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Abstract: Quantitative analysis through image processing is a key step to gain information regarding
the microstructure of materials. In this paper, we develop a deep learning-based method to address
the task of image segmentation for microscopic images using an Al–La alloy. Our work makes three
key contributions. (1) We train a deep convolutional neural network based on DeepLab to achieve
image segmentation and have significant results. (2) We adopt a local processing method based on
symmetric overlap-tile strategy which makes it possible to analyze the microscopic images with high
resolution. Additionally, it achieves seamless segmentation. (3) We apply symmetric rectification to
enhance the accuracy of results with 3D information. Experimental results showed that our method
outperforms existing segmentation methods.

Keywords: deep convolution neural network; image segmentation; microscopic images of Al-La
alloy; overlap-tile strategy; 3D information

1. Introduction

The quantitative analysis of microstructures is essential in the control the properties and
performances of metals or alloys [1,2]. An important step in this process is microscopic image
processing [3] which is used to extract significant information in a microstructure [4]. A sample
of dendritic microstructure in a hypereutectic Al–La 35 wt % alloy is shown in Figure 1; (c) is the
original image and (d) is manual segmentation result for (c) with the white regions representing the
Al11La3 dendrites or the region of interest (ROI); with the black regions representing the background
(eutectic phase of α-Al+Al11La3). The traditional fully manual operations to extract the ROI are
accurate; however, it is also time-consuming and laborious. Therefore, quick and accurate image
segmentation for Al–La alloy’s microscopic imaging is an urgent problem yet to be solved.
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Figure 1. Microscopic images of AL–La alloy. (a) Stack of serial sections (nine slices or images) for
Al–La alloy with an interval of one micrometer. For clarity, we painted the edges of the slices red;
(b) one of slice with resolution of 3200 × 3200; (c) Details of micrograph with resolution of 200 × 200;
(d) Manual segmentation for (c).

Image segmentation in microscopic image processing is a highly challenging problem for several
reasons. First, the microstructure of many samples is highly complex [5]. For example, there are
hundreds of substructures with different shapes and sizes (e.g., “dendritic structure” in Al–La alloy [6],
“grains” in polycrystalline iron [2], or “cells” in biomaterials [7], etc.) which must be accurately
segmented in each image. Second, as shown in Figure 1b,c, numerous microscopic images contain
observable contaminations. These noises are formed during sample preparation, image acquisition,
or other processes, and result in an obstacle in the process of image segmentation. Third, most
microstructures observed by serial sections retain consistency in shape and topology (adjacency
relations) in different sections, as shown in Figure 1a. It can be challenging to model and incorporate
such domain knowledge in the segmentation method. Fourth, microscopic images usually have high
resolution which increases demand for an efficient high speed image segmentation method which
requires less memory space.

Many image segmentation methods can be categorized into two classes: 2D image process
methods that extract the ROI directly and tracking-based methods that incorporate 3D information
between slices as domain knowledge. Many existing 2D methods segment images independently
such as Otsu [8], Adaptive Threshold [9], watershed [10,11], graph cut [12,13], K-means [14], and deep
convolution neural networks (DCNN) [15]. Among those published works, DCNN has the highest
performance on image segmentation tasks. Motivated by the advances in image classification using
convolutional networks [16–18], many researchers have proposed variations of networks to solve
the image segmentation problem [19–24]. DeepLab [24] is currently a state of the art network that
has the highest performance on benchmark datasets [25,26]. However, like the traditional 2D image
processing methods, DeepLab does not incorporate consistency between slices as domain knowledge
to enhance result performance. Additionally, benchmarks [25,26] have a lower resolution compared
with microscopic images: the highest resolution of M. Everingham et al. [25] was 500 × 486, and that
of X. Chen et al. [26] was 2048 × 1024. In contrast, the resolution of Figure 1b is 3200 × 3200, which is
too large to train a network with limited GPU memory resources. L.C. Chen et al. [24] down-sampled
the images by a factor of two because the objects in X. Chen et al. [26] were too large. Unfortunately,
there are many finely detailed dendrite structures in Figure 1b to which the down-sample process
cannot be applied.

