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Abstract: An updated Power Index Method is presented for nonlinear differential equations (NLPDEs)
with the aim of reducing them to solutions by algebraic equations. The Lie symmetry, translation
invariance of independent variables, allows for traveling waves. In addition discrete symmetries,
reflection, or 180◦ rotation symmetry, are possible. The method tests whether certain hyperbolic or
Jacobian elliptic functions are analytic solutions. The method consists of eight steps. The first six steps
are quickly applied; conditions for algebraic equations are more complicated. A few exceptions to
the Power Index Method are discussed. The method realizes an aim of Sophus Lie to find analytic
solutions of nonlinear differential equations.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) have been difficult to solve analytically.
However, analytic solutions may serve as bench marks for numerical solutions where the computations
can be tricky. There is no one method that works for all the cases of analytic solutions. The Inverse
Scattering Method for solitons [1] is restricted to certain NLPDEs, but the inclusion of initial conditions
is very advantageous. The Method of Characteristics [2] applies to quasi-linear partial differential
equations (PDEs) that have first-order derivatives. Initial conditions can be applied too. For many
NLPDEs these methods do not work. Lie symmetries [3–7] are employed to reduce the NLPDEs
to nonlinear ordinary differential equations (NLODEs) that may then be reduced to quadradures if
sufficient symmetries exist. Initial or boundary conditions complicate the application of Lie symmetries.
Various non-classical symmetries, including hidden symmetries [8], broaden the class of NLPDEs that
can be reduced. Sometimes the NLDEs can be integrated and first integrals are found. Certain NLPDEs
are then reduced to quadratures. There are symbolic computer programs, such as Mathematica, which
may solve the NLPDEs by various approaches.

If none of the above methods result in a solution, there are methods based on guessing possible
functions [9,10] as solutions or by appending auxiliary equations. The functions elected as solutions
include: hyperbolic functions, Jacobian elliptic functions, the logistic function, or the Weierstrass
elliptic function. Various Expansion Methods such as F, G’/G [11,12] require auxiliary differential
equations (ODEs). The Simplest Equation Method relies on linear ODEs [13]. The Tanh Method [14,15]
and Sech Method have been applied with the homogeneous balance condition [16] that depends on
balancing the most nonlinear terms in the NLPDEs. These methods have been applied to NLPDEs
with the independent variables invariant under translations. As a consequence traveling waves are a
common form of solutions.

2. Power Index Method

The updated Power Index Method for solution of NLPDEs is discussed here. An earlier
version [17] has been modified to include several new criteria and the method is now presented
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as eight steps. The purpose is to reduce the NLPDEs to algebraic equations that may be solved.
The intention is to present efficient and quick tests for determining if analytic solutions exist for the
NLPDEs. The analysis is not exhaustive; other analytic solutions may exist. Those discussed below are
for one real NLPDE but the method may be applied to complex NLPDEs, to several coupled NLPDEs
and NLPDEs, with more than two independent variables.

The first step is to choose a NLPDE with two independent variables invariant under translations.
By inspection if no independent variables appear explicitly, we see that the translation invariance
holds. The second step is to assume traveling waves where the argument of the dependent variable
u is a function of βx for β the wave number, x = x− ct + α for x and t the independent variables, c
the wave speed and α the phase angle. Once u is a function of x, solving NLPDEs reduces to solving
nonlinear ODEs. The third step is to assume that the variable u is given by a finite power series

u(βx) =∑p
l=0 alUl(βx) (1)

where p is a positive integer, the al are expansion coefficients, and U(βx) is a nonlinear function.
The nonlinear function U(βx) is one of the hyperbolic functions: tanh, sech, or the Jacobian elliptic
functions: sn, cn, dn. There are other functions in these two classes, but they may be singular and are
not studied here. Why do we need nonlinear functions? These nonlinear functions when differentiated
produce a product of two functions in its class. This property is necessary to balance products of u and
its derivatives by higher order derivatives. When the power series in Equation (1) is substituted in the
NLPDE, another power series in U(βx) is formed. This entails the application of function identities,
such as tan h′(x) = 1− tan h(x)2, rather than sec h(x)2. It will be useful to remove some common
factors of the NLPDE too.

