent edges of a k-gonal face, 2 ≤ s ≤ k− 4, of a simple 3-polytope by a single
plane and is called an (s, k)-truncation; see Figure 2a. If the inverse operation is defined, we call it a
straightening along an edge; see Figure 2b. The operation of an (s, k)-truncation also appears in the
literature as an addition of an edge [8,9], a simple face splitting [16], an edge surgery [38] or a handle
expansion [17]. It is proven in [9] that also an (s, k)-truncation of a Pog∗-polytope is a Pog∗-polytope,
provided 2 ≤ s ≤ k− 4.

k s
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+
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s
+
3

(a) (b)

k1 k2 k1+k2-4

Figure 2. (a) An (s, k)-truncation; (b) a straightening along an edge.

If the k-gon is adjacent to an m1- and an m2-gon by edges next to cut edges, then we
call the operation an (s, k; m1, m2)-truncation (see Figure 3). We do not take into account the
orientation of the surface of the polytope; hence, we do not distinguish between (s, k; m1, m2)- and
(s, k; m2, m1)-truncations. As we will see later, the parameters s, k, m1 and m2 are important to prove
finer results.
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Figure 3. An (s, k; m1, m2)-truncation.

The second operation we need is a connected sum of 3-polytopes along k-gons surrounded by
k-belts (see Figure 4). It is the combinatorial analog of the gluing of two polytopes along k-gonal faces
orthogonal to adjacent faces. The most important case will be the connected sum with the 5-barrel.
This operation appears in [8,9] as a replacing a pentagon, in [16] as a face splitting of Type 3 and in [17]
as a circuit expansion.
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Figure 4. A connected sum of two polytopes along faces.

The existence of certain combinatorial types of 3-polytopes we usually verify using the Steinitz
theorem (see [1,2]). We formulate it in the form (see, for example, [13,30]) convenient for our arguments.

Theorem 1 (Steinitz). A simple connected plane graph G is the graph of some convex three-dimensional
polytope if and only if any of its faces is bounded by a simple edge cycle and boundary cycles of any two faces
either do not intersect, or intersect by a vertex, or intersect by an edge.

Moreover, there is Whitney’s theorem (see [1]), which states that a plane realization of the graph
of a 3-polytope is combinatorially unique. Using the Steinitz theorem, the following fact may be
proven ([30], see also [4])

Theorem 2. Let P be a connected 3-valent plane graph with each face bounded by a cycle with at least five and
at most seven edges, where the number of boundary cycles with seven edges is at most one. Then, this graph is a
graph of a simple 3-polytope.

In [30], simple 3-polytopes with 5-, 6- and one n-gon are called n-disk-fullerenes. Denote by F the
family of fullerenes, by P7 the family of 7-disk-fullerenes, by P7,5 its subfamily consisting of polytopes
with the 7-gon adjacent to a 5-gon, by P≤7,5 the family F t P7,5 and by P≤7 the family F t P7. For a
familyA, we denote byA∗ the subfamily consisting of all Pog∗-polytopes in A. In [4,26], the following
generalization of Theorem 2 was proven.

Theorem 3 ([4,26]). Let P ∈ P≤7. Then P is a Pog-polytope.

This result leads to a natural question. Let pk be the number of k-gonal faces of a simple
3-polytope P. The collection (pk, k ≥ 3) is called a p-vector. The Euler formula in the case of simple
3-polytopes implies the following formula (see [2]), which can be proven by a direct calculation:

3p3 + 2p4 + p5 = 12 + ∑
k≥7

(k− 6)pk. (1)

V. Eberhard proved ([39], see also [2]) that for any finite collection of non-negative integers
(pk, k ≥ 3, k 6= 6) satisfying the Equation (1), there exists a simple 3-polytope P with pk(P) = pk for
all k 6= 6. A flag polytope has no 3-gons. On the basis of Eberhard’s result, it was proven in [23]
that for any finite collection of non-negative integers (pk, k ≥ 4, k 6= 6) satisfying Equation (1), there
exists a flag polytope P with pk(P) = pk, k 6= 3, 6. The proof used the construction of a simultaneous
cutting off of all the edges of a simple 3-polytope by different planes; see Figure 5. It corresponds to
the Goldberg–Coxeter or Caspar–Klug construction (see [40]) with parameters (2, 0). This operation
does not change the numbers pk, k 6= 6 and increases the number p6 by the number of edges.
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Figure 5. A cutting off of all the edges of a polytope by different planes.

It turns out that for a polytope with no 3-gons, the cut polytope is flag. A Pog-polytope has no
3- and 4-gons, since any face of a flag polytope is surrounded by a belt. In [3,4], it is was proven
that for any finite collection of non-negative integers (pk, k ≥ 7), there exists a Pog-polytope with
pk(P) = pk, k ≥ 7. Moreover, p5(P) = 12 + ∑k≥7(k− 6)pk. The proof is similar to the case of flag
polytopes. Namely, for a polytope without 3- and 4-gons, the cut polytope is a Pog-polytope.

Question: Which restrictions on the numbers (pk, k ≥ 7) imply that a polytope without 3- and 4-gons
is a Pog-polytope?

We have seen that the example is given by the restriction p7 ≤ 1, pk = 0, k ≥ 8.

Example 1. In Figure 6, we present the graph of a simple 3-polytope (this can be easily checked using the
Steinitz theorem) with 5-, 6- and two 7-gonal faces. This polytope has a 3-belt containing both 7-gons; hence, it
is not a Pog-polytope.

Figure 6. A graph of a polytope with 5-, 6- and two 7-gonal faces containing a 3-belt.

The first main result of our paper is the answer to this question.

Theorem 4 (The first main result). For any finite collection of non-negative integers (pk, k ≥ 7) with
∑k≥7 pk > 1 or p7 = 0 and ∑k≥7 pk = 1, there exists a non-flag simple polytope P with pk(P) = pk, k ≥ 7.
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Remark 1. We will also give a slight modification of this construction producing a Pog-polytope with prescribed
numbers pk, k ≥ 7, not using Eberhard’s result.

Hence, P≤7 is a natural subclass in the class of Pog-polytopes.
It can be shown that an (s, k)-truncation transforms a Pog-polytope into a Pog-polytope if and

only if 2 ≤ s ≤ k− 4, and a connected sum of any two Pog-polytopes along faces is a Pog-polytope
(see [4,8,16,38]).

It is easy to see that k-barrels, k ≥ 5, are irreducible polytopes with respect to (s, k)-truncations
and connected sums along faces in the class of Pog-polytopes. There is an additional operation
transforming Pog-polytopes into Pog-polytopes ([8,16]; see Figure 7). It splits a pair of adjacent 5-gons
into four 5-gons and is called in [8] adding a pair of edges. In [8,16], it was independently proven that
any Pog-polytope can be obtained from the 5-barrel by a sequence of (s, k)-truncations, 2 ≤ s ≤ k− 4,
additions of pairs of edges and connected sums with the 5-barrel.

Figure 7. Adding a pair of edges.

It is easy to see that the (n + 1)-barrel is obtained from the n-barrel by adding a pair of edges.
It turns out that this is the only essential case for this operation. Namely, in [9], it was proven that any
Pog∗-polytope can be obtained from a q-barrel, q ≥ 5, by a sequence of (s, k)-truncations, 2 ≤ s ≤ k− 4,
and it was remarked that a similar reasoning proves that any Pog-polytope can be obtained from
a q-barrel, q ≥ 5, by a sequence of (s, k)-truncations, 2 ≤ s ≤ k − 4, and connected sums with the
5-barrel. In [4], the latter fact was rediscovered in a stronger form. Namely, for Pog-polytopes, it is
sufficient to use only (2, k)-truncations, k ≥ 6, and connected sums with the 5-barrel, and for polytopes
different from q-barrels, the initial set can be reduced only to the 5- and the 6-barrel. A careful
study of arguments in [9] shows that they also allow one to leave only (2, k)-truncations, k ≥ 6, for
Pog∗-polytopes and (2, k)-truncations, k ≥ 6, and connected sums with the 5-barrel for Pog-polytopes.
Combining this reasoning with arguments in [4], it is possible to leave only the 5- and the 6-barrel in
the initial set.

Theorem 5 ([4,9]). A simple 3-polytope P is a Pog-polytope if and only if either P is a q-barrel, q ≥ 5, or it can
be constructed from the 5- or the 6-barrel by a sequence of (2, k)-truncations (Figure 8a), k ≥ 6, and connected
sums with the 5-barrel (Figure 8b).

A simple 3-polytope P is a Pog∗-polytope if and only if either P is a q-barrel, q ≥ 5, or it can be constructed
from the 6-barrel by a sequence of (2, k)-truncations, k ≥ 6.