Tracking-based methods have been developed for image segmentation in image sequences.
A. Alatan et al. [27] proposed an analysis model for fusing motion, color, and intensity change
information. However, this mode concentrated on video sequences in which the camera parameters
are fixed and moving objects can be observed in the still background. Although 3D microscopic
images are complicated, the microscope can adjust luminance and focal length for each slice during
the image acquisition process. Additionally, in this application, the objects are large dendrites and
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the background includes both the white base and tiny dendrites. Therefore, the objects and the
backgrounds are both moving or changing along the border which will inevitably cause errors in the
motion analysis. A. Doulamis et al. [28] proposed a content-based segmentation algorithm oriented
to stereoscopic sequences. This research established a scheme to fuse depth and color information
as sufficient descriptors to achieve image segmentation. However, the depth map estimation and
occlusion compensation were calculated in a binocular camera system (two camera viewpoints).
Although the microscopic images were captured with only one microscope, no depth information
was captured in this application. Feng [29] proposed an interactive segmentation method based on
breakpoint detection, but this proposal requires considerable time for manual refinement and cannot
be applied to microscopic images with high resolution and numerous slices. Waggoner [30] presented
a 3D propagative method based on graph cut theory; however, the model was unable to detect an
emergent dendrite structure. In addition, as the slice’s resolution increased, memory consumption and
computational time grew exponentially.

In this work, we have proposed a deep learning-based image segmentation method for Al–La
alloy microscopic images. Our algorithm presents three contributions:

(1) A deep learning network used to segment microscopic images. Attributable to data enhancement
and network training, it achieves the highest accuracy (93.09% in pixel accuracy) compared to
some traditional methods. Additionally, it only consumes 17.553 s per slice which could be
beneficial to practical applications.

(2) A symmetric overlap-tile strategy for deep learning-based image segmentation. The strategy
could eliminate under-segmentation errors along the boundary of dendrites which is currently
inevitable when using the base DeepLab network in simple local processing. Additionally, this
strategy makes it possible to segment high resolution images with limited GPU resources.

(3) A symmetric rectification method which analyzes 3D information to yield more precise results.
Given the complexity of serial sections, it cannot apply the image fusion method often applied to
video sequences. However, we have designed a symmetric image fusion method which is suitable
to 3D material slices. It rectifies the segmentation mask by analyzing the masks of neighboring
slices. Experimental results indicate that it could eliminate contaminations which form during
the sample preparation process.

The remainder of this paper is organized as follows: In Section 2, we provide a description of
the DeepLab network, the overlap-tile strategy, and symmetric rectification. In Section 3, we present
experiments on different segmentation methods to show the effectiveness of the proposed approach.
We conclude the paper in Section 4.

2. Proposed Method

2.1. Overview of the Proposed Method

Figure 2 shows an overall flowchart of the proposed image segmentation method. Firstly,
considering the limit of GPU resources, we clipped the high resolution global image into sub-images
based on the symmetric overlap-tile strategy. Secondly, we applied DeepLab to segment local
sub-images. Thirdly, we stitched the segmentation results by using the symmetric overlap-tile strategy.
Finally, we used symmetric rectification to further enhance the performance of our results.
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Figure 2. Flowchart of the proposed method. (a) Flowchart of technology; (b) Flowchart of image.

2.2. Image Segmentation Based on DeepLab

DeepLab [24] is currently a state of the art network associated with the highest performance in
the task of image segmentation. It is built upon the ResNet-101 [18] and modifies its architecture in
two key aspects.

• Atrous Convolution

It removes the downsampling operator from the last maximum pooling layers of DCNNs and
instead upsamples the filters in subsequent convolutional layers. Use of this technology allows the
network to recover full resolution feature maps; it also allows DeepLab to effectively enlarge the field
of view of filters without increasing the number of parameters or the amount of computation.

• Atrous Spatial Pyramid Pooling (ASPP)

It has developed a computationally efficient scheme of resampling a given feature layer at multiple
rates prior to convolution. This amounts to probing the original image with multiple filters that have
complementary effective fields of view, thus capturing the objects as well as useful image context at
multiple scales.

Detailed explanations of the configuration of DeepLab are shown in Table 1.
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Table 1. Configuration of the DeepLab used in the proposed method.

