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Abstract: We consider the Casimir effect for a scalar field interacting with another scalar field that is
confined to two half spaces. This model is aimed to mimic the interaction of the photon field with
matter in two slabs. We use Dirichlet boundary conditions on the interfaces for the fields in the half
spaces and calculate their one-loop contribution to the wave equation for the other field. We perform
the ultraviolet renormalization and develop a convenient formalism for the calculation of the vacuum
energy in this configuration.
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1. Introduction

In its initial formulation, the Casimir effect is the attraction between conducting plates due to
the vacuum fluctuations of the electromagnetic field [1]. It was later generalized to the dispersion
force between dielectric half spaces [2]. The evolution went on to include temperature of the plates
and dissipation (see, e.g., [3]). The material of the plates was modeled by dipoles and/or polarization
fields. An equivalent, perhaps more general, approach is macroscopic quantum electrodynamics [4–6].
It is a common feature of these approaches that the resulting Hamiltonian is quadratic in the
fields. First papers going beyond this were on the Casimir effect with respect to graphene [7–9].
Here, the coupling is the usual electrodynamic one, ψ̄γµψAµ, which is a vertex with three lines,
and the corresponding Hamiltonian is no longer quadratic. However, since the spinor field describing
the electrons in graphene is confined to a two-dimensional surface in three-dimensional space,
the reflection coefficients could be expressed explicitly in terms of the polarization tensor of the
electrons calculated within otherwise unconstrained (2 + 1)-dimensional field theory of the spinor field
representing the electrons. Now, if we assume two half spaces wherein a spinor or another field is
confined, we have a (3 + 1)-dimensional field theory restricted to two half spaces. We think that there is
an upcoming interest in such type of calculations, which comes from the high precision measurement of
dispersion forces (up to femto Newton) and that there is a challenge to account for internal dynamical
properties of the interacting bodies in more detail. This means that, in future, one will be tempted to
calculate Casimir forces between fields inside the bodies, electron-hole, and phonon fields, for instance.

In the present paper, we consider the simplest model of the mentioned type consisting of a scalar
field φ(x) in the whole space, mimicking the photon, and a field ψ(x) confined to the half spaces z < 0
and z > L, where L is the width of the gap between them, mimicking matter. For the interaction of the
fields, we take for simplicity

Lint(x) = λφ(x)ψ2(x), xµ = (xα, z), α = 0, 1, 2 (1)
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where λ is a coupling constant with a dimension of inverse length. We assume boundary conditions on
ψ(x) at z = 0 and at z = L in order to have a mathematically consistent model. Later, in applications,
one would choose appropriate boundary conditions. The interaction part of the action is

Sint(x) = λ
∫

d3xα

( 0∫
−∞

dz φ(x)ψ2(x) +
∞∫

L

dz φ(x)ψ2(x)
)

, α = 0, 1, 2. (2)

Our notations are taken from the relativistic quantum field theory, so x = (x0, x||, z) is the
4-coordinate, and x|| = (x, y) is the coordinate parallel to the surfaces. The same notations will also be
taken for the momentum variables.

The problem to be worked out is to get formulas that allow for effective numerical computation
of the Casimir force or the free energy. An obstacle to surmount is the UV-divergence appearing in the
loop as well as the broken translational invariance in the z-direction.

2. Scalar Field Confined to Half Spaces and the Casimir Effect

2.1. The Model

Given a scalar field ψ(x) confined to the half spaces z < 0 and z > L, which fulfill Dirichlet
boundary conditions on z = 0 and z = L. Assume interaction with another scalar field φ(x), defined
in the whole space. In one-loop approximation, the propagator of the field φ(x) is given by ∆−1 =

∆−1
0 + Π, where ∆0 is the wave operator and Π is the polarization operator induced by the interaction

with the field ψ in half spaces.
In the lowest order perturbation theory, the equation of motion for the field φ(x) is∫

d4x′
(
−∂2

xδ(x− x′) + Π(x, x′)
)

φ(x′) = 0 (3)

with the polarization operator Π(x, x′)

Π(xα; z, z′) = −iλ2DD(xα; z, z′)2 = −iλ2 (4)

given by the one loop scalar field diagram. The solid line corresponds to the field φ and the dashed
line to the field ψ.

