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Abstract: Using the nonclassical symmetry of nonlinear reaction–diffusion equations, some exact
multi-dimensional time-dependent solutions are constructed for a fourth-order Allen–Cahn–Hilliard
equation. This models a phase field that gives a phenomenological description of a two-phase system
near critical temperature. Solutions are given for the changing phase of cylindrical or spherical
inclusion, allowing for a “mushy” zone with a mixed state that is controlled by imposing a pure state
at the boundary. The diffusion coefficients for transport of one phase through the mixture depend on
the phase field value, since the physical structure of the mixture depends on the relative proportions
of the two phases. A source term promotes stability of both of the pure phases but this tendency may
be controlled or even reversed through the boundary conditions.

Keywords: fourth-order diffusion; Allen–Cahn equation; Cahn–Hilliard equation; phase field;
nonlinear reaction–diffusion

1. Introduction

Material transport problems with phase change are conveniently modelled by Stefan free
boundary conditions, in which there is assumed to be a moving sharp interface between phases.
In practice, the interface of solidification may consist of a “mushy” zone, within which there is
dendritic infiltration of one phase by another. Similarly, crystal dislocations may migrate between
one solid crystal phase and another through a region of crystal overlap that may be significant at the
microscale (e.g., [1]). Observable transition zones with two-phase mixtures may occur in environments
wherein the temperature varies little from its critical value. For multi-phase dynamical modelling, the
next level of realism beyond sharp interfaces is the phase field theory, in which a continuously varying
scalar field θ(x, t) interpolates Phase 1 (θ = 1) and Phase 0 (θ = 0). θ is a monotonic function of the
concentration of Phase 1. It may be regarded as a surrogate for the relative concentration of one phase.
As in most continuum representations of mixtures, after averaging over a representative elementary
volume that is large compared to individual particles such as microscopic dendrites, quantities such as
density and phase concentration that are discontinuous at the microscale are represented as smoothly
varying functions. The concept of the phase variable is a mathematical generalisation of the older
concept of a physically measurable order parameter [2]. The classic example is the magnetisation of a
ferromagnetic material. Only since the 1940s have we been able to calculate the critical temperature for
the simplest phase transition, which is the magnetisation of the spatially uniform two-dimensional
Ising ferromagnet. In practice, phase transitions are not instantaneous and during the transition,
the phase structure of a material will be heterogeneous at the microscale. The scalar field theory
of a single phase variable, while being a relatively simple model, will still predict some spatially
non-uniform phase structures through a transition zone. The transition zone is often referred to as
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the “mushy” zone, following the analogy of a two-phase water–ice mixture. The morphology of the
transition zone is a major determinant of the physical properties of alloys (e.g., [3]). The Cahn and
Hilliard phase field model of phase separation [4] showed why the transition zone is stable only at
length scales below a small characteristic value. Following the works by Allen and Cahn [5], and by
Cahn and Hilliard [4], phase field theories have been studied for several decades [6–10].

The core of usual simplified versions of Allen–Cahn (or of Ginzburg–Landau [11]) is an equation
for direct relaxation to the minima of a double-well potential. The resulting partial differential equation
(PDE) is a standard reaction–diffusion equation of the Fitzhugh–Nagumo type,

θt = β∇2θ + sθ(1− θ) (θ − 0.5) , (1)

where β > 0 and s are constants. Here, the two stable steady states are the pure phases θ = 0 and
θ = 1. Without a loss of generality, s > 0; otherwise we could interchange the labels of the two phases.
The cubic source term drives the dynamics towards bi-stable fixed points, with the zones of attraction
separated by the unstable fixed-point at θ = 0.5. The diffusion term allows for forward transport
of existing Phase 1 material through the mixture, opposite to the direction of its own concentration
gradient. Equivalently, Phase 0 diffuses in the opposite direction, counter to the direction of its own
complementary concentration gradient. Note also that the cubic source term has also appeared in
the context of population genetics, as a correct modification to Fisher’s equation for gene frequencies
when the genes are not Mendelian but are neither fully dominant nor fully recessive [12–14].

The usual simplified Cahn–Hilliard equation is:

θt = a∇4θ + b∇2θ. (2)

The operator ∇2 is the Laplacian and ∇4 is the biharmonic operator. The negative Laplacian
term (with b < 0) is destabilising, and generates time-reversed diffusion. It has positive spectrum,
with amplification of perturbations at high spatial frequency. However, when the spatial frequency is
high enough, the instability is restrained by an opposing negative biharmonic term (with a < 0) which
has a negative spectrum, and at high spatial frequencies, the overall spectral values are negative rather
than positive.