Group Name
Kernels

No. of Blocks
Feature Map Resolution

(Height × Width) No. of Stride
Type Dimension

Image Input 1 200 × 200 None

Conv_1 Conv 7 × 7 × 64 1 100 × 100 2 × 2

Conv_2

Max Pool 3 × 3 1

50 × 50

2 × 2
Conv 1 × 1 × 64

3
1 × 1

Conv 3 × 3 × 64 1 × 1
Conv 1 × 1 × 256 1 × 1

Conv_3
Conv 1 × 1 × 128

4 25 × 25

1 × 1
(2 × 2 in first block)

Conv 3 × 3 × 128 1 × 1
Conv 1 × 1 × 512 1 × 1

Conv_4
Atrous Conv, rate = 2 1 × 1 × 256

23
25 × 25 1 × 1

Atrous Conv, rate = 2 3 × 3 × 256 25 × 25 1 × 1
Atrous Conv, rate = 2 1 × 1 × 1024 25 × 25 1 × 1

Conv_5
Atrous Conv, rate = 4 1 × 1 × 512

3
25 × 25 1 × 1

Atrous Conv, rate = 4 3 × 3 × 512 25 × 25 1 × 1
Atrous Conv, rate = 4 1 × 1 × 2048 25 × 25 1 × 1

Conv_6
(ASPP)

Atrous Conv, rate = 6 3 × 3 × 2 1 25 × 25 1 × 1
Atrous Conv, rate = 12 3 × 3 × 2 1 25 × 25 1 × 1
Atrous Conv, rate = 18 3 × 3 × 2 1 25 × 25 1 × 1
Atrous Conv, rate = 24 3 × 3 × 2 1 25 × 25 1 × 1

Softmax 1 25 × 25 None

Output
Layer Billiner Interpolation by 8 1 200 × 200 None

The DeepLab model consists of 100 convolutional layers, 1 max pooling layers and ASPP
architecture in six convolutional groups. The group name, kernels, number of blocks, feature map size
and stride are explained in Table 1.

“Conv” represents the traditional convolutional layer used in the deep convolutional network.
The max-pooling layer and convolutional layer with 2 × 2 stride can provide a kind of subsampling.
Considering that the feature map resolution of 200× 200 is reduced to that of 25× 25 by going through
the first three groups, Atrous Conv is an improved convolutional filter that would not decrease the
dimension of feature map, as mentioned above.

Bottleneck building with shortcut connection are key components in Conv_2~Conv_6. It has been
established that these buildings can gain accuracy from considerably increased depths [18].

All hidden layers are equipped with the rectification (ReLU [16]) non-linearity, described in
Equation (1). In equation, x and f is the input and output of neuron respectively.

f (x) = max(0, x), (1)

In Conv_6, the method used ASPP architecture that can improve the DCNN’s ability to
successfully handle both large and small objects.

The loss function is the sum of cross-entropy terms for each spatial position in the DCNN output
map (subsampled by eight compared to the original image). All positions and labels are equally
weighted in the overall loss function. Our targets are the ground truth labels (subsampled by eight).

2.3. Symmetic Overlap-Tile Strategy for Seamless Segmentation

Unfortunately, as a result of the limitation of GPU resources, microscopic images with high
resolutions could not be applied to the deep convolution neural network either in the training or
testing process.

A common way to face this problem is known as “divide and conquer” which recursively breaks
down a problem into two or more sub-problems of the same type until these become simple enough
to be solved directly. The solutions to the sub-problems are then combined to give a solution to the
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original problem. Using this approach, we split one image with high resolution into N small size
sub-images as inputs to train and test the deep convolution neural network.

However, as shown in Figure 3 with red circles, by applying simple local processing, we found
that there were some under-segmentation errors at the edge of sub-images. The structures were too
small in the sub-images; as a result, they were considered noise during the process of segmentation.

Figure 3. Segmentation result of simple local propagation method. (a) Original image; (b) Split strategy
of simple local processing represented by gridlines; (c) Segmentation result with under-segmentation
problems represented by red circles.

In this paper, we introduce the symmetric overlap-tile strategy into the local processing method
to solve the problem of under-segmentation at the edges of sub-images. The symmetric overlap-tile
strategy was proposed by O. Ronneberger et al. [20], as shown in Figure 4. It referred this technology
to a part of network so that the sizes of input and output were not the same for both the training and
testing dataset. However, DeepLab is an end-to-end system in which the size of the input is equivalent
to that of the output. Therefore, in this paper, we refer to this technology as a pre-processing method
that only applied to the testing dataset.