Using the translation invariance in all directions except the z-direction, we rewrite Equation (3) as∫
dz′
(
(Γ2 + ∂2

z)δ(z− z′) + ΠΓ(z, z′)
)

φ(z′) = 0 (5)

with
φ(z) =

∫
d3xαeikαxα φ(x), α = 0, 1, 2 (6)

and
ΠΓ(z, z′) =

∫
d3xαeikαxα Π(xα; z, z′) (7)

where we used
Π(x, x′) ≡ Π(xα − x′α; z, z′) (8)

and Γ =
√

kαkα + i0.
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In Equation (4), DD is the propagator of the field ψ obeying Dirichlet boundary conditions.
The Fourier transform in the translational invariant directions is as follows:

ΠΓ(z, z′) = λ2
∫

d3xαeikαxα DD(xα; z, z′)2 (9)

where the same notation as in Equation (8) is used, which is

DD(x, x′) ≡ DD(xα − x′α; z, z′). (10)

Then, a single line of the field ψ is

DD(x, x′) = ∑
σ=±1

σD(xα − x′α; z− σz′), (11)

and

D(x) = D(xα; z) =
∫ d4q

(2π)4
e−iqx

q2 −m2 + i0
(12)

is the usual propagator of the scalar field ψ.

2.2. Transition to TGTG Formula

Understanding Π(x, x′) in Equation (3) as a potential, V(x, x′), we use the so called
TGTG formula where T and G stand for T-matrix and Green’s functon, accordingly. Employing
Equations (3.112) and (10.40) in [3], we obtain the vacuum energy of the field φ in the presence of the
half spaces:

E = − i
2

∫ d3kα

(2π)2 Tr ln(1−M) (13)

where
M(y, y′) = Π1(y, y1)G0(y1 − z1)Π2(z1, z2)G0(z2 − y′) (14)

with

G0(z) =
∫ dk3

2π

eik3z

Γ2 − k2
3 + i0

=
eiΓ|z|

−2iΓ
(15)

being the free space Green’s function, i.e., the propagator of the field φ. In Equation (13), it is assumed
that the Fourier transform in the α-directions (α = 0, 1, 2) is taken, and we use Equation (7) for Πi, and

G0(z) =
∫ d3xα

(2π)3 eikαxα G0(xα; z), (16)

which results in Equation (15).
In Equation (14), we took as convention arguments y, y1, y′ in the left half space and z1, z2 in

the right half space. Integrations
∫ 0
−∞ dy and

∫ ∞
L dz are assumed. The Π1 and Π2 correspond to the

potentials TA and TB in Equation (10.40) in [3]. Specifically, Π1(y, y′) is from the field in z < 0 (left half
space). Therefore, we set Π1(y, y′) = 0 for y > 0 or y′ > 0. The other one, Π2(z, z′), is from the field ψ

in the right half space, with z ≤ L and z′ ≤ L, and we set Π2(z, z′) = 0 for z < L or z′ < L. Further,
we use the notation ΠΓ(z, z′), as given by Equation (9), which goes without index to represent Π1 and
Π2, entering Equation (14):

Π1(y, y′) = ΠΓ(y, y′) = ΠΓ(−y,−y′), Π2(z, z′) = ΠΓ(z− L, z′ − L). (17)
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The polarization tensor Π2(z, z′) is defined for the interface being located in z = L. Thus, we need
in Equation (9) the propagator DD with Dirichlet boundary conditions at z = L. Therefore, in place of
Equations (10) and (11), we have

DDL(xα − x′α; z, z′) = ∑
σ=±1

σD(xα − x′α; z− L− σ(z′ − L)) = DD(xα − x′α; z− L, z′ − L). (18)

DDL denotes the propagator with boundary conditions on z = L, and DD denotes the propagator
with boundary conditions at z = 0. The relation between them is given by Equation (18).