(a) (b)

Figure 8. (a) A (2, k)-truncation; (b) a connected sum with the 5-barrel.
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In [38], this result was rediscovered in a slighter form for Pog-polytopes in the context of
hyperbolic geometry. Namely, T. Inoue proved that any Pog-polytope can be obtained from q-barrels,
q ≥ 5, by (s, k)-truncations, 2 ≤ s ≤ k− 4, and connected sums along p-gons, p ≥ 5 (more precisely, the
reasoning in [38] leaves only the case p = 5). He also proved that any (s, k)-truncation, 2 ≤ s ≤ k− 4,
increases the hyperbolic volume of the right-angled realization, and the volume of the right-angle
realization of a connected sum of polytopes along faces is greater than or equal to the sum of the
volumes of their realizations. He concluded that the 5-barrel has the smallest, while the 6-barrel has the
second value of the hyperbolic volume. In [41], using this method, the first 825 Pog-polytopes according
to hyperbolic volumes were found (and the first 100 of them are explicitly drawn in this paper).

Theorem 5 is related to the classical results in polytope theory. It was proven by V. Eberhard [39]
and by M. Bruckner [42] (see also [2,43]) that a 3-polytope is simple if and only if it can be constructed
from the 3-simplex by a sequence of operations each being a cutting off a vertex, an edge or a pair of two
adjacent edges by a single plane. This result was used by a famous crystallographer, E.S. Fedorov [44].
From the result by A. Kotzig [45] (later proven also by G.B. Faulkner and D.H. Younger [46] and
V. Volodin [47]), it follows that a simple 3-polytope is flag if and only if it can be constructed from the
3-cube by a sequence of (s, k)-truncations, 1 ≤ s ≤ k− 3. In [23] this result was improved. Namely,
a simple 3-polytope P is flag if and only if P can be constructed from the 3-cube by a sequence of
operations of cutting off an edge and a (2, k)-truncation, k ≥ 6. For fullerenes, there are analogs of
this result (see [4,13,26,48,49]). The starting point can be taken to be the 5- or the 6-barrel, but the
difficulty is that the only (s, k)-truncation transforming fullerenes to fullerenes is a (2, 6; 5, 5)-truncation,
also called an Endo–Kroto operation [50]. This is a growth operation, that is it transforms a simple
3-polytope into a simple 3-polytope substituting a new patch (disk partitioned into polygons bounded
by a simple edge-cycle on the surface of a simple polytope) with more faces and the same boundary for
a patch of a polytope. It was proven in [51] that there is no finite sets of growth operations transforming
fullerenes to fullerenes sufficient to construct any fullerene from a finite set of initial fullerenes (seeds).
In [49], an infinite family of operations sufficient to construct any fullerene except for C28(Td) from the
5-barrel was found (here, Td means tetrahedral symmetry). This family consists of operations Li, i ≥ 0,
Bi,j, i, j ≥ 0 (see Figure 9 for L0, L3, B0,0 and B3,2) and a connected sum with the 5-barrel along a 5-gon
surrounded by 5-gons.

The faces are completely included in the figure, and all the faces fi and gj should be pairwise
distinct. Each of the faces fi and gj may be either a 5- or a 6-gon. Using the fact that in the fullerenes
without adjacent pentagons (IPR-fullerenes), any 5- or 6-belt surrounds a face (it follows from [52];
see also [4]), it can be shown that it is sufficient to consider only transformations Li such that the two
5-gons and the faces (g1, . . . , gi+2) in the initial fullerene form a patch, and only transformations Bi,j
such that the two 5-gons and the faces (g1, . . . , gi+j+3) in the initial fullerene form a patch. This gives
an infinite family of growth operations sufficient to construct any fullerene from the 5-barrel and the
fullerene C28(Td).
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Figure 9. Operations for the construction of fullerenes.

In [4,13,26,48], finite sets of growth operations sufficient to build any fullerene from a finite set of
seeds was found on account of allowing, at intermediate steps, simple 3-polytopes with 5-, 6- and one
7-gon adjacent to some 5-gon. By Theorem 3, any such polytope is a Pog-polytope.

Let us formulate the strongest result in this direction improving Theorem 5 for a special class of
polytopes. Let us introduce a special subfamily of fullerenes. The first polytope D0 is the dodecahedron
(the 5-barrel). D5 is a connected sum of two copies of D0. D5(k+1) is a connected sum of D5k with
D0 along a 5-gon surrounded by 5-gons (see Figure 10). The polytopes D5k, k > 0, are called
(5, 0)-nanotubes. Denote the family of polytopes {D5k, k ≥ 0} by D. It was proven in [4,13,26]
that a fullerene P belongs to D if and only if P contains a patch C1 consisting of a 5-gon surrounded by
5-gons. It follows from [52,53] that a fullerene P belongs to F ∗ if and only if either P is the 5-barrel or
P /∈ D.

Figure 10. A construction of (5, 0)-nanotubes.

Theorem 6 ([4]). Any fullerene P ∈ F \ F ∗ = D \ {D0} can be constructed from the 5-barrel by operations
of a connected sum with a copy of the 5-barrel along the center of a patch C1. It cannot be obtained from a simple
3-polytope without 4-gons by a (2, k)-truncation, k ≥ 6.

Any fullerene P ∈ F ∗ is either the 5-barrel or can be constructed from the 6-barrel by a sequence of
(2, 6; 5, 5)-, (2, 6; 5, 6)-, (2, 7; 5, 5)- and (2, 7; 5, 6)-truncations in such a way that any intermediate polytope is
either a fullerene in F ∗ or a polytope in P∗7,5.
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Nevertheless, not any polytope in P7,5 can be obtained by a connected sum with the 5-barrel or
by a (2, k)-truncation from a polytope in P≤7,5. The example is given by the polytope with the graph
drawn in Figure 11. Indeed, a connected sum with the 5-barrel produces a 5-gon surrounded by 5-gons,
and a (2, k)-truncation produces a 5-gon with one edge lying in an r-gon, r = 5 or 6, and intersecting by
vertices a p- and a q-gon with p, q ≥ 6. In the presented polytope P, any such edge belongs to a 6-gon
and intersects two 6-gons, which means that the polytope Q transforming to P contains two 7-gons.

Figure 11. A polytope in P7,5, which cannot be obtained from a polytope in P≤7,5 by a (2, k)-truncation
or a connected sum with the 5-barrel.

Let us mention that a connected sum with the 5-barrel is evidently a growth operation.
Furthermore, an (s, k; m1, m2)-truncation, 2 ≤ s ≤ k − 4, is a growth operation on the class of flag
polytopes, since it substitutes the patch consisting of the new 5-gon, and the (k− 1)-, (m1 + 1)- and
(m2 + 1)-gons for the patch consisting of the corresponding k-, m1- and m2-gons.

Our second main result gives the method to construct any polytope in P≤7,5 \ D from the 6-barrel
by a sequence of growth operations from the finite list in such a way that intermediate polytopes
belong to the same family.

Since any face of a flag 3-polytope is surrounded by a belt, if a Pog-polytope contains a 5-gon
surrounded by 5-gons, these six faces together form a patch, which we denote C1; see Figure 12a.
Similarly, denote by C2 a patch consisting of a 5-gon surrounded by four 5-gons and a 6-gon;
see Figure 12b.

(a) (b)

Figure 12. (a) A patch C1; (b) a patch C2.

Proposition 2. A polytope P ∈ P≤7 is not a Pog∗-polytope if and only if it contains a patch C1 and is different
from the 5-barrel. In this case, P is obtained from a polytope in P≤7 by a connected sum with the 5-barrel
producing this patch.

The proof of this proposition and the following theorem will be given below.
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Theorem 7 (The second main result). Any polytope in P≤7 \ P∗≤7 either belongs to D and is constructed
from the 5-barrel by a sequence of connected sums with a copy of the 5-barrel along the center of a patch C1 or
can be constructed from a fullerene in F ∗ by a connected sum with the 5-barrel along the center of a patch C2

followed by a sequence of connected sums with the 5-barrel along the center of arising patch C1.
Any polytope in P∗≤7,5 is either the 5-barrel or can be constructed from the 6-barrel by a sequence of

growth operations, each being either a (2, 6; 5, 5)-,(2, 6; 5, 6)-, (2, 7; 5, 5)- or (2, 7; 5, 6)-truncation or one of the
operations O1, O2, O3 drawn in Figure 13 in such a way that the intermediate polytopes also belong to P∗≤7,5.
Any of the operations O1, O2, O3 is a composition of (2, 6; 5, 6)-, (2, 7; 5, 5)-, (2, 7; 5, 6)-truncations, such that
the intermediate polytopes are Pog-polytopes with 5-, 6- and at most two 7-gonal faces.

O2O1 O3

Figure 13. Three growth operations. Dotted lines denote edges arising during the operation.