The fourth step is the homogenous balance condition. This balance condition was apparently
first used in the Tanh Method [13,14]. We discuss the homogenous balance first for tanh functions.
Any order derivative of tan h(βx) can be expressed in terms of tan h(βx). Therefore, one chooses the
term in the NLPDE with the largest power index and equates it to another term with the largest power
index in the NLPDE. Next, we introduce the power index P as the criterion in the homogenous balance
condition. The homogenous condition is found by substituting u = U(βx)p in the NLPDE. Then, P is
defined as

P = np + d (2)

where n is the number of products of u and the derivatives of u. The power p is the highest power
of U(βx) in the power series Equation (1) and is a positive integer. If p is determined to be negative
or a fraction, the dependent variable is changed and a new replacement power p calculated. The d is
the net number of derivatives in a term in the NLPDE. For the Tanh Method each derivative adds a
product of one extra tan h(βx) that appears in the most nonlinear term if function identities are used.
As an example, consider the terms u2ux and uxxx. The power index for the first term is P1 = 3p + 1
and the power index for the second term is P2 = p + 3. Equating P1 and P2 we find that p = 1.

The fifth step is to assess whether all the net number of derivatives d are even, odd, or mixed
even and odd. The effect of the derivatives differs for tanh functions and the other functions.
The homogenous balance condition has been used for the hyperbolic secant and Jacobian elliptic
functions; its use is similar to that for the tanh(βx) function if all the d are even numbers. If all d
are odd numbers, then a common factor for the sec h(βx) function is sec h(βx) tan h(βx) and for the
sn(βx) function the common factor is cn(βx)dn(βx) after all the identities are used. The effective d for
products of only a sec h(βx) function or only a sn(βx) function would be d− 1 and d− 2, respectively.
However, the power p would be the same as

p =
P2 − P1

n1 − n2
=

d2 − d1

n1 − n2
(3)

for tan h(βx) functions as the number of net derivatives are subtracted as seen in Equation (3).
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If the net derivative d values are mixed numbers in the NLPDE, only tan h(βx) functions are
usually possible solutions. There are unusual exceptions if the NLPDE can be split into two NLPDEs,
as were done in fluid mechanics [18]. To split the NLPDE the terms with even and odd values of d are
set equal to zero separately. An additional requirement is that same expression for u(βx) in Equation
(1) is used in the separate parts of the NLPDE where the values for the power p are the same. The split
of a NLPDE into two separate NLPDEs has been reported with a solution of Equation (6) in [19] with a
solution that is proportional to sec h2(βx) . Actually, the solution for the original NLPDE Equation (6)
can be found by tan h(βx) functions. It is possible to formulate a NLPDE that can be solved only
by splitting.

The sixth step is to check the discrete symmetries, reflection, or 180◦ rotation symmetry of u(βx).
These symmetries have been rarely applied with Lie symmetries. Assume u(βx) is an even (odd)
function of its argument. Then, check each term in the NLPDE as to whether it is even or odd. If the
NLPDE is invariant in form, then u(βx) is an even (odd) function. This attribute can reduce the number
of terms in the power series Equation (1).

The preceding six steps can be checked quickly unless there is an exception to step five. The last
two steps for the number of algebraic equations are more complicated. The seventh step determines
the number Ne of algebraic equations. The algebraic equations are found from the NLPDE power
series in the function U(βx). To find the power series Equation (1) is substituted into the NLPDE and
after evaluation of derivatives, employing function identities, and dividing of common factors a power
series in U(βx) is found. This operation may be performed by symbolic computing or by hand. The
coefficients of each power of U(βx) in the NLPDE set equal to zero constitute the algebraic equations.