With these remarks,M, Equation (17), can be rewritten as (accounting for the trace in Equation (13))

M = N1 · N2 (19)

N1 =

0∫
−∞

dy
0∫

−∞

dy′
e−iΓ(y+y′)

−2iΓ
Π1(y, y′) =

∞∫
0

dy
∞∫

0

dy′
eiΓ(y+y′)

−2iΓ
ΠΓ(y, y′) (20)

N2 =

∞∫
L

dz
∞∫

L

dz′
eiΓ(z+z′)

−2iΓ
Π2(z, z′) =

∞∫
L

dz
∞∫

L

dz′
eiΓ(z+z′)

−2iΓ
ΠΓ(z− L, z′ − L). (21)

Doing the substitutions, z→ z + L, z′ → z′ + L thus gives

N2 = e2iΓL
∞∫

0

dz
∞∫

0

dz′
eiΓ(z+z′)

−2iΓ
ΠΓ(z, z′). (22)

This way, we can define

N =

∞∫
0

dz
∞∫

0

dz′
eiΓ(z+z′)

−2iΓ
ΠΓ(z, z′) (23)

and N1 = N and N2 = e2iΓLN hold. As a result, Equation (13) turns into

E = − i
2

∫ d3kα

(2π)2 Tr ln(1−N 2e2iΓL), (24)

andM = N 2e2iΓL. Comparing Equation (24) with the Lifshitz formula at zero temperature, one can
define the reflection coefficient of the half spaces in terms of the factors N :

r(ω, k||; λ, m
)
= N

(√
ω2 − k2

||; λ, m
)

(25)

where we indicated the variables and parameters that N depend on.

3. Polarization Operator in Half Space

In the preceding section, we have defined Equation (23) for the factors N , entering the vacuum
energy (Equation (24)), and introduced Π by Equation (4). The propagator of the field ψ obeys Dirichlet
boundary conditions at z = 0 and is given by Equations (11) and (12). Inserting it into Equation (4),
we obtain

Π(zα; z, z′) = −iλ2
∫ d4q

(2π)4

∫ d4q′

(2π)4 ∑
σ,σ′

σσ′
e−i(qα+q′α)zα+iq3(z−σz′)+iq′3(z−σ′z′)

(−q2 + m2 − i0)(−q′2 + m2 − i0)
(26)
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where σ and σ′ take values ±1. With Equation (9) and the integral representation of the δ-function,∫
d3zαei(kα−qα−q′α)zα = (2π)3δ3(kα − qα − q′α),

we can integrate with respect to q′α and arrive at

ΠΓ(z, z′) = −iλ2 ∑
σ,σ′

σσ′
∫ d3qα

(2π)3

∫ dq3
2π

∫ dq′3
2π

eiq3(z−σz′)+iq′3(z−σ′z′)

(−q2
α+q2

3+m2−i0)(−(kα−qα)2+q′23 +m2−i0)
(27)

where Γ =
√

kαkα + i0 .
To proceed, we divide ΠΓ(z, z′) into the translational invariant part, Π(t)

Γ (z, z′), arising from

σ = σ′ = +1 in the sum of Equation (27), and the remaining part, Π(nt)
Γ (z, z′):

ΠΓ(z, z′) = Π(t)
Γ (z, z′) + Π(nt)

Γ (z, z′). (28)

This will be treated separately.
We start from the translational non-invariant part, Π(nt)

Γ (z, z′). Here, we perform the Wick rotation,
q0 → iq4 and use the α-representation (parametric representation) with parameters α1 and α2 for the
factors in the denominator of Equation (27). After that, the momentum integration can be carried out
and we arrive at

Π(nt)
Γ (z, z′) =

λ2

(4π)5/2 ∑′

σ,σ′=±1
σσ′

∫ dα1dα2√
α1α2

e−H−A

(α1 + α2)3/2 (29)

where the prime over the sum sign means that the term with σ = σ′ = 1 is excluded, and

A =
(z− σz′)2

4α1
+

(z− σ′z′)2

4α2
=

1
4

{( 1
α1

+
1
α2

)
(z2 + z′2)−

( σ

α1
+

σ′

α2

)
2zz′

}
(30)

H =
α1α2

α1 + α2
γ2 + (α1 + α2)m2, γ =

√
q2

4 + q2
1 + q2

2. (31)

After the change of variables, α1 = sx and α2 = s(1− x), one integration can be performed here,
and we obtain

