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Abstract: The use of automorphisms of the various Bianchi-type Lie algebras as Lie-point symmetries
of the corresponding Einstein field equations entails a reduction of their order and ultimately
leads to the entire solution space. When a valid reduced action principle exists, the symmetries
of the configuration mini-supermetric space can also be used, in conjunction with the constraints,
to provide local or non-local constants of motion. At the classical level, depending on their number,
these integrals can even secure the acquisition of the entire solution space without any further solving
of the dynamical equations. At the quantum level, their operator analogues can be used, along with
the Wheeler–DeWitt equation, to define unique wave functions that exhibit singularity-free behavior
at a semi-classical level.
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1. Introduction

For pure gravity without any symmetries, Einstein’s field equations consist of an infinite number
of equations because such systems have infinite degrees of freedom. On the other hand, spatial
homogeneity reduces the general case to a system of ten coupled O.D.E.’s (ordinary differential
equations) with respect to time [1,2]: one equation is quadratic in the velocities γ̇αβ and algebraic in
N2 (G00 = 0); three are linear in velocities and also algebraic in Nα (G0i = 0); and the remaining six
spatial equations (Gij = 0) are linear in γ̈αβ and depending on N, Ṅ, Nα, Ṅα, γαβ, γ̇αβ.

The natural way to proceed with this set of equations is to solve the quadratic constraint for N2

and the linear constraint equations for as many Nα’s as possible. Then substitute these results into
the remaining spatial equations. Subsequently, the spatial equations can be solved for only 6 − 4 = 2
independent accelerations γ̈αβ. The only exceptions occur for Bianchi Type II and III, where we can
solve for 6 − 3 = 3 accelerations; thus, only two of the three linear constraints are independent.
However, a linear combination of the Na’s remains arbitrary and in equilibrium with the existence
of the extra independent acceleration. Therefore, in every Bianchi type, the general solution consists
of four arbitrary functions of time, whose specification corresponds to a choice of time and space
coordinates.

The usual way of approaching this problem in the literature is by gauge fixing the lapse function
N and shift vector Na before doing any calculations. Specifically, the most common choices for the
lapse function are to consider N depending explicitly on time or being a constant value. The situation
for the spatial coordinates is more vague. Most of the time, Nα’s are set to zero, and some other times,
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Nα’s are retained. However, such choices are not necessarily equivalent. The spatial equations can be
solved for all six independent γ̈αβ(t) after this gauge fixing. Thus, the constraint equations reduce to
algebraic restrictions between the integration constants.

Therefore, setting Nα(t) = 0 leads to γαβ = diag(a2(t), b2(t), c2(t)) for Class A types, etc.
However, for the Bianchi Types VIII and IX, the hypothesis Nα(t) = 0 and γαβ = diag(a2(t), b2(t), c2(t))
is known to be linked to the kinematics and/or the dynamics although in a somewhat vague way;
see, e.g., [3] and Ryan in [1]. In all other cases, this or any other simplifying hypothesis used is
interpreted only as an ansatz to be tested at the end, i.e., after having solved all the (further simplified)
equations. For example, to take an extreme case, the diagonality of γαβ(t) together with the vanishing
of the shift vector is known to lead to the incompatibility of Bianchi Types IV and VII (Class B) [4,5],
as well as for the biaxial Type VIII cases (a2, a2, c2), (a2, b2, a2), [5]. The diversity of the various ansatzs
appearing in the literature causes a considerable degree of fragmentation.

Automorphisms has been long suspected and/or known to play an important role in a unified
treatment of Bianchi types. This was firstly mentioned in [6]. Time-dependent automorphism matrices
have recently been used by Jantzen [7,8] as a convenient parametrization of a general positive definite
3× 3 scale factor matrix γαβ(t), in terms of (showed for) a diagonal matrix. Samuel and Ashtekar
have seen automorphisms as a result of general coordinate transformations [9], linking them to
topological considerations.

In the present work, we also adopt a space-time point of view and try to avoid the
above-mentioned fragmentation. This is achieved by revealing those G.C.T.’s (general coordinate
transformations) that permit us to simplify the line-element without losing manifest spatial
homogeneity. Thus, we are able to uncover special automorphic transformations of γαβ(t), along with
corresponding changes of N, Nα, which allow us to set Nα = 0 and bring γαβ(t) to some irreducible,
simple form.

The structure of the work is as follows: In Section 2, we briefly review the classical dynamics in
the scene of [10,11]. Section 3 gives an example of the way in which we exploit the freedom to set
the shift to zero; the solution space of Bianchi I is presented. In Section 4, we present an example of
using the time-dependent automorphism in order to simplify the scale factor matrix γαβ. In Section 5,
the reduced Lagrangian dynamics is reviewed, and the various integrals of motion are presented, along
with a quantization scheme. In Section 6, we give an example by treating classically and quantum
mechanically an FLRW (Friedmann–Lemaître–Robertson–Walker). Finally, some concluding remarks
are also given.