Figure 4. Symmetric overlap-tile strategy for seamless segmentation of arbitrary large images. Result
of segmentation within the yellow lines requires image data within the blue lines as input. Missing
input data is extrapolated by mirroring. Solid lines refer to the first segmentation and dashed line refers
to the second segmentation. By repeating this process, an entire segmentation mask will be obtained
for each slice.
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As shown in Figure 4, we used the image area within the blue lines as the input of the deep
conventional network. After inference, we obtained a segmentation mask the same size as that of the
input; however, we only achieved a segmentation result within the yellow lines. By repeating this
process, we explicitly ignored the segmentation in the region between the yellow and blue lines in
which may exist under-segmentation errors.

A comparison of simple local processing and local processing based on symmetric overlap-tile
strategy is shown in Figure 5. Clearly, local processing based on the overlap-tile strategy can remove
the under-segmentation error phenomenon effectively. Simultaneously, efficient local processing using
the symmetric overlap-tile strategy makes it possible to analyze high resolution microscopic images.

Figure 5. The comparison of simple local processing and local processing based on symmetric
overlap-tile strategy. (a) Segmentation result of simple local processing; (b) Segmentation result
of local processing based on overlap-tile strategy.

2.4. Symmetric Rectification Considering 3D Information

Some contaminations were formed during the process of sample preparation which could not be
segmented correctly by the deep convolution neural network, as shown in Figure 6 with red circles.

Figure 6. Symmetric rectification could eliminate the effect of contamination.
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Serial section is a common way to produce a stack of microscopic images. Section thickness of
microscopic images is often thin enough to produce two highly similar neighboring slices. According
to this as well as Figure 6, this could be rectified by the output mask of the previous mask and the last
mask. Therefore, we propose a symmetric rectification method to recover the under-segmentation
errors caused by contaminations, as described in Equation (2).

Ptarget =

{
0, i f Pprevious = Pnext = 0
1, i f Pprevious = Pnext = 1

, (2)

where 0 represents the background and 1 represents the object. Ptarget represents the pixels in the
target slice which need to be rectified. Pprevious and Pnext represents the pixels at the same location
in the previous slice and the next slice. According to Equation (2), we used the segmentation result
of the previous and the next slices to rectify the segmentation of the target slice. As shown in
Figure 6, the contaminations could be recovered by this process. This rectification could enhance result
performance and eliminate under-segmentation errors caused by contaminations.

3. Implementation and Results

3.1. Experimental Data and Environment

In this study, we used a stack of microscopic images of Al–La alloy as a dataset. Since the
field of view captured by a microscope is relatively smaller than the size of the large specimen,
we stitched together six small images to form a large microscopic image (one slice) with high resolution
(3200 × 3200 pixels). As shown in Figure 1, the dataset included nine slices with two classes; all slices
were produced by this method. Among all the slices, six slices were used for training and the other
three slices were used for testing purposes. Considering the limited resources of the device, we cut
one slice into 256 small images (200 × 200 pixels) which was big enough to contain the detail of one
dendrite structure. Traditional data augmentation only considers clip and translation process and
rarely handles the rotation process [16–18] as it is usually concentrated on the objects in the nature
scene. However, rotation of samples is most commonly observed by microscope. Therefore, given data
augmentation and the homogeneous property of the material, we applied rotation and flip processes
to the original image. After cutting and augmentation of the slices, 12,288 images (200 × 200 pixels)
were used for training.

Our implementation of this algorithm was derived from the publicly available Python [31],
Tensorflow framework [32], and OpenCV toolbox [33].

3.2. Netowork Training

We initialized the weights as in X. Glorot et al. [34] and trained all nets from scratch and adopted
batch normalization (BN) [35] after each convolution and before activation. All hidden layers were
equipped with the rectification (ReLU [16]) non-linearity. The learning rate started from 0.025 and
was divided by 10 when the error plateaued; the models were trained for up to 60 × 104 iterations.
We used a weight decay of 0.0001 and a momentum of 0.9. The training was regularized by weight
decay (the L2 penalty multiplier set to 0.0005) and dropout regularization (dropout ratio set to 0.5).
Drop out [16] forced the network to learn more robust features which are useful in conjunction with
many different random subsets of the other neurons. This technique could prevent the system from
becoming over-fitted.

We applied a histogram equalization to the images in order to eliminate the influence of
illumination. Our loss function was the sum of cross-entropy terms for each spatial position in
the CNN output map (subsampled by eight compared to the original image). All positions and
labels were equally weighted in the overall loss function. Our targets were the ground truth labels
(subsampled by eight). We optimized the objective function with respect to the weights at all network
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layers by the standard SGD [16] with a mini-batch size of 10. Additionally, we did not use CRF [24]
in post-processing.