Π(nt)
Γ (z, z′) =

λ2

32π2 ∑′

σ,σ′=±1
σσ′

1∫
0

dx√
x(1− x)

e−2
√

ÃH̃
√

Ã
(32)

where

Ã =
1
4

{( 1
x(1− x)

)
(z2 + z′2)−

(σ

x
+

σ′

1− x

)
2zz′

}
, H̃ = x(1− x)γ2 + m2. (33)

We insert this expression into Equation (23) and obtain the translational non-invariant part of the
factor N ,

N (nt) =
λ2

64π2γ

∞∫
0

dz
∞∫

0

dz′ ∑′

σ,σ′=±1
σσ′

1∫
0

dx√
x(1− x)

1√
Ã

e−γ(z+z′)−2
√

ÃH̃ . (34)

In order to simplify the integration over z and z′, we first turn the (z, z′) - plane, z± = z± z′,
and then substitute z− = µz+. After that, the integration with respect to z+ yields

N (nt) =
λ2

128π2γ ∑′

σ,σ′=±1
σσ′

1∫
0

dx√
x(1− x)

1∫
−1

dµ√
Aσ,σ′

1

γ + 2
√

H̃Aσ,σ′
(35)
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where H̃ is given in Equation (33), and

Aσ,σ′ =
1
8

{[
1− σ

x
+

1− σ′

1− x

]
+

[
1 + σ

x
+

1 + σ′

1− x

]
µ2
}

, σ, σ′ = ±1. (36)

Finally, we have
N (nt) = N−− + 2N−+ (37)

with N−− and N−+ corresponding respectively to the terms with σ = σ′ = −1 and with σ = 1 and
σ′ = −1 in the sum of Equation (35):

N−− = − λ2

32π2γm2

γ

6
−

1∫
0

dx
√

x(1− x)
√

x(1− x)γ2 + m2

 (38)

N−+ = − λ2

64π2γ

1∫
−1

dµ

1∫
0

dx√
µ2x + (1− x)

1(
γ +

√(
γ2 + m2

x(1−x)

)
(µ2x + (1− x))

) . (39)

The remaining integrals can be easily evaluated numerically. The asymptotics of N (nt) are

N (nt)|γ→0 =
λ2

128π2γ

{
− π

2m
+

4γ

3m2 +O(γ2)

}
(40)

N (nt)|γ→∞ =
λ2

128π2γ

{
−1.28987

γ
+O(1/γ2)

}
. (41)

The translational invariant part Π(t)
Γ , defined in Equation (28), can be obtained from Equation (4)

by dropping the index ‘D’ in the propagator, which is equivalent to considering the term with
σ = σ′ = 1 in Equation (26). We denoted this term by Π++. It has full 4-dimensional symmetry and is
a function of x− x′:

Π++(x) = −iλ2D(x)2. (42)

The 4-dimensional Fourier transform of Π++(x) has the known parametric representation

Π++(q2) = λ2
∫ dα1dα2

(4π(α1 + α2))
3
2−ε

exp
(
− α1α2

α1 + α2
q2 − (α1 + α2)m2

)
, q2 = γ2 + q2

0 (43)

where the Wick rotation is performed. In Equation (43), we introduced ε as the parameter of the
dimensional regularization. Further, we perform the renormalization in a way where Πren

++(q
2 = 0) = 0

holds. This ensures that the mass of the field ψ does not change. Technically, we achieve this by

Πren
++(q

2) =
(

Π++(q2δ)−Π++(q2δ)|δ=0

)∣∣∣
δ=1

(44)

where δ is an auxiliary parameter. Next we need Π++(z− z′), defined in Equation (7). Using

Πren
++(x) =

∫ d4q
(2π)4 e−iqµxµ

Π++(q2) (45)

we obtain

Πren
++(z− z′) =

∫
d3xαeikαxα

Πren
++(x) (46)

=
∫ dq3

2π
eiq3(z−z′)Πren

++(q
2).
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Inserting Equation (46) into Equation (23), we arrive at

N (t)
ren =

∞∫
0

dz
∞∫

0

dz′
e−γ(z+z′)

2γ

∫ dq3

2π
eiq3(z−z′)Πren

++(q
2) (47)

where the integration over z and z′ is easily carried out:

∞∫
0

dz
∞∫

0

dz′ e−γ(z+z′)eiq3(z−z′) =
1

γ2 + q2
3
≡

∞∫
0

dα3e−α3(γ
2+q2

3). (48)

The new, proper time representation with the parameter α3 is then used. After integration over q3,
we finally obtain

N (t) =
λ2

26π5/2γ

∫ dα1dα2dα3

(α1 + α2)3/2−ε

1√
D

exp
{
− D

α1 + α2
γ2 − (α1 + α2)m2

}
(49)

where D = α1α2δ + α3(α1 + α2). Further we’ll omit the parameter ε in the formulas, bearing in mind
that the subtraction of Equation (44) is performed under the sign of the integration. In order to do
the subtraction, we divide the integration area in Equation (49) into sectors αi < αj < αk, following,
e.g., [10], p. 134. Owing to the symmetry α1 ↔ α2 in Equation (49), we have to account for three
distinct sectors [10]:

1 sector: α1 < α2 < α3

2 sector: α1 < α3 < α2

2 sector: α3 < α1 < α2.

(50)

Then, we change the variables,

ti = αi/αi+1(i = 1, 2), tn = αn, J = t2t2
3 (51)

and obtain

1 sector: α1 = t1t2t3, α2 = t2t3, α3 = t3, D = t2
3t2d1, d1 = t1t2δ + t1 + 1

2 sector: α1 = t1t2t3, α2 = t3, α3 = t2t3, D = t2
3t2d2, d2 = t1t2 + t1δ + 1

2 sector: α1 = t2t3, α2 = t3, α3 = t1t2t3, D = t2
3t2d2, d3 = t1t2 + t1 + δ.

(52)

Now the translational invariant part N (t) comprises the contributions from six sectors, and half
of them are equivalent. Thus, allowing for the multiplicity of the sectors, one can write

N (t) = 2
3

∑
i=1
N (i) (53)

where N (i) corresponds to the contribution from the i-th sector defined in Equation (50). Integrating
with respect to t3, we arrive at

N (1) =
λ2

26π2γ

1∫
0

dt1

t1 + 1

1∫
0

dt2

t2
√

d1

1√
d1γ2 + t2(t1 + 1)2m2

(54)

N (2) =
λ2

26π2γ

1∫
0

dt1

1∫
0

dt2
√

t2

(1 + t1t2)
√

d2

1√
t2d2γ2 + (t1t2 + 1)2m2

(55)
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N (3) =
λ2

26π2γ

1∫
0

dt1

1∫
0

dt2
√

t2

(1 + t1)
√

d3

1√
t2d3γ2 + (t2 + 1)2m2

. (56)

The UV divergence is sitting in the first sector at t2 = 0. It is logarithmic as expected, and we have
to do the subtraction of Equation (44), which does not cause any problems in our case. The integrals
can be evaluated numerically. The asymptotic expansion of N (t) reads

N (t)|γ→0 =
λ2

64π2γ

{
−0.7853

m
+O(γ2)

}
(57)

N (t)|γ→∞ =
λ2

64π2γ

{
−2

ln(γ/m)

γ
+

0.6137
γ

+O(1/γ2)

}
. (58)

Taking the parts of Equation (23) corresponding to Equation (28), namely Equations (40), (41),
(57), and (58), together, we obtain for the factor, entering Equation (24),

N |γ→0 =
λ2

128π2γ

{
−π

m
+

4γ

3m
+O(γ2)

}
(59)

N |γ→∞ =
λ2

128π2γ

{
−4

ln(γ/m)

γ
− 0.0624567

γ
+O(1/γ2)

}
. (60)

The factor N as a function of momenta γ is shown in Figure 1 .

4. Vacuum Energy

In the present model, the vacuum energy is defined by Equation (24) and can be rewritten in
the form

E =
1

4π

∞∫
0

dγγ2 ln(1−N 2e−2γL). (61)

For γ → 0, because of N 2 ∼ 1
γ2 (see Equations (40) and (57)), the argument of the logarithm

becomes negative and the vacuum energy acquires an imaginary part, which signifies some instability
within the considered model. It is known that an imaginary part of the effective action signals particle
creation. Specifically, in the Casimir–Polder interaction of polarizable dipoles, such instability signals
the breakdown of the dipole approximation (see, for example, [11], Equation (26) and subsequent
discussion, and [12], the section after Equation (142) concerning atom–wall interaction. As the
integration in Equation (61) goes from zero to infinity, the formula yields a complex vacuum energy of
the field φ for any finite width of the gap between the half spaces.