The third main result concerns all the polytopes in P7. There are polytopes P ∈ P7, which cannot
be obtained by any of the operations used in Theorem 7 from any polytope Q ∈ P≤7. To obtain an
example, we can cut off all the edges of any polytope in P7 several times. The resulting polytope
still belongs to P7, but it has the non-hexagonal faces far from each other. Then, it can be obtained
from some polytope Q ∈ P≤7 only by a (2, 7; 5, 5)-truncation. However, Q should have two 7-gons;
a contradiction. To generalize Theorem 8 to the class P≤7 and a finite set of growth operations, we add
a (2, 7; 6, 6)-truncation and allow intermediate polytopes to have two 7-gons.

Theorem 8 (The third main result). Any polytope in P∗≤7 can be constructed from the 6-barrel by a sequence
of growth operations each being either a (2, 6; 5, 5)-,(2, 6; 5, 6)-, (2, 7; 5, 5)-, (2, 7; 5, 6)- or (2, 7; 6, 6)-truncation
or one of the operations O1, O2, O3 in such a way that the intermediate polytopes are Pog∗-polytopes with 5-, 6-
and at most two 7-gonal faces.

2. Proof of the Main Results

Proof of the first main result (Theorem 4). We will develop the idea of Example 1 corresponding to
the case p7 = 2, pk = 0, k ≥ 8. First let us take the disk drawn in Figure 14a. Let β be its boundary
circle. If p7 = 0, p8 = 1, and pk = 0, k ≥ 9, then add to F1 two 2-valent vertices on β to become a 8-gon,
and to F2 and F3 one 2-valent vertex to become 6-gons. Then, glue to the boundary of the disk a copy
of the disk lying inside the 3-belt B = (F1, F2, F3) to obtain a graph of a polytope due to the Steinitz
theorem. This graph can be also obtained by adding to the figure the image of the graph inside the belt
under the circle inversion interchanging the boundary circles of B.

Now, let either ∑k≥9 pk > 0 or ∑k≥9 pk = 0 and (p7, p8) /∈ {(2, 0), (0, 1)}. For each k ≥ 7 with
pk 6= 0, take pk k-gons and arrange all the polygons in the descending order of the numbers of edges.
Add to F1 vertices of valency two on β to become the first polygon. If ∑k≥7 pk ≥ 3, do the same for
F2, F3 and the second and the third polygons. Otherwise take 6-gons instead of lacking polygons.
Let m1, m2, m3 be the numbers of edges of F1, F2 and F3. The number ν of 2-valent vertices on β is
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equal to m1 + m2 + m3 − 16. Then, ν ≥ 5, since either m1 ≥ 9, m2, m3 ≥ 6, or m1 = 8, m2 ≥ 7, m3 ≥ 6,
or m1 = 7 = m2 = m3. Furthermore, any face has at least one 2-valent vertex on β. If there are still
polygons not in use, we form from them a ν-belt of faces around B, taking 6-gons for lacking polygons
intersecting two edges on the boundary of B and 5-gons for lacking polygons intersecting one edge, if
necessary. Each face of the new belt B1 has at least one 2-valent vertex on the outer boundary circle β1;
hence, the number ν1 of 2-valent vertices on β1 is not smaller than ν ≥ 5. Repeat this argument until
all the polygons are in use. Now, add one new belt consisting only of 5- and 6-gons, where each 5-gon
intersects the boundary of the previous disk by one edge and each 6-gon by two edges. We obtain a
new disk with the boundary faces having two edges on the boundary circle, where the number b of
boundary faces is at least 5 (see Figure 14b for the case (p7, p8, p9) = (0, 2, 1), pk = 0, k ≥ 10.).

F1

F2

F3

(a)

F1

F2

F3

(b) (c)

Figure 14. (a) An initial disk; (b) the addition of belts; (c) a construction of the complementary disk.

Let us build another disk with the identical boundary neighborhood. First, take a 5-gon. Add a
5-belt of faces around it consisting of c pentagons and d hexagons, c+ d = 5. This belt has µ = c+ 2d =

5 + d vertices of valency two on the outer boundary circle, and each face has at least one 2-valent
vertex. If b ≤ 10, then take d = b− 5, c = 10− b. Otherwise, take c = 0, d = 5 and add a new belt of
faces around the obtained disk, where 3-valent vertices on the boundary circle γ of the disk correspond
to 6-gons of the belt (we say that they are of the first type), and edges of γ connecting 2-valent vertices
correspond to 5-gons and 6-gons (of the second type). In the new belt, any face has at least one 2-valent
vertex on the outer boundary circle γ1, and the total number µ1 of the 2-valent vertices on γ1 is equal
to µ plus the number of 6-gons of the second type. If the value of µ1 cannot reach the number b by
varying the number of 6-gons of the second type, then make this value the maximal possible and add
new belts in the same manner. In the end, we add the last belt without 6-gons of the second type to
obtain the desired disk.

Now, glue both disks together to obtain a 2-sphere with a 3-valent graph on it. We claim that
this graph is a graph of a simple 3-polytope. Indeed, any face by construction is a disk bounded by
a simple edge-cycle. Two faces intersect if and only if either one of them is the center of one of the
disks and the other belongs to the belt surrounding it, or they are subsequent faces of the same belt, or
they belong to subsequent belts. In the first two cases, it is evident that the faces intersect by an edge.
In the last case, this is also true, since by construction, any face of a new belt in each disk intersects any
face of the previous belt either by the empty set or by an edge, and the same is true for faces of the
boundary belts of disks. This finishes the proof of the theorem.

Corollary 1. A slight modification of the proof of Theorem 4 gives a new explicit construction of a Pog-polytope
with given numbers (pk, k ≥ 7) different from constructions based on Eberhard’s [39] and Grünbaum’s [54]
constructions of polytopes with given p-vectors and an operation of a cutting off of all the edges.
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Construction 1: For ∑k≥7 pk = 0, take any fullerene. Let ∑k≥7 pk > 0. For each pk 6= 0, k ≥ 7, take
pk k-gons, and arrange all the polygons in a linear order. If there is more than one polygon, add
around the first polygon a belt of polygons from the remaining list, taking 5-gons for missing faces, if
necessary. If not all polygons are in use, add new belts by the same manner, taking 6-gons for lacking
polygons intersecting two edges on the boundary of the previous belt and 5-gons for lacking polygons
intersecting one edge. In the end, add around the disk the last belt of 5- and 6-gons with 3-valent
vertices on the boundary of the disk corresponding to 6-gons and the edges on the boundary of the
disk connecting 2-valent vertices corresponding to 5-gons. We have the disk with b ≥ 7 boundary
faces each having two edges on the boundary circle. The number of faces in added belts does not
decrease; in particular, each belt has at least seven faces. Take the second disk with the same boundary
neighborhood constructed above. In this disk, the number of faces in added belts also does not
decrease; in particular, each belt has at least five faces. Glue the two disks along the boundaries to
obtain a 2-sphere with a plane graph corresponding to a simple 3-polytope with prescribed numbers
pk, k ≥ 7. We claim that this polytope is a Pog-polytope.

Proof. We will prove that P has no 3- and 4-belts. First, observe that a 3- or a 4-belt cannot contain
the center of one of the two disks in construction, since any two non-subsequent faces of the belt
surrounding the center are not adjacent in the polytope and do not intersect the same face outside this
belt by construction. The polytope P outside the centers of the disks consists of the belts added in
construction. Let us call them levels. In each disk, arrange levels in the order they were added. Let us
call the top level of a disk a boundary level.

Let (Fi, Fj, Fk) be a 3-belt. Since adjacent faces should belong to the same or adjacent levels and a
3-belt cannot belong to one level, two faces, say Fi and Fj, lie on one level L1 and Fk on another level L2.
If L2 is next to L1 in one disk or both levels are boundary levels, then Fk intersects at most two faces,
which should intersect it by a common vertex; a contradiction. If L1 is next to L2, then Fi and Fj are
subsequent faces of the level. By construction, there are at least five faces on L2, each having a 2-valent
vertex on the circle between L1 and L2, whence the edge Fi ∩ Fj intersects Fk; a contradiction. Thus,
P has no 3-belts.

Let (Fi, Fj, Fk, Fl) be a 4-belt. Since it cannot belong to one level, assume that Fi and Fj lie on
adjacent levels L2 and L1. Without loss of generality, assume that either both levels are boundary levels
or L2 is next to L1 in one disk. Then, Fi intersects at most two faces on L1, which should intersect it by
a common vertex. Since Fi ∩ Fl 6= ∅, and Fj ∩ Fl = ∅, Fl lies either on L2 or on the third level L3. In the
first case, Fl and Fi are subsequent in L2, and Fj is one of the two faces intersecting Fi on L1. The second
face intersects Fl . The face Fk should intersect both Fj and Fl ; hence, it lies on L1 or L2. If it lies on L2,
it is a subsequent to Fl and can not intersect Fj. If it lies on L1, it is one of the two faces intersecting Fl
on L1 and it does not intersect Fi. Then, it does not intersect Fj; a contradiction. Now, let Fl lie on L3.
Since Fk intersects both Fj and Fl , it lies on L2. If L1 and L2 belong to the same disk, then L3 is either
next to L2 or both L2 and L3 are boundary levels. Then, Fi and Fk should be adjacent, since they both
intersect Fl on L2; a contradiction. If L1 and L2 are boundary levels, then Fi and Fk should be adjacent,
since they both intersect Fj on L2; a contradiction. Hence, P has no 4-belts, and it is a Pog-polytope.