Although these diffusion equations do not minimise any action functional, they do result
ultimately from an energy functional. In the Cahn–Hilliard approach, the phase flux is the negative
gradient of a chemical potential multiplied by a conductivity (e.g., [4,6,9,15,16]). The chemical potential
Φ is the variational derivative Φ = δE/δθ, where E is the energy functional. Further, it is reasonable to
include within E a component of strain energy B(θ)|∇θ|2 that depends locally on the phase field value
as well as on its squared gradient. Karali and Katsoulakis [16] showed that in some cases, a combined
Allen–Cahn–Hilliard equation could indeed be derived from an energy principle, allowing for both a
gradient flow and a reaction term that allows for relaxation towards equilibrium:

θt = ∇ ·
[
−M(θ)∇∇2θ + D(θ)∇θ

]
−W ′(θ). (3)

Comparatively few exact solutions are known for time-dependent multi-dimensional fourth-order
nonlinear reaction–diffusion equations. Galaktionov and Svirshchevskii (Example 6.72 of [17])
constructed some solutions for the thin film equation with the absorption term −W ′(θ) = −

√
(θ),

allowing for θ simply to be quadratic in Cartesian coordinates xi. These solutions, along with a number
of others, were derived by Cherniha and Myroniuk [18] in a comprehensive Lie symmetry classification.
In the current article, some more realistic explicit solutions with meaningful boundary conditions will
be constructed after a reduction by a strictly nonclassical symmetry. The solutions have nontrivial
spatial structure but they approach the pure phase θ = 0, exponentially in time.
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In Section 2, we show that a nonclassical symmetry allows one to separate variables to linear
equations in space and time, when the nonlinear reaction and diffusivity obey a single relationship.
This allows us, in Section 3, to construct solutions that approach the phase θ = 0 asymptotically in
time when the Allen–Cahn source term is exactly the cubic function that was given in [5].

In Section 4, we show how these fourth-order reaction–diffusion equations relate to an energy
principle for a flux potential variable that is the analogue of the matrix flux potential that is well-known
from nonlinear porous media studies [19,20].

In Section 5, we conclude with a discussion of the solutions, and some open problems.

2. Nonclassical Symmetry Reduction

2.1. Role of a Fourth-Order Kirchhoff–Helmholtz Equation

For the purpose of reducing the number of variables and producing special symmetric solutions,
the requirement of leaving the whole solution manifold of a PDE invariant could be weakened so that
only a subset of solutions is invariant under partial or conditional symmetry [21]. In particular,
if a symmetric solution can be constructed, then by definition, the target equation must be compatible
with the invariant surface condition that is simply an expression of that invariance. This led Bluman
and Cole [22] to the definition of nonclassical symmetry as a one-parameter transformation, an analytic
function of a single real parameter ε connected to the identity transformation at ε = 0 that leaves
invariant the system consisting of a target PDE together with the invariant surface condition.
The first example to be considered [23] was the linear heat equation supplemented by the invariant
surface condition:

ut = uxx,

η(x, t, u) = ξ1(x, t, u)ut + ξ2(x, t, u)ux.

Subscripts will denote partial derivatives with respect to the subscripted variables. A full
set of determining equations was constructed for the coefficients (ξ1, ξ2, η) of the infinitesimal
symmetry generator:

Γ = ξ0
∂

∂t
+ ξ1

∂

∂x
+ η

∂

∂u
.

Unlike the determining relations of the classical symmetries that are linear PDEs, the nonclassical
determining relations for (ξ1, ξ2, η) are nonlinear. The nonclassical determining relations for the
linear heat equation were not solved for three decades [24]. One class of nonlinear PDEs that has
been fully classified by solving the nonclassical determining relations is the class of semi-linear
(1 + 1)-dimensional reaction–diffusion equations with a linear diffusion term and general nonlinear
reaction term [25,26]. A more extensive account of non-classical symmetry classification is given in the
recent book by Cherniha and Davydovych [27].

Pertinent to the current study, a general nonclassical symmetry classification of fully nonlinear
reaction–diffusion equations in (2 + 1)-dimensions was completed in [28]. The class of target PDEs
was:

θt(x, t) = ∇ · (D(θ)∇θ) + R(θ) (4)

= −∇ · J + R ; J = −D(θ)∇θ.

It is convenient to change the dependent variable to the Kirchhoff [29] variable:

u =
∫ θ

θ0

D(θ̄)dθ̄, (5)
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so that the class of PDE (4) is expressed as

1
D(u)

ut = ∇2u + R(u). (6)

Not only does this reduce the number of terms in the PDE but it also simplifies the flux to
J = −∇u. Since θ = 0 is a stable stationary state, θ0 is henceforth chosen to be 0.

Without loss of generality, nonclassical symmetries have ξ0 = 1 or ξ0 = 0. Hence, in [28],
the system to be analysed was (6), combined with:

ut + ξ1(t, x, u)ux1 + ξ2(t, x, u)ux2 = η(t, x, u). (7)

Among the compatible nonclassical symmetry generators, there was the unexpected simple
combination:

ξ0 = 1 ; ξ1 = ξ2 = 0 ; η = Au (A ∈ R), (8)

u′(θ) = D(θ) =
Au

R(θ)− κu
. (9)

Note that if D(θ) is specified, then (9) gives R(θ) explicitly. However, if R(θ) is specified, then (9)
must be treated as a differential equation to solve for u(θ), after which D(θ) = u′(θ). The symmetry
reduction gives:

u = eAtΦ(x), where ∇2Φ + κΦ = 0. (10)

Provided the nonlinear diffusivity function and the nonlinear reaction function are related as
in (9), the nonlinear reaction–diffusion equation is amenable to separation of variables to two linear
equations, allowing an arbitrary solution of the Helmholtz equation (Equation (10)). This led to the
only known exact time-dependent solution of Arrhenius combustion with diffusion [30] by a symmetry
reduction that applies in n ≥ 1 spatial dimensions.