The maximum number of terms in the NLPDE power series is Pmax + 1, where Pmax is the power
index of the most nonlinear terms in the NLPDE and the 1 counts the constant term if present. Then,
the number of algebraic equations is given by

Ne ≤ Pmax + 1. (4)

Now, Ne is frequently smaller than the maximum value in the Equation (4); some examples are
noted here. For example, if all of the terms in the NLPDE have derivatives, then there is no constant
term in the NLPDE power series and the 1 on the right side of Equation (4) is gone. Common factors
are likely when Equation (1) is substituted into the NLPDE and dividing these out reduces the Ne.
In addition, when all of the net derivatives d are odd, the common factors if U(βx) is a sech function,
contain a tanh function and the common factors if U(βx) is a Jacobian elliptic function contain a
product of the other Jacobian elliptic functions. If the NLPDE has even or odd symmetry, then there
are fewer terms in the NLPDE power series except at times for Pmax= 1 for even symmetry.

The eighth step determines the number of parameters Np in the algebraic equations. Parameters
in the original NLPDE power series consist of the expansion coefficients al in Equation (1), β, and c and
any other constants in the NLPDE, but the effective parameters are those that appear in the algebraic
equations. These effective parameters may be compound, that is as the sum or product of the original
parameters and hence may be fewer in number. In the examples discussed here that may reduce the
value of Np. Again, the algebraic equations are determined by equating the coefficients of each power
of U(βx) in the NLPDE series expansion to zero. For a solution of the algebraic equations

Np > Ne (5)

which is a sufficient condition. Some algebraic equations are redundant or consist of an identity. Then,
the actual number of algebraic equation is fewer. Equation (5) may be valid for Jacobian functions but
not for hyperbolic functions until the actual algebraic equations are written down. Those Jacobian
elliptic function solutions should reduce to solutions of hyperbolic functions when the modulus
approaches one. An example is discussed in Section 3.3.
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3. Examples

The examples of NLPDEs are all invariant under translations in the independent variables.
Therefore, traveling waves are chosen for all of the examples. We start with determination of the power
p from homogeneous balance.

3.1. KdV and mKdV Equations

Consider the KdV and mKdV equations. These equations with traveling waves may be integrated
twice and reduced to quadratures, but that is not possible for some NLPDEs. The KdV equation was
originally derived for nonlinear fluid flow in a channel. We have

ut + ulux = γuxxx (6)

for γ a constant and where l = 1 for the KdV equation and l = 2 for the mKdV equation. Equating
the maximum power index P for the second and third terms, we find p = 2 for the KdV equation and
p = 1 for the mKdV equation. All of the net derivatives are odd for both equations. Both the KdV and
mKdV equations may have solutions in the two hyperbolic functions and the three Jacobian elliptic
functions. The reflection and/or 180◦ rotation symmetry is next checked. The u(βx) for the KdV
equation has reflection symmetry; the u(βx) for the mKdV equation has both a reflection symmetry
and 180◦ rotation symmetry. Then, u(βx) for the KdV equation is an even function where we consider
the hyperbolic tangent function or

u(βx) = a0 + a2 tan h2(βx) (7)

The number Ne of algebraic equations for the KdV equation equals 2. How do we arrive at
that number? The number of terms in the NLPDE power series, Pmax, is p + 3, but since u(βx) is an
even function, the highest power of the nonlinear function in the power series for the NLPDE is four.
Then the common factors when all of the terms have at least one derivative is two terms or Ne = 2.
The effective parameters are a0 − c, a2, β2γ, where some are compound. Then, Np = 3. As Np > Ne, a
solution of the algebraic equations exists where a0 = c− 8β2γ, a2 = 12β2γ.