2. Classical Kinematics

In this section, we review the time-dependent automorphism inducing the diffeomorphisms used
in [10,11] to describe the dynamics of Bianchi-type spatially-homogeneous space-times. Our starting
point is the general line element, written in the adopted coordinates (t, xi) [12]:

ds2 = (Nα(t)Nα(t)− N2(t))dt2 + 2Nα(t)σα
i dxidt + γαβ(t)σα

i σ
β
j dxidxj, (1)

where σα are the invariant basis one forms, defined through:

dσα = Cα
βγσβ ∧ σγ ⇔ σα

i,j − σα
j,i = Cα

βγσ
β
j σ

γ
i , (2)

with Cα
βγ being the structure constants characterizing the Lie algebra of the corresponding Bianchi

group. If we use the above line element, Einstein’ s field equations assume, for each Bianchi model,
the form:

E0 = KαβKαβ − K2 − R = 0 (3a)

Eα = Kµ
α Cγ

µγ − Kµ
γCγ

αµ = 0 (3b)

Eαβ = K̇αβ + (2Kτ
αKτβ − KKαβ) + 2Nρ(KανCν

βρ + KβνCν
αρ)− NRαβ = 0, (3c)
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where Kαβ is the extrinsic curvature tensor:

Kαβ = − 1
2N

(γ̇αβ + 2γανCν
βρNρ + 2γβνCν

αρNρ), (4)

and Rαβ are the triad components of the Ricci tensor Rij ≡ Rαβσα
i σ

β
j , with:

Rαβ = Cκ
στCλ

µνγακγβλγσνγτµ + 2Cκ
βλCλ

ακ + 2Cµ
ακCν

βλγµνγκλ + 2Cλ
ακCµ

µνγβλγκν. (5)

The above equations form what is known as a perfect mathematical ideal: the time derivative of
Equation (3a) and (3b) becomes an identity when K̇αβ is substituted from Equation (3c).

If one aims at the general solution of the above system, one must seek transformations of the
coordinates, which retain the general functional form of the line element (1). To this end, let us consider
the transformation xi = f i(x̃j, t) and compute its action on the line element.

ds2 = [(Nα(t)Nα(t)− N2(t)) +
∂ f i

∂t
∂ f j

∂t
σα

i ( f )σβ
j ( f )γαβ(t)

+ 2σα
i ( f )

∂ f i

∂t
Nα(t)]dt2

+ 2σα
i ( f )

∂ f i

∂x̃m [Nα(t) + σ
β
j ( f )

∂ f j

∂t
γαβ(t)]dx̃mdt

+ σα
i ( f )σβ

j ( f )γαβ(t)
∂ f i

∂x̃m
∂ f j

∂x̃n dx̃mdx̃n.

(6)

We can always find a non-singular matrix Λα
µ(x̃, t) and a triplet Pα(x̃, t), such that:

σα
i ( f )

∂ f i

∂x̃m =Λα
µ(x̃, t)σµ

m(x̃)

σα
i ( f )

∂ f i

∂t
=Pα(x̃, t).

(7)

If these transformations are to preserve manifest spatial homogeneity, Λα
µ and Pα should not

depend on the spatial point x̃, i.e., Λα
µ(x̃, t) = Λα

µ(t) and Pα(x̃, t) = Pα(t). This requirement alters the
nature of Equation (7) from mere allocations to a system of first order, highly non-linear PDE’s for
the unknown functions f i(x̃, t). For these particular f i’s, one can write down the line element (1) in
the form:

ds2 = (Ñα(t)Ñα(t)− Ñ2(t))dt2 + 2Ñα(t)σα
i (x̃)dx̃idt + γ̃αβ(t)σα

i (x̃)σβ
j (x̃)dx̃idx̃j. (8)

With the allocations:

Ñ = N Ñα = Λρ
α(Nρ + γρσPσ) γ̃µν = Λα

µΛβ
ν γαβ. (9)

The Frobenius theorem guarantees that there exist local solutions to the system (7), as long as the
integrability conditions ∂2xi

∂x̃m∂x̃n = ∂2xi

∂x̃n∂x̃m and ∂2xi

∂x̃m∂t =
∂2xi

∂t∂x̃m hold true. These conditions, by repeated
use of Equation (7), reduce to the form:

Λα
ρCρ

βγ = Cα
µνΛµ

βΛν
γ ⇔ Cα

βγ = Sα
µΛµ

βΛν
γCµ

µν (10)

2PµCα
µνΛν

β = Λ̇α
β, (11)

with S being the matrix inverse to Λ. The first of the above equations signifies that Λ belongs to the
automorphisms of the corresponding Lie algebra. The solution to the above equations can easily be
found for all Bianchi types. The general result is that in all cases, three arbitrary functions of time,
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along with a number of constants, enter the form of Λα
µ and Pρ. There is also a fourth arbitrary function

of time due to the usual freedom to change the time coordinate t = g(t̃). All this freedom is at our
disposal in order to simplify the line element and thus the ensuing Equation (3a)–(3c). There are
essentially two ways to use the three arbitrary functions of time:

1. The first is to make the shift Ñα zero. Then, the residual rigid “gauge” freedom described by
Λα

β = constant, Pρ = 0 provides us with Lie point symmetries, which can be used to reduce the
order of the equations and ultimately acquire the entire solution space. In such a way, the general
solution of Bianchi Types I–VII has been uncovered.

2. The second is to simplify the scale factor matrix and then proceed to solve the reduced form of
the equations. This option is more suitable for the case of Bianchi Types VIII and IX, since in this
case, the time-dependent Λ suffices to diagonalize γαβ, and then, Equation (3b) enforces Nα = 0.