Until recently, it was not apparent that the non-classical reduction could be applied to fourth-order
reaction–diffusion equations. At this point, it is important to note that provided (9) holds, the same
nonclassical symmetry applies when the Laplacian operator in the PDE (6) is replaced by any linear
operator, that is, Lu can be any time-independent linear combination of u and its spatial derivatives,

1
D(u)

ut = Lu + R(u). (11)

In a recent article [31], this was applied directly to a soil–water–crop system, by choosing L to be
the Kirchhoff operator Lu = ∇2u− ux3 .

Now we choose Lu = a∇4u + b∇2u with a, b ∈ R, so that u and θ satisfy:

1
D(u)

ut = a∇2∇ · ∇u + b∇ · ∇u + R(u), (12)

θt = a∇2(∇ · [D(θ)∇θ]) + b∇ · [D(θ)∇θ] + R(θ). (13)

A direct substitution of:

u = eAtΦ(x) ; a∇2∇ · ∇Φ + b∇ · ∇Φ + κΦ = 0, (14)

into (12) leads to the single requirement (9). Equation (14) could be regarded as a fourth-order
Helmholtz equation.
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The constrained system consisting of (6) with R(θ) and D(θ) satisfying (9), supplemented by the
simple invariant surface condition ut = Au, has an infinite dimensional point symmetry group:

t̄ = t + ε ; ū = eAε[u + eAtΦ(x, t)], (15)

where Φ(x, t) is an arbitrary solution of the linear Equation (14). However, this type of symmetry does
not appear in the classical symmetry group of the original unconstrained PDE (6) that is not integrable.
In the sense that we can construct an infinite dimensional linear space of solutions of a restricted form,
the unconstrained PDE is semi-integrable. The linear space of constructed solutions originates from a
linear PDE in two independent variables compared to the original three independent variables.

2.2. Amenable Diffusivity and Reaction Functions

The amenable diffusivity function for the second-order multi-dimensional nonlinear
reaction–diffusion equation with the cubic reaction term was already investigated in [32] in
the context of population genetics. However, in that application the steady state θ = 0 (meaning no
advantageous genes present) is unstable, whereas in the current application, θ = 0 is a stable pure
phase.

First consider the canonical cubic reaction term that appears in (1),

R = sθ(θ − 0.5)(1− θ). (16)

We assume that the phase that is approached exponentially is θ = 0, requiring A = −|A| < 0. In a
phase pattern formation, there is some interest in the case that the fourth-order diffusion is dissipative
(aD < 0) whereas the second-order diffusion is backwards in time (bD < 0), giving a negative
contribution to entropy production [33]. We will focus on this case below, and assume that these sign
properties are determined by the parameters a and b taking negative values after assigning D > 0.

At this point it is convenient to introduce dimensionless variables. We assume D(θ) has the usual
dimensions of diffusivity, [D] = L2T−1. From (13), b is dimensionless, [

√
b/a] = L−1 and [s] = T−1.

This inverse length is around the critical wave number, above which the fourth-order diffusion
overcomes the second-order backward diffusion, resulting in attenuation and stability. A natural
choice of length and time scales is `s =

√
a/b and ts = 1/s. Define dimensionless coordinates

(x∗, y∗, z∗) = (x, y, z)/`s and t∗ = t/ts, with dimensionless Laplacian ∆∗ = `2
s ∆. In that system of

units, s is scaled to 1, whereas the time scale for the particular solution to decrease exponentially is
written as 1/|A∗| with A∗ = Ats. Defining:

D∗ =
D b2

|a|s , u∗ =
u b2

|a|s , Φ∗ =
Φ b2

|a|s , R∗ =
R
s

, (17)

Equation (13) reduces to:

θt∗ = −∇∗2(∇∗ · [D∗(θ)∇∗θ])−∇∗ · [D∗(θ)∇∗θ] + R∗(θ). (18)

With A∗ = A/s and κ∗ = κ|a|/b2, Equation (9) can also be written in using dimensionless
variables, without a, b, or s occurring explicitly, as can other equations of interest above. From here on,
non-dimensional coordinates will be assumed, and asterisks will be dropped.

Before solving Equation (9) for D(θ), the values D(0), D(0.5), and D(1) can be deduced immediately.
First assume that D(0) 6= 0, so that D(0) > 0 as above. Since at θ = 1, R = 0, (9) immediately implies
D(1) = |A|/κ. By the same argument, D(0.5) = |A|/κ. From here on, we need to assume κ > 0.
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Since R(0) = 0 and u(θ) = 0 + D(0)θ + O(θ2), (9) implies:

D(0) =
AD(0)θ

R′(0)θ − κD(0)θ
+ O(θ)

=⇒ D(0) =
−A− 1

2
κ

.

In summary,

D(0.5) = D(1) =
|A|
κ

, D(0) =
−A− 1

2
κ

= D(0.5)− 1
2κ

. (19)

From here on, we require |A| > 1/2. Naturally, the rate of exponential decay (with time scale
1/|A|), will be related to the strength of the sink term (with time scale 1/s). Equation (19) shows
that the diffusivity must be increasing from θ = 0 to some value θm ∈ (0.5, 1) where D reaches a
maximum. It is physically reasonable to expect that the mobility of one phase through a mixture will
change, resulting in a change of diffusivity, as the composition of the mixture changes. For example,
take |A| = 5/2. This results in D(0) being 4|A|/(5κ), which is 20% lower than D(0.5).