The solutions for the mKdV equation are both odd and even functions

u(βx) = a1 tan h(βx) or u(βx) = b0 + b1 sec h(βx) (8)

where a1, b0, b1 are constants. Now, Ne = 2 for the odd function where Pmax is 4, but the common
factors reduce it to 2. Then Ne = 3 for the even function where again Pmax is 4 which gives a maximum
of five terms in the power series in the NLPDE as Ne = Pmax + 1. Once the common factors are
divided out there remain three terms in the power series. The effective parameters are a2

1, c, β2γ for
the odd function and b2

0, b0b2, b2
2, c, β2γ for the even function. owever However, b2

0, b0b2, b2
2 are

not all independent. Then, Np = 3 for the odd function and Np = 4 for the even function. The
relation Np > Ne, is obeyed for both cases where a1 = ±β

√
6γ, c = 2β2γ for the odd function and

b0 = 0, b1 = ±iβ
√

6γ, c = −β2γ for the even function.

3.2. Burgers Equation

Next consider Burgers equation [20], a model equation for shock waves,

ut + uux = γuxx (9)

for γ a constant. The homogenous balance gives p = 1. As the net values of d are both odd and even
numbers, only the nonlinear function tan h(βx) is a possible solution. A split into two NLPDEs does
not hold. There is no reflection or rotation symmetry; consequently, the solution can have even and
odd terms. Now, Pmax + 1 = 4, but the number of equations in the NLPDE is Ne = 2 when the common



Symmetry 2018, 10, 76 5 of 9

factors are divided out. The original number of terms was 4, because the solution has both odd and
even terms. The effective parameters are a0 − c, a1, βγ or the number of parameters NP = 3. Then,

u(βx) = a0 + a1 tan h(βx) (10)

where a0 = c, a1 = −2βγ.

3.3. Blasius Equation

An example of a NLPDE that has no solution in terms of the five nonlinear functions is the Blasius
equation [4,21] for laminar flow of a fluid past a plate

uxxx + γuuxx = 0 (11)

where γ is a constant. This NLODE has two Lie symmetries, but cannot be reduced to quadratures,
as has been known. The application of homogenous balance gives power p = 1. There are only two
terms in the NLPDE so that lesser nonlinear terms in the expansion of Equation (11) by Equation (1)
are not balanced. The net derivatives d are mixed even and odd numbers that means only a tan h(βx)
is possible. As there is the 180◦ rotation symmetry, u(βx) is an odd function. The number of equations
in the NLPDE, Ne = 2, as there are four terms originally in the NLPDE power series, but common
terms are divided out. The effective parameters are a1, β or Np = 2. Because Np = 2, no solution in
the hyperbolic or Jacobian functions exists. Equation (12)

ux =
1
3

u2 (12)

from [21] becomes the Blasius equation when differentiated twice. The solution of Equation (12) is

u = ± 3
x + C

(13)

with C a constant. Then, Equation (13) is a solution of the Blasius equation but it may be singular.

3.4. Kaup-Boussinesq Equations

The Kaup-Boussinesq like equations [22] are coupled NLPDEs. They are

ht + (uh)x +
1
4

uxxx = 0 (14a)

ut + uux + hx = 0. (14b)

where we assume the functions h(βx) and u(βx) have the dependence indicated. For homogeneous
balance we use a power series for h(βx)

h(βx) =∑q
l=0 al H(βx)l (15)

and Equation (1) for u(βx).
Then, we have the two relations: p + q + 1 = p + 3 and 2p + 1 = q + 1. Then, the powers are

p = 1, q = 2. As the net derivatives in both Equations (14a) and (14b) are all odd, we find that the
hyperbolic and Jacobian elliptic functions are possible solutions. In addition, both h(βx) and u(βx) are
even functions of their arguments, so that there is reflection symmetry. Then, we propose that

h(βx) = b0 + b2 sec h2(βx), u(βx) = a0 + a1 sec h(βx) (16)
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Why is there no b1 sec h(βx) in (16)? If we replace b2 sec h2(βx) by b2
(
1− tan h2(βx)