Example 2. For the case, p7 = 2, pk = 0, k ≥ 8, the first disk is drawn in Figure 15. The second disk is drawn
in Figure 14c.
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Figure 15. The first disk for the case p7 = 2, pk = 0, k ≥ 8. The second disk is drawn in Figure 14c.

Remark 2. Construction 1 of Pog-polytopes with given numbers (pk, k ≥ 7) can be generalized by taking two
disks of the first type and substituting several belts of 5- and 6-gons for the last belt of the disk with a shorter
boundary circle to make the lengths of the boundary circles equal. Then, for the case p7 = 2, pk = 0, k ≥ 8,
the modified construction can produce the 7-barrel.

Now, we proceed to prove the second and the third main results. We call by a k-loop a cyclic
sequence of faces with adjacent subsequent faces. For a k-belt B = (Fi1 , . . . , Fik ), the set

⋃k
j=1 Fij is

homeomorphic to a cylinder. Each of its boundary components has a boundary code (α1, . . . , αk)

corresponding to the number of edges of faces lying on this component. We will need the following
result. For fullerenes, it follows from the results in [52,53] (see also [13,26] and [4] (Theorem 2.12.1)).
For polytopes in P7, it was proven in [4] (Theorem 3.2.6).

Theorem 9. Let P ∈ P≤7. Then, any 5-belt either surrounds a face and has on this side the boundary code
(1, 1, 1, 1, 1) or surrounds a patch obtained by the addition of r ≥ 0 5-belts of 6-gons around the patch C1 and
has on this side the boundary code (2, 2, 2, 2, 2).

Proof of the second main result (Theorem 7). The first part of Theorem 7 follows from Proposition 2,
since polytopes in D do not contain a patch C2.

Proof of Proposition 2. First note that the patch C1 is surrounded by a 5-belt on a Pog-polytope.
Indeed, it is surrounded by a 5-loop. If two non-subsequent faces intersect, without loss of generality,
these are Fi and Fj drawn in Figure 16a. However, they are non-subsequent faces of the 6-belt
surrounding the adjacent 5-gons Fk and Fl ; a contradiction. Thus, C1 is surrounded by a 5-belt. If this
belt contains no 5-gons, then we can apply an operation inverse to a connected sum with the 5-barrel;
see Figure 16b. It is well defined by the Steinitz theorem and produces a polytope in P≤7. Let one
of the faces of the belt be a 5-gon; see Figure 16c. We claim that for P 6= D0, the patch consisting of
C1 and an additional 5-gon is surrounded by a 5-belt B = (Fi, Fj, Fk, Fl , Fr). Indeed, faces (Fl , Fr, Fi, Fj)

belong to the 5-belt surrounding C1, whence they are distinct and Fl ∩ Fi = ∅ = Fr ∩ Fj= Fl ∩ Fj. Faces
Fi and Fk belong to the belt surrounding Fj. They are distinct, since Fj has at least five edges. They are
adjacent if and only if Fj has exactly five edges. In this case, the 4-loop (Fi, Fk, Fl , Fr) can not be a 4-belt,
whence Fk ∩ Fr 6= ∅, since Fi ∩ Fl = ∅. Then, P = D0.
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Fi

Fj

Fk

Fl

Fi

FjFl

Fr

Fk
(c)(b)(a)

Figure 16. (a) A patch C1; (b) an operation inverse to a connected sum; (c) a non-existing patch.

Thus, for P 6= D0, we have Fi ∩ Fk = ∅ and Fk ∩ Fr = ∅ by a similar argument, and B is a 5-belt.
By Theorem 9, either this belt surrounds a 5-gon or each face of the belt has two edges on the outer
part of the boundary ∂P of P. In the first case, Fk is a 4-gon, and in the second case, both Fj and Fl are
7-gons; a contradiction.

Corollary 2. Let P ∈ P≤7 \ D. If P contains a patch C1, then this patch is surrounded by a 5-belt of 6- or
7-gons, and P has no other patches of the form C1.

Proof. Since P /∈ D, it is not a fullerene. Proposition 2 implies that P is obtained from a fullerene Q
containing a patch C2 by a sequence of connected sums with the 5-barrel, where the first connected
sum is along the center of C2, and all the other connected sums are along the center of the arising patch
C1. If P contains another patch C1, then Q should also contain the same patch. Then, Q ∈ D. However,
any fullerene in D does not contain the patch C2; a contradiction.

Denote the patches arising after operations of a (2, 6; 5, 5)-, (2, 6; 5, 6)-, (2, 7; 5, 5)- or (2, 7; 5, 6)-
truncation or operations O1, O2, or O3, by D2,6;5,5, D2,6;5,6, D2,7;5,5, D2,7;5,6, D1, D2, D3, respectively
(see Figure 17). We do not take into account the orientation. Therefore, we do not distinguish between
a patch and its mirror image.

By Theorem 2 and Proposition 2, a polytope P in the class A can be obtained from a polytope
Q in the class B by an operation of a connected sum with the 5-barrel, or of a (2, 6; 5, 5)-, (2, 6; 5, 6)-,
(2, 7; 5, 5)- or (2, 7; 5, 6)- truncation, or O1, O2, O3, if and only if P contains respectively a patch C1,
D2,6;5,5, D2,6;5,6, D2,7;5,5, D2,7;5,6, D1, D2, D3, where A, B = P≤7 for a connected sum, a (2, 6; 5, 5)-
truncation and operations O1, O2, O3; (A, B) = (P7,F ) for a (2, 6; 5, 6)-truncation; (A, B) = (F ,P7)

for a (2, 7; 5, 5)-truncation; and A, B = P7 for a (2, 7; 5, 6)-truncation. Let us call a polytope P ∈ P≤7

irreducible, if it cannot be obtained from a polytope in P≤7 by these operations. Otherwise, let us call
P reducible. First, we will prove that only the 5- and the 6-barrel are irreducible, and then, we will
explain how to avoid non-Pog∗-polytopes.

It can be proven that a collection of faces of a polytope P ∈ P≤7 with the same combinatorics as in
any of these patches indeed forms the corresponding patch. For the first six patches, this follows from
the fact that the collection of faces consists of two adjacent faces and some faces of the belt surrounding
them. For the patch D3, this argument works for the collection without the top face and the collection
without the bottom face. These faces should be distinct, for otherwise, a 4-belt arises, and they should
be non-adjacent, for otherwise, a 5-belt with both boundary codes different from (1, 1, 1, 1, 1) and
(2, 2, 2, 2, 2) arises (see more details in [4] (Lemma 4.0.1)).
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D2,6;5,5 D2,7;5,5D2,6;5,6 D2,7;5,6 D1 D2 D3

Figure 17. Patches arising after operations.

Lemma 1. Let P ∈ P7,5 be irreducible. Then, the 7-gon cannot be adjacent to 5-gons by three subsequent edges.

Proof. The 7-gon is surrounded by a 7-belt. If three of its subsequent faces Fa, Fb, Fc are 5-gons, then
the four faces Fu, Fv, Fw, Ft adjacent to them and lying in the outer part of ∂P are 5-gons (see Figure 18),
for otherwise, P contains one of the patches D2,6;5,6 or D2,7;5,6. All seven 5-gons are distinct, since they
belong to the patch formed by two adjacent 5-gons Fv and Fw and the 6-belt B surrounding them.
Consider the sixth face of B. It is different from the 7-gon, since these two faces are non-subsequent in
the 6-belt surrounding the 5-gons (Fc, Fw). It cannot be a 5-gon, for otherwise, the patch C1 appears.
Therefore, it is a 6-gon. Consider the 5-loop B1 = (Fi, Fj, Fk, Fl , Fr) arising on the boundary of B, where
Fi is the 7-gon. Any two non-subsequent faces of this loop do not intersect, since they are adjacent to
the same face of this loop by non-adjacent edges. Then, B1 is a 5-belt. Since on the side of the belt B, it
has the boundary code (3, 2, 2, 2, 2) and Fi has on the other side two edges, by Theorem 9 the other
boundary code is (2, 2, 2, 2, 2), and P contains the patch C1 and is obtained by a connected sum with
the 5-barrel by Proposition 2. The lemma is proven.

Fi Fj

FkFl

Fr

Fa

Fb
Fc

Fu

Fv Fw

Ft

Figure 18. The 7-gon adjacent to three subsequent 5-gons.