The required solution of differential Equation (9) is the fixed point of the map:

Dj+1(θ) =
A
∫ θ

0 Dj(θ̄)dθ̄

R(θ)− κ
∫ θ

0 Dj(θ̄)dθ̄
. (20)

It is convenient to choose D0(θ) = D(0) = −(A + 1
2 )/κ (constant). Then:

D1(θ) =
−Aθ(A + 1

2 )/κ

R(θ) + (A + 1
2 )θ

=
−A(A + 1

2 )/κ

(θ − 1
2 )(1− θ) + A + 1

2
, (21)

=
A(A + 1

2 )

κ

(
θ − 3

4 +
√

A + 9
16

)(
θ − 3

4 −
√

A + 9
16

) . (22)

This already has the correct values at the three locations given in (19), however we now require |A| >
9/16 to avoid singularities in the region θ ∈ (0.5, 1). From D1(θ) we can calculate the corresponding:

u1(θ) =
∫ θ

0
D1(θ̄)dθ̄ =

−A
(
−A− 1

2

)
κ
√
−A− 9

16

arctan

 3
4√

−A− 9
16

+ arctan

 θ − 3
4√

−A− 9
16

 , (23)

so that the next iterate D2(θ) can also be calculated explicitly from (20).
As demonstrated in [32], these iterates may converge rapidly to the exact solution. In this example,

although the analytic expressions for D1(θ) and D2(θ) are quite different, numerically they may be
practically indistinguishable, as illustrated in Figure 1 for A = −5/2, κ = 1.

Given the cubic reaction term (16), D1(θ) is already a good approximation for the diffusivity
function that leads to our exact solution for the phase field. Conversely, we may choose the diffusivity
function to be D1(θ) and then exactly construct a reaction function R1(θ) that has the same generic
properties as the canonical cubic function, but which exactly leads to the analytic solution for the phase
field. From (9),

R1(θ) =
−A(θ − 1/2)(1− θ)√

−A− 9
16

arctan

 3
4√

−A− 9
16

+ arctan

 θ − 3
4√

−A− 9
16

 . (24)

Figure 2 plots the cubic R(θ) along with R1(θ) for A = −5/2.
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1.5

2

2.5

D

Figure 1. Iterated approximations to the diffusivity function. D1 (solid), D2 (dash-dot) with κ = 1,
A = −5/2.
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-0.06

-0.04

-0.02
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0.04

0.06

R

Figure 2. Cubic reaction term R (solid). Exact matching partner R1 (dash-dot) for D1 with A = −5/2.

3. Interior Solutions for Slabs, Cylinders, and Spheres

In order to gain some understanding of the nature of the solutions, we consider interior solutions
for slabs, cylinders, and spheres in dimensions n = 1, 2, and 3 respectively. The four independent
solutions will be trigonometric and hyperbolic functions (n = 1), Bessel and modified Bessel (n = 2),
and spherical Bessel and modified spherical Bessel functions (n = 3). The solutions decrease uniformly
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in t towards θ = 0. Even if the initial condition has θ > 0.5 in some significant sub-domain, the region
where the source term is tends to stabilise phase θ = 1.

Therefore, this global approach to Phase 0 should be controlled by the boundary conditions which
may include, for example, ideal contact with the exterior pure phase at θ = 0, or a Robin boundary
condition for extraction of Phase 1.

The Case: a, b < 0.

In general coordinate systems with our adopted dimensionless variables, the simplified form of
Equation (14) factorizes as:

(−∆2 − ∆ + κ)Φ = 0 ⇒ (∆− γ2)(∆ + ω2)Φ = 0, (25)

where:

ω =

(
1 +
√

1 + 4κ

2

)1/2

, γ =

(
−1 +

√
1 + 4κ

2

)1/2

. (26)

For radial flow within the ball
√

∑n
i=1 x2

i = r ∈ (0, r0), the Laplacian operator within (25) is

r1−n d
dr [r

n−1 d
dr ]. The two operator factors commute so (25) reduces simply to a system of two alternative

second-order Helmholtz equations. The general solution Φ(r) of (25) in one, two, and three dimensions,
with four free parameters ci ∈ R, is:

Φ = c1 cos(ωr) + c2 sin(ωr) + c3 cosh(γr) + c4 sinh(γr) (n = 1),
Φ = c1 J0(ωr) + c2 Y0(ωr) + c3 I0(γr) + c4 K0(γr) (n = 2),
Φ = c1 j0(ωr) + c2 y0(ωr) + c3 i0(γr) + c4 k0(γr) (n = 3).

(27)

Here, the spherical Bessel functions are defined simply as j0(r) = sin(r)/r, y0(r) = cos(r)/r,
i0(r) = sinh(r)/r and k0(r) = cosh(r)/r.

For radial flows, the flux density of Phase 1 is:

J = J(r) er =

[
−a

∂3u
∂r3 − a(n− 1)

1
r

∂2u
∂r2 + ([n− 1]a

1
r2 − b)

∂u
∂r

]
er .