)
, then we

see that the term b1 sec h(βx) will not appear. The number of algebraic equations Ne = 3 for Equation
(14a) and Ne = 2 for Equation (14b) power series when the common factors are divided out. The
original parameters are a0,a1, b0, b1,c, β. Essential parameters for Equation (14a) are a0, b0, b1, c, β2

and essential parameters for Equation (14b) are a0, a2
1, b1, c. The common essential parameters are

a0, a2
1, b0, b1, c, β2. The resulting coefficients are

a0 = c, a1 = ±iβ, b0 = − β2

4
, b2 =

β2

2
. (17)

3.5. Fermi-Pasta-Ulam Equation

The Fermi-Pasta-Ulam equation is an equation for the perturbations in the Fermi-Pasta-Ulam
mass chain. The NLPDE [23] is

ut + uux + δ2uxxx + 2δ2uxuxx + δ2uuxxx + 0.4δ4uxxxxx − µu2ux − 4δ2µuuxuxx − δ2µu3
x − δ2µu2uxxx = 0 (18)

where µ and δ are constants. The solution of Equation (18) was found in [23] by assuming the logistic
function that can be expressed in terms of the tanh function.

[1− Exp(−2βx)]−1 = 0.5[1 + tan h(βx)] (19)

The solution is
u(βx) = a0 + a1 tan h(βx) (20)

where a0 = 1
2µ , a1 = ±[(28µ + 15)]/

(
30µ2)]1/2, β = [(28µ + 15)]/

(
96µδ2)]1/2.

We next analyze Equation (18) by the Power Index Method. Now, Equation (18) is invariant under
translations in the independent variables, a classic Lie symmetry. Then, again we can assume traveling
waves. The harmonic balance results in p = 1. The net derivatives are all odd; thus the hyperbolic and
Jacobian elliptic functions are possible solutions. Consideration of reflection or 180◦ rotation symmetry
of u(βx) shows that it can be a mixed or even function of its argument. We choose to look at the
mixed function for u(βx), as we wish to demonstrate that the Power Index Method will give a result
equivalent to that found in Equation (20) from [23] by the logistic equation. The number of algebraic
equations from the NLPDE Ne = 5 because

Pmax + 1 = p + 5 + 1 = 7 (21)

but dividing by common factors reduces the number of algebraic equations to five. The number of
original parameters Np = 5 since they are a0, a1, c, µ, βδ. Since Np > Ne does not hold, how is there a
solution? We look at the essential parameters in the five algebraic equations found from the coefficients
of four powers of the tan h(βx) and a constant. The essential parameters are µa2

1, (βδ)2 for the fourth
power, a0µ for the third power, µ, (βδ)2 for the second power, an identity for the first power and
c, a0, µ, µa2

1 µa2
0, (βδ)2, (βδ)4, (βδ)2a2

0, (βδ)2a2
1 for the constant term. Therefore, there are only four

algebraic equations. In addition, a solution with a tan h(βx) exists because it is the limit of the Jacobian
elliptic function sn(βx) as the modulus k→ 1 . The modulus is an additional parameter giving Np = 6.
The solution for sn(βx) is

u(βx) = b0 + b1sn(βx) (22)

where b0 is the same as a0 in (20) and we find

b1 = ±
[
(28µ + 15) k2

]
/
(

15
(

1 + k2
)

µ2
)
]1/2, β = [(28µ + 15)]/

(
48
(

1 + k2
)

µδ2
)
]1/2.

We note two aspects of the solutions in Equations (20) and (22) by the Power Index Method that
are relevant. First, the solution in Equation (20) was not expected since the inequality in Equation (5)
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does not hold. This suggests caution if Jacobian elliptic functions are solutions. Second, the choice
of the logistic function as a possible solution missed solutions. There was also a hyperbolic secant
solution that was not reported here.

A solution of Equation (18) by an elliptic Weierstrass function was also reported in [23], where
the form was guessed and the Equation (18) was integrated twice. The G’/G method can be used to
find the same result in a more compact form. The extension of the Power Index Method to the G’/G
Method has not been completed.