Lemma 2. Let P ∈ P7,5 be irreducible. Then, the 7-gon cannot be adjacent to 5-gons by two subsequent edges.

Proof. The 7-gon is surrounded by a 7-belt. If two of its subsequent faces Fi and Fj are 5-gons, then
the three faces Fb, Fc, Fd adjacent to them and lying in the outer part of ∂P are 5-gons (see Figure 19a),
for otherwise, P contains one of the patches D2,6;5,6 or D2,7;5,6. All five 5-gons are distinct since they
belong to the patch formed by the 5-gon Fl and the 5-belt B surrounding it. Consider the fifth face
Fc of B. It does not intersect the 7-gon, since these two faces are non-subsequent faces of the 6-belt
surrounding the 5-gons (Fj, Fl). It cannot be a 5-gon, for otherwise, the patch C1 appears. Therefore,
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it is a 6-gon. The faces Fa and Fe are 6-gons by Lemma 1. Furthermore, Fb and Fd are 6-gons, for
otherwise, the patch D2,6;5,5 appears. The face Ff is not the 7-gon, since the 7-gon and Fc are not
adjacent. If Ff is a 5-gon, we obtain the patch D2 (see Figure 19b). If Ff is a 6-gon, we obtain the patch
D3 (see Figure 19c). The lemma is proven.

Fi Fj

Fk
Fl Fr

Fa

Fb

Fc

Fd

Fe

Ff

(a) (b) (c)

Figure 19. (a) The 7-gon adjacent to two subsequent 5-gons; (b) the patch D2; (c) the patch D3.

Lemma 3. Any polytope P ∈ P7,5 is reducible.

Proof. Let a polytope P ∈ P7,5 be irreducible. By definition, the 7-gon F is adjacent to at least one
5-gon, say Fj. By Lemma 2, the faces Fi and Fk adjacent to F by the edges next to F ∩ Fj are 6-gons.
The remaining two faces adjacent to Fj are 5-gons, for otherwise, the patch D2,7;5,6 appears. We obtain
the picture drawn in Figure 20a. The faces Fb and F do not intersect, since they are non-subsequent in
the belt surrounding Fj and Fq. If Fb is a 6-gon, then Fa and Fc are also 6-gons, for otherwise, the patch
D2,6;5,5 appears. Then, P contains the patch D1 (see Figure 20b). Thus, Fb is a 5-gon (see Figure 20c).
The faces Fa, Fc, Fd are different from F, since Fb ∩ F = ∅. If both Fa and Fc are 6-gons, then either Fd is
a 5-gon, and we obtain the patch D2,6;5,5, or Fd is a 6-gon, and we obtain the patch D1. If both Fa and Fc

are 5-gons, then Fd is a 6-gon, for otherwise, we obtain the patch C1. Furthermore, Fu and Fv are 6-gons,
for otherwise, the patch D2,6;5,5 appears. Thus, we obtain the scheme drawn in Figure 20d. The face Fw

is different from F, for otherwise, (Fj, Fq, Fb, Fd, Fw) is a 5-belt, since any two non-subsequent faces of
this 5-loop are adjacent to some face of this loop by non-subsequent edges. However, this belt has both
boundary codes different from (1, 1, 1, 1, 1) and (2, 2, 2, 2, 2), which contradicts Theorem 9. Like in the
proof of Lemma 2, we see that either Fw is a 5-gon, and we obtain the patch D2, or Fw is a 6-gon, and
we obtain the patch D3.

(a)

Fa

F

Fi

Fj
Fk

Fp Fq

Fb

Fc

(b) (c)

Fa

F

Fi

Fj
Fk

Fp Fq

Fd

Fc

Fb

(d)

F

Fj

Fp Fq

Fb

Fu Fv

Fd

FcFa

Fi Fk

Fu Fv

Fw

Figure 20. (a) The 7-gon adjacent to a 5-gon; (b) the patch D1; (c) the case when Fb is a 5-gon; (d) the
case when Fa and Fc are 5-gons.

Now, we can assume that one of the faces Fa and Fc is a 5-gon and the other is a 6-gon. Since we
do not take into account the orientation, without loss of generality, assume that Fa is a 5-gon and Fc is a
6-gon (Figure 21a). If Fd is a 6-gon, then Fu is also a 6-gon, for otherwise, we obtain the patch D2,6;5,5.
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Then, we have the patch D1 (Figure 21b). Thus, Fd is a 5-gon, and we obtain Figure 21c. The face Ft is
different from F, for otherwise, (Fj, Fq, Fb, Fd, Ft) is a 5-belt, since any two non-subsequent faces of this
5-loop are adjacent to some face of this loop by non-subsequent edges. However, this belt has both
boundary codes different from (1, 1, 1, 1, 1) and (2, 2, 2, 2, 2).

(a)

F

Fj
Fk

Fp Fq

Fd

Fb

Fu

Fa
Fc

(b)

Fi

(c)

F

Fj

Fp Fq

Fb

Fu

Fa

Fd

Fk

Fc

Fi

Ft

Figure 21. (a) The case when Fa is a 5-gon and Fc is a 6-gon; (b) the patch D1; (c) the case when Fd is
a 5-gon.

If Fu is a 5-gon, we obtain Figure 22a. All the 5-gons are distinct, since they consist of adjacent
faces Fa, Fp and some faces of the 6-belt surrounding them. We have a 5-loop (Fs, F, Fk, Fc, Ft), which is
a 5-belt, since any two non-subsequent faces of this 5-loop are adjacent to some face of this loop by
non-subsequent edges. However, this belt has both boundary codes different from (1, 1, 1, 1, 1) and
(2, 2, 2, 2, 2), which contradicts Theorem 9. Hence, Fu is a 6-gon, and we obtain Figure 22b. Then, if Ft

is a 5-gon, we obtain the patch D2,6;5,5, and if Ft is a 6-gon, we obtain the patch D1 (or, more precisely,
its mirror image, which we do not distinguish from it); see Figure 22c.

(a)

F

Fj

Fp Fq

FbFa

Fd

Fk

Fs

Fi

Fc
Fu

Ft

F

Fj

Fp Fq

FbFa

Fd

Fk

Fc

Fi

(b)

Ft

Fu

(c)
Figure 22. (a) The case when Fu is a 5-gon; (b) the case when Fu is a 6-gon; (c) the patch D1.

Thus, any irreducible polytope in P≤7,5 is a fullerene. Now, we will prove the result, which will
be useful also for P≤7. For fullerenes, it was proven in [4] (Theorem 4.0.2 1).

Lemma 4. Let P be a fullerene or a polytope in P7 with the 7-gon surrounded by 6-gons. If P has two adjacent
5-gons, then either P is the 5- or the 6-barrel, or it can be obtained from a fullerene or a polytope in P7,
respectively, by one of the operations: a connected sum with the 5-barrel, a (2, 6; 5, 5)-truncation, O1, O2, O3.

Proof. We need to prove that P contains one of the corresponding patches. Assume that this is not
true. Consider two adjacent 5-gons Fi and Fj. Then, the edge Fi ∩ Fj intersects by one of its edges
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some 5-gon Fk, for otherwise, the patch D2,6;5,5 appears. If this patch consisting of three 5-gons with a
common vertex is surrounded by 6-gons, then P contains the patch D1. Hence, one of the faces around
the patch is a 5-gon. If it intersects only one of the three 5-gons, then the edge of intersection should
intersect by a vertex a new 5-gon adjacent to two 5-gons of the patch, for otherwise, the patch D2,6;5,5

appears. Therefore, without loss of generality, assume that the edge Fi ∩ Fj intersects two 5-gons Fk
and Fl by vertices (see Figure 23a). Then, each pair of faces (Fp, Fq) and (Fu, Fv) contains at least one
6-gon, for otherwise, the patch C1 appears. Up to a mirror symmetry corresponding to the change of
an orientation of the polytope, we have two possibilities: Fp, Fv are 6-gons (Figure 23b), or Fp, Fu are
6-gons (Figure 23c).

(a)

Fi Fj

Fk

FlFp

Fq Fu

Fv

Fi Fj

Fk

Fl

Fq Fu

(b)

Fi Fj

Fk

Fl

Fq

Fv

(c)

Fp Fv Fp

Fu

Fw FwFw

Fr Fr Fr

Figure 23. (a) Four 5-gons; (b) Fp and Fv are 6-gons; (c) Fp and Fu are 6-gons.

In the first case, Fw is a 6-gon, for otherwise, the patch D2,6;5,5 appears. Then, Fu and Fq are 5-gons,
for otherwise, the patch D1 appears. Then, Fq and Fu are 5-gons, for otherwise, the patch D1 appears.
Fr is a 6-gon, for otherwise, the patch C1 appears (see Figure 24a). Furthermore, faces Fs and Ft are
6-gons, for otherwise, the patch D2,6;5,5 appears. Faces Fa and Fb are distinct, since they are adjacent
to Fs by distinct edges. Then, one of them is not a 7-gon. If it is a 5-gon, we obtain the patch D2

(Figure 24b). If it is a 6-gon, we obtain the patch D3 (Figure 24c).