For all values of n we impose zero flux at r = 0. For n = 3, considering the asymptotic behaviour
of J(r) as r → 0 shows that J(0) = 0 imposes two conditions on c2 and c4:

0 = γ3c2 −ω3c4,

0 = γc3 + ωc4. (28)

These admit no non-trivial solutions, so c2 = c4 = 0. For n = 3 alternatively imposing either
Φ′(0) = 0 or Φ′′′(0) = 0 also gives two conditions on c2 and c4 similar to those above, which also
imply c2 = c4 = 0.

For n = 2, imposing J(0) = 0 only implies a single condition:

0 =
2γ2

π
c2 + ω2c4. (29)

However, Φ(0) is unbounded and hence unphysical in this context, unless :

0 =
2
π

c2 − c4, (30)



Symmetry 2017, 10, 72 9 of 18

which also ensures that Φ′(0) = 0. Again, the above two equations only admit the trivial solution
c2 = c4 = 0.

For n = 1, J(0) = 0 only implies the condition:

0 = γc2 −ωc4. (31)

As Φ(0) is finite, the n = 1 case does admit physical solutions where J(0) = 0 and Φ′(0) 6= 0.
We can eliminate this extra degree of freedom by imposing Φ′(0) = 0, to match the admissible solutions
discussed above for n = 2 and n = 3. This gives an extra condition on c2 and c4:

0 = ωc2 + γc4, (32)

so that again only c2 = c4 = 0 is possible.
The boundary r = r0 is in contact with pure Phase 0. Imposing Φ(r0) = 0, implies:

c3 = −c1 cos(ωr0)/ cosh(γr0) (n = 1),
c3 = −c1 J0(ωr0)/I0(γr0) (n = 2),
c3 = −c1 j0(ωr0)/i0(γr0) (n = 3).

We have found in examples that the zero-flux boundary condition at r = r0 will result in an
inadmissible solution that is not positive semi-definite. However there is a solution that connects
smoothly with an external slab of Phase 0, beginning at the boundary r = r0. Assuming Φ′(r0) = 0,
we deduce:

ω tan(ωr0) = −γ tanh(γr0) (n = 1),

ω
J1(ωr0)

J0(ωr0)
= −γ

I1(γr0)

I0(γr0)
(n = 2),

ω cot(ωr0) = γ coth(γr0) (n = 3).

(33)

This has a sequence of solutions for r0. With κ = 1, the first of these are r0 ≈ 2.0616, 2.7012 and
3.2653 for n = 1, 2, and 3 respectively, showing an significant increase with dimensionality. Higher
values in the sequence of solutions for r0 are found to produce unphysical solutions exhibiting negative
values of u. With diffusivity D1(θ) and reaction term R1(θ) shown in Figures 1 and 2 respectively,
θ is given explicitly in terms of u as:

θ =
3
4
+

√
−A− 9

16
tan

κu
√
−A− 9

16

A(A + 1
2 )

− arctan

 3
4√

−A− 9
16

 . (34)

Although solutions for u(x, t) at different times are geometrically similar, this is not true for θ(x, t)
which is related to u by a nonlinear transformation. The solution for θ(x, t) is depicted in Figure 3 for
A = −5/2, κ = 1. The solutions in dimensions n = 1, 2, 3 are close after the three different domain
radii r0 are rescaled to the same value. The solutions depict an initial region in the neighbourhood
of the origin, that consists predominantly of Phase 1, but is connected continuously through a thin
mushy zone to a surrounding block of Phase 0, at r = r0. This mushy region is small enough to be
stable under the Cahn–Hilliard evolution. Under the influence of the reaction, Phase 1 is normally
stable, but its decay in this case is driven by the boundary conditions at r = r0, a boundary where
the phase mixture is connected smoothly to an exterior bank of Phase 0. For example, from t = 0 to
t = ∞, the exact radial solution on the interior of the sphere, depicted in Figure 3, has 90% of the initial
volume of Phase 1 material exiting through the boundary, while the remainder undergoes a change to
Phase 0 within the interior.

Unphysical solutions, with negative values of u, were found above for large values of r0. If one
attempts to find the largest possible value of r0 that produces a non-negative solution for a given κ,
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it soon becomes clear that for the class of solutions considered above, this corresponds to the first
non-zero solution r0, of the above conditions Φ′(r0) = 0 shown in (33). This is a consequence of our
solutions being a linear combination of one oscillatory, and one monotonically increasing function that
take finite values at r = 0. As such, Figure 3 shows scaled examples of solutions with the maximum
possible value of r0. Selecting smaller values of r0 produces solutions with a non-zero negative slope at
r = r0. Figure 4 shows variation of the maximum possible r0 value as κ varies. In all cases max r0 → 0
as κ → ∞. The case κ = 0 does not produce valid solutions via our methods above, however the
largest possible values of r0 are obtained as κ → 0, and Equation (33) approaches the following simple
conditions in one, two, and three dimensions respectively:

0 = sin(r0) ⇒ r0 = π (n = 1),
0 = J1(r0) ⇒ r0 ' 3.8317 (n = 2),
r0 = tan(r0) ⇒ r0 ' 4.4934 (n = 3).