In the spirit of the first way, we present the complete solution space for Bianchi Type I. The rest of
the above-mentioned types afford the same method: one brings in normal form the generator of the
maximal Abelian subgroup, thus reducing the order of the system of equations for the corresponding
dependent functions. At this point, since the initial automorphism group is solvable, we are assured
that the remaining generators are still symmetries of the reduced equations. By repeating the same
procedure, we end up with one differential equation in terms of one dependent variable. This equation
through a finite Lie–Backlund transformation is cast into the Painleve VI transcendental. This holds
true for all Types II–VII; see [13–16].

3. Bianchi Type I

In this model, all structure constants are zero. The general solution of Equations (10) and (11) is:

Λα
β = constant (12)

Pα = (P1(t), P2(t), P3(t)). (13)

Therefore, with the use of three arbitrary functions of Pα, it is possible to set the shift vector equal
to zero, N̄α = 0, by using (9) and selecting:

Pρ = −γρσ Nσ. (14)

It is also useful to choose the time gauge N =
√

γ. Under these conditions, Equation (3b) is
identically satisfied, while (3a) and (3c) become:

E0 ≡ Tr[(γ−1γ̇)2]− (Tr(γ−1γ̇))2 = 0 (15)

Eα
β ≡

d
dt
(γ−1γ̇) = 0, (16)

where γ is a general symmetric matrix with all its components depending on time. The second equation
is integrated and gives:

γ−1γ̇ = Θ⇒ γ̇ = γΘ, (17)

where Θ is a general constant 3× 3 matrix. Because there is additional freedom to use the constant
automorphisms Λα

β (see Equation (9) with Pα = 0), the matrix Θ can be simplified:

γ = ΛTγ̄Λ⇒ ΛT ˙̄γΛ = ΛTγ̄ΛΘ⇒ ˙̄γ = γ̄ΛΘΛ−1 ⇒ Θ̄ = ΛΘΛ−1. (18)

Thus, the solution space is divided into different parts according to the nature of the eigenvalues
of Θ.
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3.1. Three Unequal Real Eigenvalues

If one assumes the following decomposition of a general matrix Λ as Λ1Λ2Λ3:

Λ1 =


√

λ1 0 0
0

√
λ2 0

0 0
√

λ3

 , Λ2 =

1 x y
0 1 z
0 0 1

 , Λ3 = O3, OT
3 O3 = I. (19)

Λ3 can be used to bring the matrix Θ into upper-triangular form:

Θ =

θ1 θ12 θ13

0 θ2 θ23

0 0 θ3.

 (20)

The next step is to use Λ2 to diagonalize Θ. Therefore, without loss of generality, we have:

γ̇ = γΘ (21)

where Θ = diag(κ, λ, µ) on which the matrix Λ1 does not have impact (because both of these are
diagonal and the transformation is a similarity transformation). Since γ is a symmetric matrix, it follows
that γ̇ is symmetric, as well. Therefore, there are additional conditions for the product γΘ, that is,
it should hold:

γΘ = (γΘ)T ⇒ γΘ−Θγ = 0. (22)

These relations, for θ1, θ2, θ3, being different and non-zero, lead to the following restrictions:

γ12 = γ13 = γ23 = 0. (23)

Therefore, we have the equations:

κ2 + λ2 + µ2 − (κ + λ + µ)2 = 0⇒ κλ + κν + λµ = 0 (24)

and:
˙γ11 = κγ11, ˙γ22 = λγ22, ˙γ33 = µγ33 (25)

This system is simple and can be straightforwardly integrated; however, it is useful to deal with
it more formally as a consequence of the existence of the unused symmetries corresponding to Λ1.
The transformations in the space of the dependent variables (γ11, γ22, γ33):

γ̄11 = λ1γ11, γ̄22 = λ2γ2, γ̄33 = λ3γ33, (26)

constitute the symmetries of the system of the above equations. The three symmetry generators are:

X1 = γ11
∂

∂γ11
, X2 = γ22

∂

∂γ22
, X3 = γ33

∂

∂γ33
. (27)

The three corresponding generators commute; there is thus a transformation bringing them in
canonical form, which is:

γ11 = ea, γ22 = eb, γ33 = ec. (28)

In the new dependent variables, the generators become:

X1 =
∂

∂a
, X2 =

∂

∂b
, X3 =

∂

∂c
, (29)
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showing that the system will not depend on (a, b, c), but only on their derivatives. Therefore, we have:

ȧ = κ, ḃ = λ, ċ = µ⇒ (30)

a = κt + d1, b = λt + d2, c = µt + d3, (31)

with κλ + λµ + κµ = 0. The constants d1, d2, d3 are absorbed with a scaling of x, y, z, and the line
element is:

ds2 = −eκ+λ+µtdt2 + eκtdx2 + eλtdy2 + eµtdz2, (32)

which is the Kasner solution [17].