(a)

Fi Fj

Fk

Fl

(b) (c)

Fp Fv

Fw

Fq Fu

Fr
Fs Ft

Fa

Fb

Fc

Figure 24. (a) Fp and Fv are 6-gons; (b) the patch D2; (c) the patch D3.

In the second case, each pair of faces (Fq, Fr) and (Fv, Fw) contains at least one 5-gon, for otherwise,
the patch D1 appears. If Fw is a 5-gon, then Fv is also a 5-gon, for otherwise, the patch D2,6;5,5 appears.
Therefore, we can assume that Fv is a 5-gon, and similarly, Fq is a 5-gon; see Figure 25a. The 6-loop
(Fp, Fq, Fk, Fu, Fv, Fw) is a 6-belt, since any two non-subsequent faces of this loop are non-subsequent
faces of the 6-belt surrounding one of the 3 pairs of adjacent 5-gons Fi, Fj, Fl . If Fw is a 5-gon, then we
obtain a patch D drawn in Figure 25b. If both faces Fs and Ft are 6-gons, we obtain the patch D1. If Fs

is a 5-gon, then Ft is a 5-gon, for otherwise, we obtain the patch D2,6;5,5. Thus, we can assume that Ft is
a 5-gon; see Figure 25c. The faces (Fa, Fr, Fb, Ft, Fs) form a 5-loop in the complement of the patch D in
the boundary of P. They are pairwise distinct, since any two non-subsequent faces of this loop are
adjacent to some of its face by distinct edges. Now, we have the 4-loop (Fr, Fb, Fs, Fa). Fr ∩ Fs = ∅, since
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these two faces are non-subsequent in the belt surrounding (Fp, Fq). Since P has no 4-belts, Fa ∩ Fb 6= ∅.
Since P has no 3-belts, Fa ∩ Fb ∩ Fs and Fa ∩ Fb ∩ Fr are vertices, and all the faces in the 4-loop are 5-gons.
Then P is the 6-barrel. If Fw is a 6-gon, then Ft is also a 6-gon (see Figure 25d), for otherwise, the patch
D2,6;5,5 appears. Then, we obtain the patch D1. The lemma is proven.

(a) (b)

Fi Fj

Fk

Fl
Fw

Fr

Fp

Fq Fu

Fv

Fi Fj

Fk

Fl

Fr
Fq

Fp

Fu

Fv

FwFs Ft

Fi Fj

Fk

Fl

Fr

Fq

Fp Fv

Fw
Fs

Fu

Ft

Fa

Fb

(c) (d)

Fi Fj

Fk

Fl

Fr

Fp

Fq Fu

Fv

Fs
Ft Fs Fw

Ft

Figure 25. (a) Fp and Fu are 6-gons; (b) Fw is a 5-gon; (c) Ft is a 5-gon; (d) Fw is a 6-gon.

We are ready to prove the following result.

Lemma 5. Only the 5- and the 6-barrel are irreducible polytopes in P≤7,5.

Proof. The 5- and the 6-barrel are evidently irreducible. Any polytope in P7,5 is reducible by Lemma 3.
If P is a fullerene different from the 5- and the 6-barrel and has adjacent 5-gons, then it is reducible by
Lemma 4. If a fullerene has no adjacent 5-gons, then any its 5-gons belongs to a patch D2,7;5,5. Hence,
P is reducible.

Now, we will show how to avoid polytopes in D and then in P≤7 \ P∗≤7.

Lemma 6. Let P be a polytope in P≤7 \ D. If it can be reduced to a polytope in D \ {D0}, then it can also be
reduced to a polytope Q ∈ P≤7 \ D.

Proof. For a polytope D5k, k ≥ 0, the operation of a connected sum with the 5-barrel can be
applied only along the central 5-gon of a patch C1, for otherwise, two 7-gons appear. This operation
transforms D5k into D5(k+1). The only other operations that can be applied to the polytope D5k are a
(2, 6; 5, 5)-truncation, if k = 1, O1 or O2, if k = 2, O3, if k = 3, and a (2; 6; 5, 6)-truncation, if k ≥ 2. In all
cases, any of the operations makes the transformation of the patches drawn in Figure 26a. Then, the
polytope P also contains the patch D1 and can be reduced to a polytope Q ∈ P≤7 containing the patch
D2,6;5,5 (see Figure 26b). We have Q /∈ D, and the lemma is proven.

(a) (b)

Figure 26. (a) A transformation of a patch; (b) a reduction.

Lemma 7. Any reducible polytope P in P∗≤7 can be reduced to a polytope Q ∈ P∗≤7.

Proof. Let P be reduced to a polytope P′ ∈ P≤7 \ P∗≤7. P′ cannot be the 5-barrel, since the only
operation applicable to the 5-barrel is a connected sum with the 5-barrel, which produces a patch
C1. Proposition 2 implies that P′ contains a patch C1 surrounded by a 5-belt B of polygons with at
least six edges. By Lemma 6, we can assume that P′ /∈ F . By Corollary 2, outside B, the polytope
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P′ does not contain patches of the form C1. Consider the patch D replaced during the operation. It
has common faces with C1, since P ∈ P∗≤7. For each operation different from the connected sum, D
contains no adjacent 5-gons; whence, D intersects C1 by a boundary 5-gon. This 5-gon is transformed
to a 6-gon. We claim that no other 5-gons in D belong to C1. Indeed, for (2, k; 5, m2)-truncations, the
k-gon belongs to B, and the m2-gon lies outside B. For the operations O1, O2 and O3, the 6-gon next to
the 5-gon belongs to B, while the next 6-gon lies outside B (for O1, this is due to the fact that otherwise,
the second 5-gon lies in B). Hence, for O1 and O2, the second 5-gon lies outside B. For O3 up to a
symmetry, the first and the second 6-gons are Fi and Fs in Figure 27a. The third 6-gon Ft of D cannot
be Fr, since Ft ∩ Fi = ∅. Furthermore, Ft 6= Fl , since Fl and Fs are non-adjacent as non-subsequent
faces of the belt surrounding Fr. Similarly, Ft 6= Fj, since Fs and Fj are non-subsequent faces of the
belt surrounding Fi. Furthermore, Fs and Fk are non-adjacent as non-subsequent faces of the belt
surrounding the faces (Fi, Fj). Hence, Ft 6= Fk. Thus, Ft lies outside B, and the second 5-gon in D does
not belong to C1.

(a)

FjFk

Fl

Fr

Fi

Fs

(b)

FjFk

Fl

Fr

Fi

Fs

(c)

FjFk

Fl Fi

Fr
Fs

(d)

FjFk

Fl Fi

Fr

Fp

Fq

Fp

Fq Fq

Figure 27. (a) The beginning of the patch D; (b) a transformation of a neighborhood of C1; (c) Fs is a
5-gon; (d) the straightening along the edge Fp ∩ Fs.

Then, the common 5-gon of D and C1 is subdivided into two faces, which are either two 5-gons or
a 5-gon and a 6-gon. Up to a symmetry, we obtain Figure 27b. If Fs is a 5-gon (see Figure 27c), then the
straightening along the edge Fs ∩ Fp gives Figure 27d and a polytope Q ∈ P≤7. If Q contains a patch
C1, then one of the 5-gons of this patch should arise during the straightening. However, any of the
two possible 5-gons is adjacent to a non-pentagon and has neighbors either non-pentagons or adjacent
to a non-pentagon; a contradiction. Hence, Q ∈ P∗≤7, and P is obtained from Q by a (2, 6; 5, 5)- or a
(2, 6; 5, 6)-truncation. If Fs is a 6-gon, then Fi is a 5-gon, and we obtain Figure 28a. If Fr is a 7-gon,
then straightening along the edge Fp ∩ Fs, we obtain a polytope Q ∈ P≤7, which belongs to P∗≤7 for
the same reason as in the previous argument. Then, P is obtained from Q by a (2, 7; 5, 6)-truncation.
Similarly, if Fj is a 7-gon, then straightening the edge Fq ∩ Fi, we obtain a polytope Q ∈ P∗≤7. If both
Fr and Fj are 6-gons, then we obtain the patch D2 (Figure 28b). Reducing the patch (see Figure 28c),
we obtain a polytope Q ∈ P≤7. It belongs to P∗≤7 by the same reasoning as in the arguments above.
Then, P is obtained from Q by the operation O2. This finishes the proof of the lemma.

(a)

FjFk

Fl

Fr
Fs

Fi

(b)

Fk

Fl
Fs

Fi

Fr

(c)

Fk

Fl

Fj

Fp Fp

Fr

Fj

Fq Fq

Figure 28. (a) Fs is a 6-gon; (b) Fr and Fj are 6-gons; (c) the reduction of the patch D2.