(35)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/r0

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3. Exact spherical radial (dash-dot), cylindrical radial (dot) and 1D slab (solid) solutions θ(r, t),
at output times−At = 0, 1, 2. Diffusivity and reaction terms are D1 and R1, depicted in Figures 1 and 2.
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n=1

n=2

n=3

2 4 6 8 10
κ

1.5

2.0

2.5

3.0

3.5

4.0

4.5

max r0

Figure 4. Largest possible values of r0 for various values of κ.

4. Interior Solutions for Rectangular Domains

Under idealised controlled boundary conditions on simple slab, cylindrical, or spherical domains,
2r0 gives a maximum achievable diameter of the transition zone. However, there are many other
solutions with finer sub-structure. This is consistent with the Cahn–Hilliard critical wavelength being
of order 1, in dimensionless terms. The initial condition for u(r, 0) = φ(r) may be any positive solution
of the linear fourth order Helmholtz equation.

If we adopt Cartesian coordinates and restrict our attention to solutions that are identically zero
on the boundaries |x| = x0, |y| = y0, the dimensionless form of Equation (14) with a, b < 0 can be
solved via the separation of variables. Setting φ(r) = X(x)Y(y) we find two families of solutions
where either:

X′′(x)− ηX(x) = 0, or Y′′(y)− λY(y) = 0. (36)

If we focus on the latter case, and impose Y(±y0) = 0 we find compatible values of λ:

λm = k2
m, km =

mπ

2y0
, m = 1, 2, 3, . . . . (37)

Meanwhile X(x) must satisfy the differential equation:

0 = X(4)(x) + (1− 2λm)X′′(x) + (λ2
m − λm − κ)X(x)

=

{
d2

dx2 + ω2
m

}{
d2

dx2 − γ2
m

}
X(x), (38)

ωm =

√
−λm +

1
2
+

√
κ +

1
4

, γm =

√
λm −

1
2
+

√
κ +

1
4

; (39)

provided that λm < 1
2 +

√
κ + 1

4 . This produces a solution similar to the first of (27):

Xm(x) = c1 cos(ωmx) + c2 sin(ωmx) + c3 cosh(γmx) + c4 sinh(γmx),

= c5 [cosh(γmx0) cos(ωmx)− cos(ωmx0) cosh(γmx)] (40)

+ c6 [sinh(γmx0) sin(ωmx)− sin(ωmx0) sinh(γmx)] .



Symmetry 2017, 10, 72 12 of 18

The second form of Xm(x) above has the boundary condition Xm(±x0) = 0 imposed. Note that
there is a maximum possible value of x0 that will produce a non-negative X1(x) function—hence, the
situation is qualitatively similar to the examples of φ(r) in various dimensions discussed in Section 3.

On the other hand, when λm > 1
2 +

√
κ + 1

4 we can define:

ηm =

√
λm −

1
2
−
√

κ +
1
4

. (41)

The corresponding solution Xm(x) then loses all periodicity:

Xm(x) = c1 cosh(ηmx) + c2 sinh(ηmx) + c3 cosh(γmx) + c4 sinh(γmx),

= c5 [cosh(γmx0) cosh(ηmx)− cosh(ηmx0) cosh(γmx)]

+ c6 [sinh(γmx0) sinh(ηmx)− sinh(ηmx0) sinh(γmx)] . (42)

The above form of Xm(x) will apply for all m = 1, 2, . . . if:

y0 <
π

√
2
√

1 +
√

4κ + 1
= y0,c, (43)

that is, if y0 is sufficiently small. When this condition is met there is no restriction on the size of x0

implied by needing a non-negative solution X1(x).
In summary, if y0 is sufficiently small we can choose x0 to be as large as we want, however if

y0 > y0,c shown above, there is some upper limit to the size of x0 that will produce valid solutions.
When all separable modes are accounted for, we can calculate the boundary separating feasible
combinations of x0 and y0 from infeasible combinations. Figure 5 illustrates this boundary for various
values of κ. Note that as y0 → ∞ the critical values of x0 approach those indicated by the n = 1 curve
of Figure 4.

κ = 0

κ = 0.3

κ = 1

κ = 6

κ = 100

κ = 10000

0 1 2 3 4
x00

1

2

3

4

y0

Figure 5. Critical combinations of x0 and y0 separating the feasible rectangular solution region from
the region where x0 and y0 in combination do not admit physical solutions.
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When considering combinations of x0 and y0 that admit physical solutions, the eigenvalue
corresponding to m = 1 with c6 = 0 is of primary importance as both X1(x) and Y1(y) are non-negative.
We view solutions with finer substructure as alterations of this solution that maintain the non-negativity
of φ(x, y).

An example with a pronounced sub-structure is shown in Figure 6. Here, κ = 1, x0 = 0.3, y0 = 1.2,
and φ(x, y) is proportional to X1(x)Y1(y) + 0.225X5(x)Y5(y) where:

Xm(x) = cosh(γmx0) cosh(ηmx)− cosh(ηmx0) cosh(γmx), for m = 1, 5;

Ym(x) = cos(kmy), for m = 1, 5. (44)

From a brief exploration of the parameter space, it appears that solution regions with aspect ratios
close to 1 typically allow little variation from X1(x)Y1(y), and tend to be unimodal. Solution regions
that are more elongated can be multi-modal, and allow noticeable sub-structure as in the example
of Figure 6.