3.2. Three Real with Two Equal Eigenvalues

In this case, the Θ matrix, using the restrictions from Equation (18), can be brought in the
irreducible form:

Θ =

 θ1 1 0
0 θ1 0
0 0 θ2

 , (33)

where θ1 and θ2 are real valued. Extra restrictions on the θ’s are produced by Equation (15), resulting in:

− 2θ1(θ1 + 2θ2) = 0. (34)

The later equation implies that θ2 6= 0 in order to have a non-trivial solution. Thus, by dividing it
with θ2

2 :
− 2θ1(θ1 + 2θ2) = 0⇒ λ(λ + 2) = 0, (35)

where λ = θ1/θ2. This equation has two solutions, λ = 0 and λ = −2. Therefore, using Equation (21)
and then setting τ = θ2t, we evaluate the elements of γ:

γ11 = γ13 = γ23 = 0 (36)

γ12 = c1eλτ γ22 = eλτ(c1 + c2t) γ33 = c3eλτ . (37)

Finally, the line element without the non-essential constants is written:

ds2 = −e(2λ+1)τdτ2 + eτdx2 + τeλτdy2 + 2eλτdydz. (38)

This metric belongs to the Harrison [18] family of metrics and has a homothecy produced by:

H = 2∂τ + 2xλ∂x + (λ + 1)y∂y + (z(λ + 1)− y)∂z. (39)

Furthermore, for the special case of λ = 0, this metric is a pp-wave.

3.3. Case with One Real and Two Complex Conjugate Eigenvalues

In this case, the corresponding Θ matrix is reduced to:

Θ =

 θ1 0 0
0 θ2 θ3

0 −θ3 θ2

 , (40)
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where the eigenvalues are θ1, θ2 + iθ3 and θ2 − iθ3. If we follow the same procedure as previously,
the matrix form for γαβ is written as:

γαβ =

 c1eθ1t 0 0
0 eθ2t[c2 cos(θ3t)− c3 sin(θ3t)] eθ2t[c2 cos(θ3t) + c3 sin(θ3t)]
0 eθ2t[c2 cos(θ3t) + c3 sin(θ3t)] eθ2t[−c2 cos(θ3t) + c3 sin(θ3t)]

 , (41)

where c1, c2 and c3 are real constants. The first condition for these constants is produced by
Equation (15) reading:

− 2(2θ1θ2 + θ2
2 + θ2

3) = 0. (42)

The constants θ1 and θ3 are non-zero, so it is possible to divide the former equation by θ2
1θ3, and

then, redefine the constants as:

2λ + βλ2 + β = 0→ β = − 2λ

λ2 + 1
, β =

θ3

θ1
, λ =

θ2

θ3
. (43)

Therefore, by setting τ = βθ1t and by doing proper transformations in order to absorbthe
non-essential constants, we produce the final metric:

ds2 = −e(2λ+β−1)τdτ2 + eτ/βdx2 − eλτ sin τdy2 + 2eλτ cos τdydz + eλτ sin τdz2, (44)

which has a homothecy generated by the following vector field:

H = −4λ∂τ − 4λ2x∂x + (y(−λ+1) + 2λz)∂y − (z(λ2 − 1) + 2λy)∂y. (45)

The same metric has been produced for the first time by Harrison [18], who however used a
different approach.

3.4. Case with Three Equal Eigenvalues

In this case, the Θ matrix is:

Θ =

 θ1 1 0
0 θ1 1
0 0 θ1

 . (46)

If we follow the same procedure as previously, the matrix form for γαβ is written:

γαβ = eθ1t

 2c1 −2c2t 2c3

−2c2t 1 0
2c3 0 0

 , (47)

where c1, c2 and c3 are real constants. From Equation (15), we have that θ1 = 0.
Thus, by doing proper transformations in order to absorb the non-essential constants, we produce

the final metric:
ds2 = dt2 + 2t2dx2 + dy2 − 4tdxdy + 4dxdz, (48)

which has homothecy described by the following vector field:

H = t∂t + y∂y + 2z∂z. (49)

Furthermore, this metric is a pp-wave because for the Killing field u = ξ3 = ∂z, we have ua
;β = 0

and uaua = 0.
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4. Diagonalizability of γαβ for Types VIII–IX

Let us begin by recalling that, in three dimensions, the structure constants tensor Cα
βγ can be

represented as [19]:
Cα

βγ = mαδεδβγ + νβδα
γ − νγδα

β, (50)

with mαβ a symmetric tensor density of weight −1 and νβ = 1
2 Cα

βα. The condition that Λ is an
automorphism of the Lie algebra translates into the following requirements:

mαβ = |S|−1Sα
γSβ

δ mγδ (51)

να = Λβ
ανβ. (52)

The symmetry groups for Bianchi VIII and IX mαβ are characterized by:

mαβ = diag(ε, 1, 1) and νβ = 0, (53)

where ε = −1 for Bianchi VIII and ε = 1 for Bianchi IX.
From Equations (51) and (52), we can deduce that Λα

β(t) is an element of the three-dimensional
proper Lorentz group or the group of rotations for VIII and IX respectively. Since there are no other
restrictions on Λα

β(t), Pα(t) takes the form:

Pα =
1
4ε

εβτκmαβΛτ
γΛ̇κ

δmγδ. (54)

Due to the fact that i) Λα
β’ s are the isometries of the Minkowski metric in the first case and of the

Euclidean in the second one and ii) γαβ is positive definite and thus always diagonalizable, we arrive
at the reduced form γαβ = diag(a2(t), b2(t), c2(t)).