4. Results

4.1. Scope of Power Index Method

The updated Power Index Method as a test for determining the analytic solutions of nonlinear
partial differential equations has been presented. The aim is to demonstrate whether the NLPDE can
be reduced to algebraic equations that then can be solved. The method is limited to NLPDEs invariant
under translation symmetries in the independent variables that then support traveling waves. The
method has eight steps of which six steps are easy and quick to apply with a couple of exceptions. The
dependent variable is expanded in a finite power series in one of the nonlinear functions that are the
hyperbolic or Jacobian functions. Homogeneous balance is applied in order to determine the number
of terms of the power series before additional constraints are imposed. Then, steps are introduced that
may reduce the number of terms in the power series or possible functions. An important step is to
determine the even, oddness, or mixed even and oddness of the net derivatives of the NLPDEs terms.
Then, for the mixed case only hyperbolic tangent functions are possible solutions. The first five tests
that include the previous restrictions were in the original Power Index Method although some details
were not explicit and the exceptions were not discussed.

The updated version of the Power Index Method is more systematic and consists of eight steps
described in detail. The sixth step considers ‘discrete’ symmetries of reflection and 180◦ rotation,
which may reduce the number of terms in the algebraic equations. Several unusual cases are discussed.
One is a split of the NLPDE into two parts with special conditions. Another case is the necessity
to test Jacobian elliptic functions because in the limit as the modulus goes to one, a solution of the
hyperbolic tangent function exists. The determination of a possible solution of the algebraic equations
is more complicated. The last two steps estimate the number of algebraic equations and the number of
parameters. The number of parameters must exceed the number of necessary algebraic equations in
order to find a solution where some algebraic equations may be redundant or identities. Examples of
various NLPDEs are analyzed by the eight steps.

4.2. New Results

The fifth step has been expanded to include justification for the power p for the hyperbolic secant
function and the three Jacobian elliptic functions. The sixth step introduces discrete symmetries, where
an even (odd) function u (βx)of its argument can reduce the number of terms in the power expansion
for u (βx). The seventh and eight steps consider the number of algebraic equations and the parameters
in those equations. A sufficient condition is proposed that the number of parameters exceeds the
number of algebraic equations.

4.3. Exceptions and Restrictions

The dependent variable is restricted to u (βx) and must be expanded in a finite power series
expansion of some nonlinear function of βx. The nonlinear functions are restricted to two hyperbolic
functions and three Jacobian elliptic functions. Homogeneous balance of the NLPDE holds. If these
restrictions are not met, the Power Index Method fails at this point. Another restriction limits the
nonlinear functions to tan h functions if the net derivatives are not all even numbers or odd numbers.
A rare exception may be found by equation splitting. A restriction to keeping all of the terms in the
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power series expansion for u (βx) occurs if neither of the discrete symmetries holds. The condition
that the number of parameters exceeds the number of algebraic equations may fail if some algebraic
equations are redundant or identities. This failure was found for the Fermi-Pasta-Ulam equation for
the tanh function.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Gardner, C.S.; Greene, J.M.; Kruskal, D.; Miura, R.M. Method for Solving the Korteweg-de Vries Equation.
Phys. Rev. Lett. 1967, 19, 1095–1097. [CrossRef]

2. Zwillinger, D. Handbook of Differential Equations; Academic Press: San Diego, CA, USA, 1989;
ISBN 0-12-784390-6.

3. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer-Verlag: New York, NY, USA, 1986;
ISBN 0-387-96250-6.

4. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer-Verlag: New York, NY, USA, 1989;
ISBN 0-387-96996-9.

5. Ibragimov, N.H. (Ed.) CRC Handbook of the Lie Group Analysis of Differential Equations; CRC Press: Boca Raton,
FL, USA, 1994; ISBN 0-8493-4488-3.

6. Stephani, H. Differential Equations. Their Solution Using Symmetries; Cambridge University Press: Cambridge,
UK, 1989; ISBN 0-521-36689-5.

7. Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: Cambridge, UK, 2002;
ISBN 0-521-77183-8.