Figure 6. A non-negative solution φ(x, y) with κ = 1, x0 = 0.3, and y0 = 1.2 that exhibits a pronounced
sub-structure.
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Figure 7. A non-negative solution φ(x, y), periodic in the y direction with κ = 1, and x0 = 0.4.

We can also consider rectangular solutions that are unbounded in a single direction, similar to the
one-dimensional solution of Section 3. Let us begin by assuming that boundary conditions X(±x0) = 0
are applied to Equation (38) for X(x). The eigenvalues of Y′′(y) + λY(y) = 0 are still restricted by
requiring a non-negative solution that remains finite as y→ ±∞. Hence the separable solution must
include k0 = λ0 = 0, Y0(y) = 1 as its foundation. Equation (40) then gives a non-negative X0(x),
provided that x0 is not larger than the critical values illustrated in Figure 4 for n = 1. For values of
x0 significantly less than these critical values, we can produce noticeable sub-structure by adding
other modes to this base solution while ensuring that φ(x, y) remains non-negative and finite. Figure 7
shows one such solution with κ = 1 and x0 = 0.4. It is proportional to X0(x)− 0.3Xλ(x) cos(

√
λy),

with λ = 25/16. Here X0(x) is given by (40) with c5 = 1, c6 = 0, and ωm and λm replaced by ω and λ

as given by Equation (26), respectively. Xλ(x) is also given by (40) with c5 = 1, c6 = 0, but with ωm

and λm replaced by:

ωλ =

√
λ− 1

2
−
√

κ +
1
4

, and γλ =

√
λ− 1

2
+

√
κ +

1
4

. (45)

It is also possible to obtain a rectangular unbounded solution by first applying Y(±y0) = 0 on
the solutions of Y′′(y) + λY(y) = 0. Seeking a finite non-negative value of X(x) again supports the
conclusion that no solutions are possible for y0 values greater than those indicated by the n = 1 curve
of Figure 4.

In summary, our consideration of solutions φ(x, y) interior to a rectangular region is compatible
with the maximal values of r0 derived in Section 3, and shows that exact solutions with varied
substructures are possible.

5. Energy Formulation

Let us consider the original equation in (13),

θt = a∇2(∇ · [D(θ)∇θ]) + b∇ · [D(θ)∇θ] + R(θ), θ : Ω× (0, T)→ R. (46)
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In this section we assume Ω is an open, bounded subset of Rn with a smooth boundary (∂Ω ∈ C∞).
Conforming to Section 3, a < 0 so that the fourth-order diffusion term, which dominates at high wave
numbers, has negative spectrum, generating a diffusion process that propagates forward in time.
With no loss of generality, we set a = −1. Equation (46) is a fourth-order quasi-linear equation
in divergence form. Although the fourth-order term L4(θ) := −∇2∇ · (D(θ)∇θ) can be written
as L4 = −∇2(L2), that is, the cascade of two symmetric second-order operators with L2(θ) = ∇ ·
(D(θ)∇θ), it turns out that L4 is not symmetric and therefore there is no associated energy functional of
which L4(θ) is the first variation. We introduce the flux potential variable u : Ω× (0, T)→ R defined
as u(x, t) = D(θ(x, t)) where D(θ) :=

∫ θ
θo

D(s)ds, (D(θo) = 0). We also assume D(θ) is smooth and
strictly positive, implying that D is 1-1 and globally invertible. By substituting θ = D−1(u) into
Equation (46) we obtain:

ut

D̃(u)
= −∇4u + b∇2u + R̃(u). (47)

Here we have defined D̃(u) := D(D−1(u)) and R̃(u) := R(D−1(u)). With some abuse of
notation—and to keep the notation consistent with the previous sections—in what follows we drop
tildas.

We remark that the approach leading to writing Equation (47) is essentially the substitution
method largely employed in the theory of porous medium equations [34]. In soil physics, the variable
u is well known as the matric flux potential [19,20]. It is relevant to the physics of the flow since −∇u
is the soil–water flux driven by the intrinsic capillary action of the soil matrix, without gravity.

By exploiting the linear structure of the right hand side of (47) the investigation of existence results
of the solution becomes more transparent. Let us consider the static problem when u(x, t) ≡ u(x)
obtained by setting ut ≡ 0 in Equation (47). Although in this paper we are mainly concerned with
time-dependent problems, the static regime is of interest as the solutions of it represent ground-state
configurations for the physical system. Eliminating time-dependence in (47) yields:

−∇4u + b∇2u + R(u) = 0. (48)

Equation (48) is obtained as the linear combination of symmetric operators and it does have a
variational structure. Indeed, it coincides with the first variation of the functional:

I(u) :=
∫

Ω

(1
2
|∇2u|2 + b

2
|∇u|2 −R(u)

)
dx (49)

where R(u) =
∫ u

uo
R(s)ds. The derivation of (48) from (49) has been performed formally. Under the

regularity assumptions on Ω and ifR verifies suitable growth conditions (here unspecified), the derivation
of the Euler–Lagrange equation (48) is exact in H2