At this point, having spent our freedom in three arbitrary functions of time, we are left with the
unknown lapse and shift in addition to a(t), b(t), c(t). Invoking the linear constraint Equation (3b),
we get the relations:

N1
(

b(t)2 − c(t)2
)
= 0 N2

(
a(t)2 − c(t)2

)
= 0 N3

(
a(t)2 − b(t)2

)
= 0, (55)

which in the generic case (a(t) 6= b(t) 6= c(t) 6= a(t)) imply that the shift vector is zero. The particular
cases of axisymmetry are analyzed as follows:

Case IX Suppose a(t) = b(t). Then, Equation (55) implies that N1 = N2 = 0 and N3(t) is unrestricted.
However, there is an extra rotation in the plane (1–2), which has no effect on the form of γαβ.
This particular matrix, being an automorphism, can be used to absorb the N3; see Equations (9)
and (54). The situation with a(t) = c(t) or b(t) = c(t) is exactly the same.

Case VIII For the case b(t) = c(t), we follow exactly the same reasoning and arrive at zero shift,
as well. Of particular interest and less known is the fact that the case b(t) = a(t) or c(t) = a(t)
leads to the incompatibility of the resulting Einstein Equation (3c) (for the first time reported

in [5]); they require − 2n(t)2

a(t) = 0. This fact can, in view of the transformations (9), be understood
as follows: while the transformation matrix that leaves the form of γαβ invariant is still a rotation,
the corresponding allowed one is a boost; thus, the form of γαβ becomes block diagonal when
the shift is zero, showing the incompatibility.

5. Reduced Dynamics

Our starting point is the action of Einstein’s gravity plus matter:

S =
c4

16πG

∫√
−g R d4x + Sm, (56)
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where g is the determinant of the space-time metric gµν, R the Ricci scalar and Sm the action of
the matter content. In the case that the manifold has a specific group of isometries, such as spatial
homogeneity, the line element can be decomposed in the following form:

ds2 = −N(t)2dt2 + γκλ(t)σκ
i (x)σλ

j (x)dxidxj, (57)

where N is the lapse function. Note that the more general line element should also have a
shift term (2Nασα

i (x)dxidt), which can always be made to vanish through a particular coordinate
transformation [10] (however, one has to keep in mind that in several cases, it may so happen that this
absorption can be performed only locally, since it can result in altering the topology of the time axis).
If one inserts this line element into Einstein’s equations (obtained by varying the action with respect
to gµν):

Gµν ≡ Rµν −
1
2

gµνR =
8πG

c4 Tµν, (58)

with Tµν = 2√−g
δSm
δgµν , one arrives at a set of coupled ordinary differential equations with t as

the independent dynamical variable. On the other hand, if the action (56) is calculated using the
decomposed metric (57), integrating out the non-dynamical degrees of freedom, the full gravitational
system may be successfully described by the reduced action. If this happens, this action is called valid.
This reduced system has finite degrees of freedom, and it is thus more easily quantized.

The Lagrangian of these mini-superspace systems has the general form (for simplicity in what
follows, we choose to work in units c = G = h̄ = 1, a choice that reflects the typical geometric and
quantum mechanical units):

L =
1

2N(t)
Gαβ(q)q′α(t)q′β(t)− N(t)V(q), (59)

where ′ = d
dt , while V(q) and Gαβ(q) are the mini-superspace potential and metric, respectively.

The variables qα are functions of the matrix scale factors γµν, i.e., qα = qα(γµν). This Lagrangian
corresponds to a singular system. The associated Hamiltonian is written as:

HT = NH + uN pN ,

which is produced with the help of the Dirac–Bergmann algorithm for singular systems [20,21].
This Hamiltonian has the following primary and secondary constraints:

pN ≈ 0, (60a)

H =
1
2

Gαβ pα pβ + V(q) ≈ 0. (60b)

In what follows, we will use the constant potential parametrization in which all the information
about the system is included inside the mini-superspace metric. This parametrization is achieved if we
adopt the following transformation N 7→ n = N V; thus, the transformed Lagrangian is:

L =
1

2n(t)
Gαβ(q)q′α(t)q′β(t)− n(t), (61)

with Gαβ = V Gαβ being the new mini-superspace metric. The corresponding Hamiltonian constraint becomes:

H =
1
2

Gαβ pα pβ + 1 ≈ 0.
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It is easily proven that there can be conserved quantities (linear in momenta), modulo the
constraint [22], with the general form:

QI = ξα
I (q)pα +

∫
n(t)ωI(q(t))dt, (62)

with:
Lξ Gαβ = ω(q)Gαβ,

where Lξ is the Lie derivative with respect to the configuration space vector ξ. The above conserved
charges correspond to conformal (ω(q) 6= 0), Killing (ω(q) = 0) or homothetic (ω(q) = constant)
vector fields of Gαβ. The charges that correspond to Killing vector fields strongly commute with
the Hamiltonian, a property that is extremely useful in the process of quantization. In the system
under consideration, there could arise non-trivial higher order symmetries; see for example [23–26].
These symmetries are generated by second order Killing tensors, defined through:

∇µKνλ +∇λKµν +∇νKλµ = 0, (63)

Kµν = Kνµ. (64)

These tensors are separated into two categories: the first includes the trivial tensors constructed
by tensor products of Killing vector fields:

Kµν =
1
2
(
ξµ ⊗ ξν + ξν ⊗ ξµ

)
, (65)

or the metric itself, while the second contains all the rest, which are designated as non-trivial.
The corresponding phase space quantities K = Kµν pµ pν have vanishing Poisson brackets with

the Hamiltonian constraint and therefore constitute constants of motion:

K = Kµν pµ pν ⇒ {K, H } = 0. (66)