8. Abraham-Shrauner, B.; Govinder, K.S. Provenance of type II hidden symmetries from nonlinear partial
differential equations. J. Nonlinear Math. Phys. 2006, 13, 612–622. [CrossRef]

9. Baldwin, D.; Gökta, U.; Hereman, W.; Hong, L.; Martino, R.S.; Miller, J.C. Symbolic computation of exact
solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J. Symb. Comput. 2004, 37,
669–705. [CrossRef]

10. Karczewska, A.; Rozmej, P.; Infeld, E. Shallow-water solitons dynamics beyond Korteweg-deVries equations.
Phys. Rev. E 2014, 90, 012907. [CrossRef] [PubMed]

11. Wang, M.; Zhou, Y. The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A
2003, 318, 84–92. [CrossRef]

12. Wang, M.; Li, X.; Zhang, J. The G’/G expansion–method and traveling solutions of nonlinear evolution
equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [CrossRef]

13. Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations.
Chaos Solitons Fractals 2005, 24, 1217–1231. [CrossRef]

14. Huiban, L.; Kelin, W. Exact solutions for two nonlinear equations: I. J. Phys. A Math. Gen. 1990, 23, 3923–3928.
[CrossRef]

15. Malfliet, W. Solitary wave solution of nonlinear wave equations. Am. J. Phys. 1992, 60, 650–654. [CrossRef]
16. Wang, M. Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 1996, 213, 279–287. [CrossRef]
17. Abraham-Shrauner, B. Exact Solutions of Nonlinear Partial Differential Equations. Discrete Contin. Dyn. Syst.

Ser. S 2018, 11, 577–582. [CrossRef]
18. Ames, W.F. Ad-hoc Exact Technique for Nonlinear Partial Differential Press: Non-Linear Partial Differential

Equations; Ames, W.F., Ed.; Academic Press: New York, NY, USA, 1967; pp. 68–72.
19. Vitanov, N.K.; Dimitrova, Z.I. Solitary wave solutions for nonlinear partial equations containing monomials

of odd and even grades with respect to participating derivatives. Appl. Math. Comput. 2014, 247, 213–217.
[CrossRef]

20. Davis, H.T. Introduction to Nonlinear Differential and Integral Equations; Dover Publications: New York, NY,
USA, 1962; pp. 400–406. ISBN 0-486-60971-5.

21. Ramirez, J.; Romero, J.L.; Muriel, C. Reductions of PDEs to second order ODEs and symbolic computation.
Appl. Math. Comput. 2016, 291, 122–136. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.2991/jnmp.2006.13.4.12
http://dx.doi.org/10.1016/j.jsc.2003.09.004
http://dx.doi.org/10.1103/PhysRevE.90.012907
http://www.ncbi.nlm.nih.gov/pubmed/25122360
http://dx.doi.org/10.1016/j.physleta.2003.07.026
http://dx.doi.org/10.1016/j.physleta.2007.07.051
http://dx.doi.org/10.1016/j.chaos.2004.09.109
http://dx.doi.org/10.1088/0305-4470/23/17/021
http://dx.doi.org/10.1119/1.17120
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.3934/dcdss.2018032
http://dx.doi.org/10.1016/J.AMC.2014.08.101
http://dx.doi.org/10.1016/j.amc.2016.06.043


Symmetry 2018, 10, 76 9 of 9

22. Gurses, M.; Pekcan, A. Traveling Wave Solutions of Degenerate Coupled KdV Equations. J. Math. Phys. 2016,
57, 103507. [CrossRef]

23. Kudryashov, N.A.; Volkov, A.K. The fifth-order partial differential equation for the disruption of the α + β

Fermi-Pasta-Ulam Model. arXiv, 2017.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4965444
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Power Index Method 
	Examples 
	KdV and mKdV Equations 
	Burgers Equation 
	Blasius Equation 
	Kaup-Boussinesq Equations 
	Fermi-Pasta-Ulam Equation 

	Results 
	Scope of Power Index Method 
	New Results 
	Exceptions and Restrictions 

	References