0(Ω). The subspace of H2-Sobolev functions u : Ω→ R
with higher-order energy norm max(‖u‖L2(Ω), ‖∇u‖L2(Ω,Rn), ‖∇∇u‖L2(Ω,Rn×n)) ≤ C < +∞ (where
L2(Ω, ·) denotes the Lebesgue space of square-integrable functions) with zero boundary conditions
for u and ∂u

∂ν , where ν is the outward normal to ∂Ω. Non-homogeneous boundary conditions are
incorporated by introducing H2

ϕ(Ω), the set containing all the H2-functions u such that u− ϕ ∈ H2
0(Ω),

with ϕ ∈ H2(Ω) representing the boundary datum.
By exploiting the variational structure of the problem, one may look for solutions to (48) as the

critical points of (49) and vice-versa. The nature of the critical points of I is determined by the sign of b
as well as the shape of R. As an example, when b ≥ 0 and −R = cu2 with c ≥ 0, the Lax–Milgram
lemma ensures that there exists a unique solution of Equation (48), denoted with u, and that u is the
unique minimizer of I(u) in H2

ϕ(Ω). Furthermore, when ϕ ∈ C∞(Ω), by elliptic bootstrapping we
recover that u is the classical (indeed in C∞(Ω)) solution to Equation (48). From the knowledge of
the solution u to Equation (48), one is able to recover information on a function θ(x, t) which solves
the original Equation (46) in the static regime (i.e., θt ≡ 0) by simply plugging θ = D−1(u) into
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Equation (46). In more physically relevant situationsR represents a competing energy contribution
usually in the form of a non-negative multi-well function in the variable u. When −R is a non-convex
non-negative polynomial it may still be possible to ensure the existence (although not the uniqueness)
of the solution u to the minimum problem for I(u) possibly in a subset of H2

ϕ(Ω) and characterize
u as a solution to Equation (48). Instead, when b < 0 and −R = −cu2 with c > 0 we have genuine
competition in the summands of the energy I and in turn I may fail to be positive-definite. Under these
circumstances, solutions to Equation (48) correspond to various critical points of I including saddles
or more intricate situations. In those cases, existence theorems should be investigated by methods
possibly based on min-max principles.

An alternative approach (e.g., [15,16]) is to express the phase flux density as being proportional to
the negative gradient of a chemical potential energy density that is itself the variational derivative of a
total internal energy functional. This comes about because the drift velocity of the mobile particles
of Phase 1 quickly reaches a terminal velocity that enables the driving gradient of chemical potential
energy to be balanced by a mechanical resistance force that is proportional to velocity and in the
opposite direction. The new element that we need here to justify the non-standard Equation (6) is that
the variational derivative is taken with respect to the flux potential u, rather than the phase variable θ.
Then we choose:

E =
∫

Ω
−1

2
a∇u · ∇u +

1
2

bu2 dV, (50)

Φ =
δ

δu
E = a∇2u + bu, (51)

J = −∇Φ = −a∇∇2u− b∇u, (52)

dθ

dt
+∇ · J = R(θ). (53)

In this set-up, R(θ) must be regarded as an externally driven Phase 1 production term that assists
relaxation towards the stable fixed points.

6. Conclusions

A nonclassical symmetry reduction has led to some exact positive solutions for multi-dimensional
nonlinear reaction–diffusion equations with both fourth-order diffusion and second-order backward
diffusion. In all likelihood, these are the only known exact solutions for equations of the
Allen–Cahn–Hilliard type that have meaningful boundary conditions. The presented solutions have a
zero flux and a zero gradient at one central boundary point, plus a prescribed value, representing a
pure phase, as well asa zero gradient at the other boundary. The initial condition has the phase field
taking the value θ = 1 at r = 0. Even though Phase 1 is stabilised by the reaction term, the boundary
conditions force the solution to have the system uniformly approaching Phase 0. An interior cylindrical
or spherical inclusion with a mixed phase could not withstand the inward advance of Phase 0 from the
outer boundary.

Structured phase domain patterns have been seen in numerical solutions of the Cahn–Hilliard
equation (e.g., [35]). Some exact solutions with pronounced sub-structure have been produced here
too. Since the exact solution involves a general solution of the fourth-order linear Helmholtz equation
for the flux potential, it is possible that more complex patterns could be incorporated in the future.
Any solution of the fourth-order Helmholtz equation can be used in this method, even those that apply
in more complicated asymmetric domains.

We remark the approach based on the Helmholtz substitution adds additional structure to the
model in terms of a variational principle as the by-product of symmetry and linearity. Although the
thorough investigation of the relation between the non-linear model in the unknown variable θ and
the transformed model in u is not the scope of the present contribution, in Section 5 some insight
is provided for some special situations. The construction used here became possible because of a
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nonclassical symmetry that applies when the nonlinear diffusivity and the nonlinear reaction term
together obey a single relationship. Then an additional constraint

θt/D(θ) = A
∫ θ

θ0

D(s)ds,

added to the governing PDE, results in an integrable system. Reduction of variables then results in the
linear fourth-order Helmholtz equation. In that sense, the original multidimensional nonlinear scalar
PDE is partially integrable because one additional constraint leads to a linear PDE with one fewer
independent variables. It remains to be discovered whether nonclassical symmetry classification
can unearth other semi-integrable PDEs—possibly defined by different fourth-order non-linear
operators—in this way, and more generally, how compatible constraints may be selected.
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