Lemma 7 implies that any polytope in P∗≤7,5 different from the 5- and the 6-barrel can be reduced
to the 6-barrel by a sequence of our operations in such a way that the intermediate polytopes also
belong to P∗≤7,5. This finishes the proof of Theorem 7.
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Proof of the third main result (Theorem 8). Consider a polytope P ∈ P≤7. If P ∈ P≤7,5, then the
theorem follows from Theorem 7. If P ∈ P7 \ P≤7,5 and P has two adjacent 5-gons, then the theorem
follows from Lemmas 4 and 7. Thus, it remains to consider the case of polytopes with the 7-gon
and all the 5-gons isolated. By a thick path, we call a sequence of faces (Fi1 , . . . , Fik ) such that any
two subsequent faces are adjacent. It is easy to see that any two faces on a simple 3-polytope can be
connected by a thick path. Let us call a length of the thick path consisting of k faces the number k− 1.
We will use the idea presented in [26,49] for fullerenes. Consider the 7-gon and the shortest thick path
among all thick paths connecting it to 5-gons. Then, all the faces except for the first and the last are
6-gons. Since the path is the shortest, each 6-gon cannot intersect the next and the previous faces
by adjacent edges. We say that the path goes “forward” in the 6-gon, if these edges of intersection
are opposite. If they are not opposite and not adjacent, then the path “turns left” or “turns right”,
depending on the orientation of the boundary of the polytope. In the shortest path, all the 6-gons are
distinct, and non-subsequent faces are not adjacent. Moreover, there cannot be two subsequent turns
to the same side, and it is possible to modify the shortest path to have no more than one turn (see the
details in [26,49]).

Lemma 8. Let Γ be the shortest path among all thick paths connecting the 7-gon with 5-gons in a polytope
P ∈ P7 with the 7-gon and all the 5-gons isolated. If Γ has no turns, then it is contained in the patch drawn in
Figure 29a. If it has one turn, then it is contained in the patch drawn in Figure 30a.

Proof. The path Γ itself forms a patch on the polytope P. To prove that Γ is contained in the desired
patch, it is sufficient to show that all the faces in each figure are distinct on the polytope, and the faces
are adjacent on the polytope if and only if they are adjacent in the figure. Let Γ have length k. Let us
call the distance between faces of a disk on a figure the length of the shortest thick path connecting
them in the figure. If two faces are distinct or non-adjacent in the figure and the distance between
them is at most three, then they are respectively distinct or non-adjacent on the polytope, since either
they are adjacent, if the distance is 1, or are non-subsequent faces of the belt surrounding a face or
a pair of adjacent faces, if the distance is two or three. Thus, if two faces in the figure are distinct or
non-adjacent, but the corresponding condition is not valid on the polytope, then the distance between
them is at least four. We claim that for any two faces in each figure, there is a thick path Γ1 of length at
most k + 2 with the same ends as Γ containing both faces. Indeed, each figure consists of faces lying
in the union of the face Fjk+1

and two thick paths of lengths k and k + 1: Γ and (Fi0 , Fj1 , . . . , Fjk , Fik ) for
the first figure and (Fi0 , Fj1 , . . . , Fjs , Fis+1 , . . . , Fik ) and (Fi0 , Fi1 , . . . , Fis , Fjs+1 , . . . , Fjk , Fik ) for the second. If
both faces lie on the same path, we can take this path. If they lie on different paths, then take the path
of length k + 1. Then, the face C lying on the other path is adjacent to two subsequent faces (A, B) of
the first path. Substitute the segment (A, C, B) for (A, B) to obtain the new path of length k + 2. If one
of the faces is Fjk+1

, then take the path containing the second face. If it has length k, then simply add
the segment (Fik , Fjk+1

, Fik ). If it has length k + 1, then substitute (Fjk , Fjk+1
, Fik ) for (Fjk , Fik ) to obtain

the desired path.
Let two distinct or non-adjacent faces of one of the figures respectively coincide or be adjacent on

the polytope. Take a thick path Γ1 of length at most k + 2 containing them. Since the faces coincide
or are adjacent on the polytope, we can shorten the path deleting the segment between these faces.
This segment consists of at least three intermediate faces, whence the new path has length at most
k− 1 and is shorter than Γ; a contradiction. Thus, the lemma is proven.
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(a) (b)

(c)(d)

Fi1 Fi2 Fik-1

Fj1 Fj2
Fjk-1 Fjk Fjk+1

Fi0
Fik

Figure 29. (a) The initial patch; (b,c) transformations of the patch; (d) the resulting patch.

Now, reduce the obtained patch to the corresponding patch drawn in Figure 29d or Figure 30e by
straightenings along edges inverse to (2, 7; 5, 5)-, (2, 7; 5, 6)- and (2, 7; 6, 6)-truncations (see Figure 29b,c
or Figure 30b–d, respectively). Then, P is obtained from the polytope Q with the last patch substituted
for the first patch in P by the corresponding truncations. Furthermore, Q can not contain a patch C1,
since all the 5-gons outside the replaced patch are disjoint, and inside the patch, there are at most two
5-gons; hence, Q ∈ P∗≤7. All the intermediate polytopes are Pog∗-polytopes, since they are obtained
from Q by (2, k)-truncations, k ≥ 6.

(a) (b)

(c)

(d)(e)

Fi0 Fi1 Fi2 Fis

Fik-1

Fik

Fis+1Fj1 Fj2
Fjs

Fjs+1

Fjk-1

Fjk

Fjk+1

Figure 30. (a) The initial patch; (b–d) transformations of the patch; (e) the resulting patch.

This finishes the proof of the theorem.

3. Discussion

Let us discuss the place of our results and methods in previous studies. They lie on the crossroads
of the mathematical study of fullerenes and the study of c5-connected graphs.

Fullerenes obtained their name in chemistry after famous American architect and philosopher
Richard Buckminster Fuller in 1980s, since the discovered molecules resembled his geodesic domes
(see [55]), architectural constructions for roofing large areas without points of support inside.
However, even before they obtained their name, fullerenes were studied in mathematics. For example,
the famous Buckminsterfullerene C60, which has the form of a soccer ball, has been known since ancient
times as an Archimedean solid truncated icosahedron. Fullerenes were studied by M. Goldberg [56]
under the name medial polyhedra as candidates for polytopes with maximal volume among all the
3-polytopes with the given area of the surface and number of faces. Later, in [57], he proposed the
construction of fullerenes with icosahedral symmetry, which was later rediscovered by D.L.D. Caspar
and A. Klug [58] in the biological context and studied by H.S.M. Coxeter in [59]. These polytopes are
now sometimes called Goldberg polytopes. In [60], B. Grunbaum and T.S. Motzkin, answering the
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question by H.S.M. Coxeter, constructed a fullerene with any prescribed number of 6-gons different
from one.

Since the discovery of fullerenes in chemistry in 1985, a question of enumeration of all the
combinatorial types (isomers) of fullerenes with the given number of faces arose. First attempts were
made by D.E. Manolopoulos, J.C. May and S.E. Down [61], who introduced a spiral method. It gives
a linear order of all the faces of a fullerene such that each face is adjacent to the previous and the
next faces. Nevertheless, in [62], P.W. Fowler and D.E. Manolopoulos found an example of a fullerene
without a spiral. Later, different generalizations of this method were introduced by G. Brinkmann [63]
and P.W. Fowler, A. Graovac, J. Žerovnik and T. Pisanski [22] with no strict proof that the method is
applicable for all the fullerenes. In [64], L.N. Wirz, P. Schwerdtfeger and J.E. Avery introduced a new
generalized face-spiral algorithm and proved its completeness. They created a computer program
fullerene [65] for enumeration of fullerenes.

Another effective approach for the enumeration of fullerenes was introduced by G. Brinkmann
and A. W. M. Dress in [66]. It is based on cutting a fullerene surface into several patches by a zig-zag
edge-path, which has at most two successive edges on each face, and the enumeration of possible
patches. This method led to the program fullgen (see [67]).

A nice parametrization of the set of all fullerenes was given by W.P. Thurston [36] on the basis of
combinatorial and metric geometry of spaces with non-negative curvature. His results imply that the
number of fullerenes with given number m of faces grows like m9.

Later, a new method based on growing fullerenes from seed (see [68]) appeared. The idea was to
build any fullerene from a finite set of seeds by growth operations substituting a new patch for a patch
on a fullerene with a lesser number of faces and the same boundary. In [51], G. Brinkmann, J.E. Graver
and C. Justus proved that there cannot be finite sets of growth operations transforming fullerenes
into fullerenes sufficient to build any fullerene from a finite set of seeds. In [49], M. Hasheminezhad,
H. Fleischner and B.D. McKay found an explicit infinite set of such operations with the seeds being the
5-barrel and the fullerene C28(Td) (see the Introduction and Figure 9). On the base of these operations,
a new algorithm of the generation of fullerenes was built. It starts from seeds, applies different possible
operations according to some restrictions and stores the obtained fullerenes. The corresponding
program was named buckygen (see [69]). It helped to find mistakes in fullgen and enumerate all
fullerenes with at most 400 vertices (see [70]). On the basis of fullgen and buckygen, several computer
programs to study and visualize fullerenes were created [71,72].