The next step is to construct a canonical quantization scheme for the Lagrangian (61). We assume
that the mini-supermetric Gαβ possesses some Killing vector fields ξ I and some Killing tensor fields
KJ where I, J are indices that label each of them. To each Killing vector and tensor field corresponds
an integral of motion. We begin by assigning differential operators to momenta and replace Poisson
brackets by commutators:

pn 7→ p̂n = −i ∂

∂n
, pα 7→ p̂α = −i ∂

∂qα
, { , } → −i[ , ],

while the operators corresponding to qα are considered to act multiplicatively. In order to solve
the factor ordering problem of the kinetic term of H , we choose the conformal Laplacian
(or Yamabe operator) (see e.g., [27]),

Ĥ = − 1
2µ

∂α

(
µGαβ∂β

)
+

d− 2
8(d− 1)

R + 1, (67)

where µ(q) =
√
|det Gαβ|, ∂α = ∂

∂qα , R is the Ricci scalar and d the dimension of the mini-superspace.
This choice is essentially unique on account of:

1. The requirement for the operator to be scalar under coordinate transformations of the
configuration space variables qa.

2. The requirement to contain up to second derivatives of Gµν since the classical constraint is
quadratic in momenta.
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3. The requirement to be covariant under conformal scalings of Gµν, since this is also a property of
the classical system.

A further property of the definition (67) is that it will be Hermitian in the Hilbert space of the
quantum states, if of course appropriate boundary conditions are fulfilled, e.g., square integrability
of the derivatives of Ψ(q) [28]. However, in view of the fact that any particular combination of the
qa’s can, at the classical level, be considered as representing the time, such a property is not in general
expected to hold. This can be considered as a reflection of the famous problem of time in quantum
gravity/cosmology [29,30].

As far as the classical symmetries (62) and (66) are concerned, they can naturally be
transferred to operators by formally assigning to QI the general expression for linear first order,
Hermitian operators [31] and to KJ a pseudo-Laplacian operator [32]; thus, the corresponding forms
are respectively:

Q̂I = −
i

2µ
(µξα

I ∂α + ∂α(µξα
I )) = −i ξα

I ∂α, (68)

K̂J = −
1
µ

∂α

[
µKαβ

J ∂β

]
. (69)

In (68), the last equality holds due to the ξ I ’s being Killing vector fields. The linear symmetries
exactly commute with the Hamiltonian only in the constant potential parametrization [33]
i.e., commutators of the following form are zero:

[Q̂I , Ĥ ] = 0. (70)

By virtue of the above relations, it is possible to use some of the Q̂I ’s as quantum observables
together with Ĥ as long as they have a common set of eigenfunctions. Therefore, our quantum system
will obey the following conditions:

p̂nΨ = 0 (71a)

Ĥ Ψ = 0 (71b)

Q̂IΨ = κIΨ, (71c)

where the first is restriction induced by the primary constraint and the second one is the
Wheeler–DeWitt equation. The number of Q̂I that can be consistently imposed on the wave function is
prescribed by the integrability condition [34]:

CM
I J κM = 0, (72)

where κM are the eigenvalues and CM
I J the structure constants of the sub-algebra under consideration.

Similar considerations apply when some of the K̂J are also used. In order for these quadratic
quantum observables to be consistently imposed, there are geometric conditions involving the metric
and the Kαβ

J ’s that need to be satisfied [32].

6. Massless Field in the FLRW Universe

6.1. Classical Treatment

We now turn to the study of FLRW geometries [35]. These belong to the Bianchi classification;
note, however, that they appear as special solutions of several Bianchi types. The spatially closed
case belongs to the Bianchi Type IX model, the spatially open to Type V, while the spatially flat to the
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Bianchi Type I. We solve in detail the k 6= 0 cases and only mention the final result for the spatially flat
case. The general form of the line element of an FLRW space-time is:

ds2 = −N2(t)dt2 + a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdϕ2
)

, (73)

where N(t) is the lapse function and a(t) is the scale factor. For this space-time, the total Lagrangian
for the gravity plus matter system is:

L = 6Nka− 6aȧ2

N
+

a3φ̇2

2N
, (74)

where a term of a total time derivative has been discarded. This Lagrangian has a singular form, and
the procedure of integration of the system via the conditional symmetries applies here. To this end,
we have to turn to the constant potential parametrization (For k = 0, the Lagrangian is already in the
constant potential parametrization. This results in the existence of numerous rheonomic integrals of
motion corresponding to the infinite number of conformal Killing fields in two dimensions.) by setting
n = 6 kNa, resulting in:

L = n− 36ka2 ȧ2

n
+

3ka4φ̇2

n
, (75)

with the corresponding Hamiltonian constraint and supermetric respectively:

H = − p2
a

72ka2 +
p2

φ

12ka4 − 1 ≈ 0, Gαβ = 6ka

(
−12a 0

0 a3

)
. (76)

This supermetric represents a flat two-dimensional space, admitting the following three
symmetries and the homothecy:

ξ1 =
eφ/
√

3

a
∂a −

2
√

3eφ/
√

3

a2 ∂φ, ξ2 =
e−φ/

√
3

a
∂a +

2
√

3e−φ/
√

3

a2 ∂φ, ξ3 = ∂φ, ξh =
a
4

∂a, (77)

where the numbered indices denote the Killing fields, while h denotes the homothetic field.
These symmetry generators satisfy a Lie bracket algebra with the following non-vanishing elements:

[ξ1, ξ3] = −
1√
3

ξ1, [ξ2, ξ3] =
1√
3

ξ2, [ξ1, ξh] =
1
2

ξ1, [ξ2, ξh] =
1
2

ξ2. (78)

For the case k = 0, the corresponding algebra is the same, but with structure constant coefficients
being C1

31 = C2
23 =

√
3

4 , C1
1h = C2

2h = 1
2 . The corresponding integrals of motion in the configuration

space are:

Q1 = −
12e

φ√
3 ka

(
6ȧ +

√
3aφ̇

)
n

, Q2 =
12e−

φ√
3 ka

(
−6ȧ +

√
3aφ̇

)
n

, (79)

Q3 =
6ka4φ̇

n
, Qh = −18ka3 ȧ

n
+
∫

dt n(t). (80)
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In order to determine the line element, the system Qi = κi for i = 1, 2, 3, h with κi constants is
algebraically solved. The solution is:

a =
2× 31/4√κ3e

φ

2
√

3√
−κ1 + κ2e

2φ√
3

, (81)

ȧ = −
√

κ3e
φ

2
√

3 (κ1 + κ2e
2φ√

3 )φ̇

31/4(−κ1 + κ2e
2φ√

3 )3/2
, (82)

n =
288κ3e

2φ√
3 kφ̇

(κ1 − κ2e
2φ√

3 )2
, (83)

∫
dt n(t) = −κh −

√
3κ3(κ1 + κ2e

2φ√
3 )

2(κ1 − κ2e
2φ√

3 )

, (84)

while a relation for the constants appearing in the system is also found by the only non-trivial
consistency condition ∂

∂t

∫
dt n(t) = n,

κ1κ2 + 144k = 0. (85)

This relation is the constraint equation of the theory, and it is interesting to note that the Casimir
invariant of the algebra is the term Q1Q2, which is also the kinetic part of the Hamiltonian.

For the case of k = 0, the system of equations is Qi = κi, where i = 1, 2, 3, h must be solved by
setting one of the constants κ1, κ2 equal to zero. This is necessary because of the vanishing of the
constraint and the fact that its kinetic part when expressed with respect to Qi’s equals Q1Q2. As before,
it is also here true that this product is the Casimir invariant of the algebra.

At this stage, the solution will still contain an arbitrary function of time, representing the time
reparametrization invariance (since no gauge fixing has been so far assumed in the derivation).
Choosing the gauge φ = ln t, we find that the solution is:

a =
2× 31/4√κ3t

1
2
√

3√
−κ1 + κ2t2/

√
3

, N =
8× 33/4√κ3t−1+

√
3

2

(−κ1 + κ2t2/
√

3)
. (86)

By inserting it in the line element (73) and performing proper coordinate transformations in order
to absorb the redundant constants, the final line element of the space-time is:

ds2 = − λ

4
√

T(1 + Tk)3
dT2 +

λ
√

T
(1 + Tk)

(
dr2

1− r2k
+ r2dθ2 + r2 sin2 θdϕ2

)
. (87)

This geometry has one essential constant, as can be shown by using the methodology of [36,37].
The Ricci scalar is:

R = −3(Tk + 1)3

2T3/2λ
, (88)

where we have set λ = − κ3√
3k3/2 rendering the metric element singular for both T → 0 and T → ∞.

The same steps for the spatially flat case lead us to the solution:

ds2 = −dT2 + T2/3dr2 + T2/3r2dθ2 + T2/3r2 sin2 θdϕ2. (89)
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This space-time metric is conformally flat with Ricci scalar:

R = − 2
3T2 . (90)

It does not contain any essential constants characterizing the geometry and the matter content of
the space-time, and as can be seen from the form of the Ricci scalar, a singularity for T → 0 appears.

6.2. Canonical Quantization and Semiclassical Analysis

We next canonically quantize the classical system. Promoting the constraints, as well as the first
integrals Qi to operators and imposing them on the wave function gives the following quantum equations:

Q̂1Ψ = −
ieφ/

√
3(−6∂φΨ +

√
3a∂aΨ)

√
3a2

= κ1Ψ, (91)

Q̂2Ψ = −
ie−φ/

√
3(6∂φΨ +

√
3a∂aΨ)

√
3a2

= κ2Ψ, (92)

Q̂3Ψ = −i∂φΨ = κ3Ψ, (93)

Ĥ Ψ =
−144ka4Ψ− 12∂φφΨ + a(∂aΨ + a∂aaΨ)

144ka4 = 0, (94)

where the measure is µ(a, φ) = 6
√

3a3k. The quantum equations Q̂iΨ = κiΨ that can be
imposed simultaneously according to the condition (72) are the two-dimensional (Q̂1, Q̂2) and the
one-dimensional Q̂1, Q̂2, Q̂3. The one-dimensional sub-algebras spanned by the operators Q̂1, Q̂2 give
solutions that are special cases of the two-dimensional case [38].