In fact, our model is aimed to mimic the interaction of the photon field with the electron and
phonon fields in a solid.As is known, the Coulomb interaction between the electrons and the phonons is
screened, and the electron charge density interacts with the gradient of the phonon displacement field.
This mechanism is described in many solid state textbooks (see, for instance, [13]). A characteristic
feature of the model is the gradient in the interaction vertex, which turns into a momentum after Fourier
transform. To account for this gradient in some way, we make the coupling momentum dependent:

λ→ λ(γ) = λ0
√

γ, (62)

such that

N |γ→0 ∼ C, N |γ→∞ ∼
ln(γ)

γ
. (63)

It is clear that this approximation is very crude, but we do not intend to describe the real
electron–phonon interaction, but rather the possibility to perform calculations with such a model.
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As stated in the introduction, we consider the most simple model to develop the methods, which may
be helpful to account for the contribution of the electron–phonon interaction to the Casimir force.

It should be mentioned that the factorsN play the role of reflection coefficients within the present
approach for the φ field. Now, without the substitution according to Equation (62), these factor’s
asymptotics are given by Equations (54) and (55), and, with Equation (62), they behave as Equation (63).

For the model after the substitution of Equation (62), we consider the Casimir (vacuum) energy.
Its behavior for large separation can be obtained by scaling γ→ γ/L in Equation (61). We obtain the
factor L−3 in front and N (γ/L) in the logarithm, which, for L → ∞, is then given by Equation (63).
After the substitution of Equation (62), we obtain

E|L→∞ =
1

4πL3

∞∫
0

dγγ2 ln(1− λ2C1e−2γ) = − 1
16πL3 Li4(λ2C1). (64)

Figure 2 shows ratio η of the Casimir energy of Equation (61) as well as the Casimir energy of the
massless scalar field with Dirichlet boundary conditions on the plates, given by ED = −π2/(1440L3)

in the units h̄ = c = 1. At large separations, the ratio tends to a constant determined by Equation (64).

5. Conclusions

In the foregoing sections, we considered the Casimir effect between two slabs in the framework
of quantum field theory. A scalar field φ mimics the electromagnetic field, and another scalar field ψ,
which is confined by Dirichlet boundary conditions, mimics the matter inside the slabs. Both fields
interact by a Yukawa coupling. For the calculation of the vacuum interaction energy, we used the
TGTG formula and calculated the reflection coefficient for the field φ from the one-loop polarization
operator Π of the field ψ. The polarization operator divides into a translational non-invariant part,
Π(nt), and an invariant part, Π(t). While Π(nt) can be calculated in a straightforward manner, Π(t) has
an ultraviolet divergence, which can be removed by standard methods of coupling renormalization.
Together, the polarization operator, and with it the reflection coefficient, can be calculated numerically
(see Figure 1), and their asymptotics for large and small momenta can be obtained (Equations (58)
and (60)). Finally, the Casimir energy can be calculated (see Figure 2).

As discussed in Section 4, the considered model has an instability that can be avoided by a more
realistic model with a momentum dependent coupling. Thus, the main result of the paper is to
demonstrate how the Casimir energy can be calculated for a (3 + 1)-dimensional matter field in the
slabs within the framework of quantum field theory beyond cases with graphene where the matter
field is (2 + 1)-dimensional. Thus, the path to Casimir energy calculations for more realistic models of
matter is opened.

Figure 1. The factor N playing the role of the reflection coefficient of the half space as a function of
momenta γ, m = 1, λ = 1.
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Figure 2. The ratio, η, of the Casimir energy of Equation (61) and the Casimir energy of the massless
scalar field with Dirichlet boundary conditions on the plates. η is drawn in logarithmic scale as
a function of dimensionless separation λL for different vales of µ = m/λ. From top to bottom,
µ = 0.001, 0.01, 0.5, 1.
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