Let us mention that a new method of fullerene generation was introduced by V.M. Buchstaber and
N.Yu. Erokhovets in [4]. It is based on the recursive generation of simple partitions of a disk by three
types of operations and a gluing of these disks into surfaces of polytopes with the possible addition
of belts of 6-gons between them. This method is close to the method of F. Kardoš, M. Krnc, B. Lužar
and R. Škrekovski [52,73] for the generation of cyclic k-edge cuts in fullerene graphs.

Of course, there are many more methods, results and names in the mathematical theory of
fullerenes, but it is difficult to name all of them here.

On the other hand, in the graph and the polytope theories, methods to construct ck-connected and
c∗k-connected plane graphs for k = 4, 5 described in the Introduction were developed by A. Kotzig [45],
G.B. Faulkner and D.H. Younger [46], D. Barnette [8,9], J.W. Butler [16], T. Inoue [38], V. Volodin [47] and
V.M. Buchstaber and N.Yu. Erokhovets [4]. These methods allow one to construct any simple 3-polytope
different from the k-barrels with c5-connected graph from the 5- or the 6-barrel by (2, k)-truncations,
k ≥ 6 and connected sums with the 5-barrel along a face and any simple 3-polytope different from
the k-barrels with c∗5-connected graph from the 6-barrel by only (2, k)-truncations, k ≥ 6. On the
basis of these methods, G. Brinkmann and B.D. McKay [74] created a computer program to construct
such polytopes. These methods were generalized by E.R.L. Aldred, D.A. Holton and B. Jackson [75],
W. McCuaig [76] and N. Robertson, P.D. Seymour and R. Thomas [17] to the case of non-planar graphs.
T. Dǒslić [21,24] proved that the graph of any fullerene is c5-connected. K. Kutnar, D. Marušič [53]
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and F. Kardoš, R. Škrekovski [52] proved that it is not c∗5-connected, if and only if a fullerene is a
(5, 0)-nanotube.

Our methods and results developed jointly with V.M. Buchstaber [4,13,23,26,48] combine both
methods and results on the construction of fullerenes by growth operations in [49,68,69] and on the
construction of c5-connected graphs in [4,8,9,16]. Namely, (5, 0)-nanotubes are connected sums of
copies of the 5-barrel. Any other fullerene different from the 5-barrel can be constructed by the above
method from the 6-barrel by (2, k)-truncations. However, it is impossible to stay always in the class of
fullerenes, and a priori intermediate polytopes can have any numbers of k-gons, k > 6. In [4], it was
proven that it is possible to consider at intermediate steps only simple polytopes with 5-, 6- and one
7-gonal face adjacent to a 5-gon. It seems that the appearance of a 7-gon was not extensively studied
by mathematicians (although it was considered in [30], and other mathematical generalizations of
fullerenes were introduced; see [32,77–79]), but there are many works in physics and chemistry of
fullerenes, which state that this is natural in the formation of fullerenes (see, for example, [80–82]).

An advantage of our method is that instead of an infinite set of operations, we have only four
growth operations increasing the number of faces by one on account of allowing one 7-gon adjacent to
a 5-gon. The first of these operations is the famous Endo–Kroto operation [50] (a (2, 6; 5, 5)-truncation),
which is the only (s, k)-truncation transforming fullerenes into fullerenes. The second operation
(a (2, 6; 5, 6)-truncation) creates a 7-gon; the third operation (a (2, 7; 5, 6)-truncation) moves this 7-gon;
and the forth operation (a (2, 7; 5, 5)-truncation) eliminates it. These operations may be used to create a
fullerene-generating algorithm and a program similar to buckygen. A disadvantage of the method is
that the number of polytopes with a 7-gon seems to be larger than the number of fullerenes, and the
algorithm should store at the same time these polytopes. Let us mention that in [4], it is proven that to
construct fullerenes, it is sufficient to use only polytopes with 5-, 6- and one 7-gon adjacent to a 5-gon
and all the 5-gons isolated from each other on account of considering three of the four our truncations,
the operations O1, O2, O3 (Figure 13) and four additional operations, which are compositions of the
four our truncations.

Comparing our method with the method in [49], it can be proven (see, for example, [26]) that
to reduce an IPR-fullerene, only the operations Li, i ≥ 1 and Bi,j, i, j ≥ 0, with all the faces gi being
6-gons, and the operation B0,0 with g1 and g3 being 6-gons and g2 being a 5-gon, are necessary.
Any of these operations can be represented as a composition of (2, 6; 5, 5)-, (2, 6; 5, 6)-, (2, 7; 5, 6)- and
(2, 7; 5; 5)-truncations in a way similar to the schemes in Figures 29 and 30 (see [26]). Thus, our method
to reduce an IPR-fullerene is almost equivalent to the method in [49]. Nevertheless, for fullerenes
with adjacent 5-gons, the methods differ. Namely, according to [49], to reduce such a fullerene, only
operations L0, L1, B0,0 are necessary. However, if g1 and g2 are 5-gons in L0, we obtain exactly the
operation of adding a pair of edges due to D. Barnette and J.W. Butler. This operation transforms the
5-barrel into the 6-barrel; hence, it cannot be represented as a composition of two (2, k)-truncations,
k ≥ 6.

New results of this article concern mainly polytopes with 5-, 6- and one 7-gonal face. We prove that
fullerenes together with these polytopes form a very natural subclass in the class of all Pog-polytopes.
We prove that if such a polytope has a 7-gon and contains a patch consisting of a 5-gon surrounded
by 5-gons, then it can be obtained from a fullerene by connected sums with the 5-barrel. Any other
polytope with a 7-gon is a Pog∗-polytope. We construct such polytopes with the 7-gon adjacent to
a 5-gon from the 6-barrel by the four previous operations and three new operations O1, O2 and O3,
which are compositions of them. All the intermediate polytopes either belong to the same class or
are Pog∗-fullerenes. Moreover, operation O1 has type L0 with g1 and g2 being 6-gons, and O3 has
type B0,0 with g1, g2 and g3 being 6-gons, while O2 does not have the type Li or Bi,j for any i, j ≥ 0.
However, operation B0,0 with g1 and g3 being 6-gons and g2 being a 5-gon is a composition of O2 and
a (2, 6; 5, 5)-truncation. We generalize this result to the case when the 7-gon is not adjacent to 5-gons
by adding a (2, 7; 6, 6)-truncation and allowing at intermediate steps Pog∗-polytopes with 5-, 6- and, at
most, two 7-gons.
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4. Prospects

Let us mention the arising prospects.

1. The result of Theorem 8 may be strengthened. It seems that the operation of a (2, 7; 6, 6)-truncation
can be eliminated. Furthermore, it seems to be an open question whether there is a finite set of
growth operations transforming the family P≤7 to itself sufficient to reduce any polytope in P7

with all the non-hexagons isolated to some polytope in P≤7. Let us remind that due to results
in [51], there are no finite sets of growth operations transforming fullerenes to fullerenes sufficient
to reduce any fullerene with all 5-gons isolated to some fullerene.

2. There arise further questions about p-vectors of Pog-polytopes. For example, for given numbers
(pk, k ≥ 7) for which values of p6 does a Pog-polytope realizing this p-vector exist?

3. To apply the construction of fullerenes and Pog-polytopes by operations presented in this article to
problems in polytope theory, toric topology and hyperbolic geometry; for example, to give a new
proof of the four color theorem for special classes of Pog-polytopes; or for a given Pog-polytope
to enumerate all characteristic mappings Λ and Λ2. There is a question about describing the
transformation of differential-geometric and algebraic-topological properties of the manifolds
under transformation of polytopes.

4. To estimate the numbers of polytopes in P7 and P7,5 with the given number of faces.
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Abbreviations

The following abbreviations are used in this manuscript:

F the family of fullerenes
P7 the family of simple 3-polytopes with 5-, 6- and one 7-gonal face
P7,5 the subfamily in P7 consisting of polytopes with the 7-gon adjacent to a 5-gon
P≤7,5 F t P7,5

P≤7 F t P7

D the family of polytopes consisting of the dodecahedron and the (5, 0)-nanotubes
Pog-polytope Pogorelov polytope
Pog∗-polytope Pogorelov polytope with any 5-belt surrounding a face
ck-connected cyclically k-edge connected
c∗k-connected strongly cyclically k-edge connected
A∗ the subfamily of all Pog∗-polytopes in a family A
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