6.2.1. Subalgebra (Q̂1, Q̂2)

For the case of the two-dimensional sub-algebra, we solve Equations (91), (92) and (94).
The solution for the wave function is:

Ψ = A exp
(

i
a2

4
(κ1e−

φ√
3 + κ2e

φ√
3 )

)
. (95)

The semiclassical analysis is next performed following Bohm as explained in the Introduction.
This wave function is written in polar form, and we can see that the amplitude Ω is constant. Therefore,
the quantum potential will vanish, rendering the solution for this case the same as the classical metric.
Indeed, if we solve the semiclassical solutions:

1
2

a
(
−e−φ/

√
3(κ1 + e2φ/

√
3κ2)

)
=

144kaȧ
n

, (96)

a2

12

(√
3e−φ/

√
3(κ1 − e2φ/

√
3κ2)

)
= −72ka2φ̇

n
, (97)

with phase function S = 1
4 a2e−

φ√
3 (κ1 + κ2e

2φ√
3 ), we indeed find the same line element as in the classical

case. The same conclusion also holds for k = 0.
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6.2.2. Subalgebra Q̂3

In the case of the one-dimensional algebra, the system of equations is formed by Equations (93)
and (94). The wave function is:

Ψcl(a, φ) = eiφκ3(A1 I−i
√

3κ3
(6a2) + B1 Ii

√
3κ3

(6a2)), (98)

Ψop(a, φ) = eiφκ3(A2 J−i
√

3κ3
(6a2) + B2 Ji

√
3κ3

(6a2)), (99)

for the closed and open case respectively. In order to write the wave function in polar form, for the
sake of the semiclassical analysis, approximation limits are taken for small and large arguments of the
Bessel functions. The use of the simplifying assumptions A1 = B1, A2 = B2 renders the, common for
the two cases, wave function:

Ψsm ≈ c1eiκ3φ cos ln a. (100)

Similarly, for the large values assuming again A1 = B1, A2 = B2, the wave function becomes:

Ψcl
la ≈

ea2

a
eiκ3φ, Ψop

la ≈
sin(6a2)

a
eiκ3φ. (101)

The quantum potential for small values does not vanish Qsm = 1
144ka4 , while Qcl

la = −
1+4a4

144a4k and

Q
op
la = 144ka4−1

144ka4 . The phase function is S = κ3φ. The solution of the semiclassical equations with respect
to (a, n) is:

a = c, n =
6ka4

κ3
φ̇, (102)

and has a remaining freedom for the scalar field, which we select to be such that the lapse function
N(t) of the semiclassical element is the same as for the classical, that is:

φ(t) = −
8× 33/4t

√
3/2
√
− 48kt2/

√
3

κ1
− κ1

3 κ1κ3/2
3

(
−3 +

√
1 + 144kt2/

√
3

κ2
1

2F1

(
1
2 , 3

4 ; 7
4 ;− 144kt

2√
3

κ2
1

))
c3(144kt2/

√
3κ1 + κ3

1)
, (103)

where 2F1 (a, b; c; d) is the Gauss hypergeometric function. Inserting the solution in the four-dimensional
element and after proper coordinate transformations, the space-time metric is written:

ds2 = − λ

4
√

T(1 + Tε)3
dt2 +

1
1− εr2 dr2 + r2dθ2 + r2 sin2 θdϕ2, (104)

where the sign (+) accounts for the closed case and (−) for the open case while the identification
c2 = λ2

16 has been considered in order for the constant λ to coincide with that one in the classical
metric. This space-time has the interesting property of having a constant Ricci scalar R = 6k, all higher
derivatives of its Riemann tensor zero and all curvature scalars constructed from its Riemann tensor
constant. Hence, there is no curvature and/or a higher derivative curvature singularity.

Following the same procedure for the spatially-flat case, we find that the wave function is of
the form:

Ψ(a, φ) = eiκ3φ
(

A3 cos(2
√

3κ3 ln a) + B3 sin(2
√

3κ3 ln a)
)

.

Note that in this case, there is no need to make an approximation in order to write it in polar
form as it is already in this form with Ω = A3 cos(2

√
3κ3 ln a) + B3 sin(2

√
3κ3 ln a) and S = κ3φ. The line

element we obtain is:
ds2 = −dT2 + dr2 + r2dθ2 + r2 sin2 θdϕ2. (105)
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This space-time is the Minkowski space-time and does not contain any essential constants.
Therefore, there is no singularity for the range of all times, since no approximation limits have
been considered here.

7. Resume

We have seen how the automorphic motions of the scale factor matrix, the lapse and the shift arise
from particular space-time coordinate transformation. These motions can be used to either set the shift
vector to zero or simplify the scale factor matrix. In the former case, as we have seen in the example
of Bianchi Type I (Section 3), the remaining rigid symmetry of constant automorphisms provides Lie
point symmetries of the equations of motion. In the latter case, once the time-dependent automorphic
matrices have been used to simplify γαβ(t), the linear constraints provide some extra information
about the shift. Thus, in Section 4, we have given the examples of Bianchi Types VIII and IX, showing
how the linear constraints dictate the vanishing of the shift vector when γαβ is diagonalized.

When the equations admit a reduced Lagrangian, further symmetries of the configuration space
metric can be present, which result in linear local and non-local integrals of motion, as well as quadratic
(higher order symmetries produced by Killing tensors). A general discussion about these subjects is
given in Section 5, at the classical level. Moreover, at the quantum level, the WDW (Wheeler–De Witt)
equation can be supplemented by the quantum analog of the integrals of motion; thus, unique wave
functions can be obtained, which exhibit a non-singular semi-classical behavior. An example of such a
type of treatment is given in Section 6, where a massless scalar field coupled to an FLRW geometry
is presented.
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