The deep convolutional network’s training and testing were performed on a system using Intel®

Core™ i7-6900K CPU @ 3.50 GHz (8 cores) with 32 GB of RAM and NVIDIA GeForce GTX 1080Ti
(3584 Cuda cores) with a graphics memory of 11 GB [36].

3.3. Testing of the Proposed DeepLab-Based Segementation

For performance evaluation, we obtained manual ground truth segmentation of all slices for the
dataset provided by materials scientists. The ground truth segmentation was obtained by morphology
segmentation using ImageJ software [37], commonly used in microscopic image processing. However,
it required two weeks for careful manual refinement. To objectively and precisely evaluate the accuracy
of all segmentation methods, we took the pixel accuracy as the evaluation criterion. It is defined as:

Pixel Accuracy = ∑i nii/ ∑i ti, (3)

where nij is the number of pixels of class i predicted to belong to class j, and ti = ∑j nij is the total
number of pixels of class i.

3.3.1. Image Segmentation by the Proposed Method

We modified the framework of DeepLab by considering symmetric 3D information and reported
the evaluation results in Table 2. In this table, we show the comparisons of the DeepLab based on simple
local processing, DeepLab based on symmetric overlap-tile strategy, and DeepLab based on symmetric
overlap-tile strategy and 3D symmetric rectification. Experiments showed that these methods could
enhance accuracy compared to the traditional DeepLab. The performance of image segmentation is
essential for 3D reconstruction and 3D information characterization. Therefore, any improvement of
segmentation for material science is important.

Table 2. Image segmentation by the proposed method.

Rank Simple Local
Processing

Symmetric
Overlap-Tile Strategy

3D Symmetric
Rectification Pixel Accuracy (%) Inference Time per

Slice (s)

1
√

91.96 ± 0.11% 14.026
2

√
92.45 ± 0.15% 17.553

3
√ √

93.09 ± 0.06% 17.553

As shown in Sections 2.3 and 2.4, the symmetric overlap-tile strategy could achieve seamless
segmentation which is essential for intuitive evaluation, as shown in Figure 5. The 3D symmetric
rectification method could eliminate the under-segmentation caused by contaminations formed in
sample preparation.

Additionally, the symmetric overlap-tile strategy and rectification only had linear time complexity,
so that the process has only a small delay compared to simple local processing.

We tested the pixel accuracy in the training set which was 91.80%. The experiment showed that
our system did not over-fit due to drop out and L2 penalty.

Combined with the symmetric overlap-tile strategy and 3D symmetric rectification, we visualize
the results of segmentation in Appendix A, Figure A1. Additionally, this contains some failure
examples in which the structures were very close and could not be correctly segmented by the method.

3.3.2. Comparison of the Proposed Method with Previous Methods

In Table 3, we show the comparisons of the proposed method with previous segmentation methods
such as Otsu [8], Adaptive Threshold (with mean kernel and Gaussian kernel) [9], Watershed [10,11],
Graph-Cut [12,13], and K-Means [14]. All experiments were conducted by the system with the
configuration setup described in Section 3.2.
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Table 3. Comparison of the proposed method with previous methods.

Rank Method Pixel Accuracy (%) Inference Time (s)

1 Ground Truth 100.00% 100,800
2 Our method 93.09 ± 0.06% 17.553
3 Graph-Cut 87.14 ± 1.03% 360
4 Watershed 87.13 ± 0.55% 12.260
5 K-Means 65.68 ± 6.14% 13.315
6 Otsu 65.43 ± 7.47% 0.072
7 Adaptive Mean 56.69 ± 1.09% 0.081
8 Adaptive Gaussian 56.37 ± 1.04% 0.109

For fair comparison, we used three testing slices as benchmarks and calculate pixel accuracy in the
original size (3200 × 3200 pixels), mentioned in Section 3.1. In addition, the ground truth segmentation
was obtained by morphology segmentation using ImageJ software [37] which is commonly used
in microscopic image processing. However, considerable time was required for careful manual
refinement. All experiments were performed on the system with the same configuration as in
Section 3.2. As shown in Table 3, Graph-Cut had the highest performance among all traditional
methods; however, its time consumption was 360 s per slice as a result of the interactive nature of this
algorithm (90 s for manual object/background careful selection and 270 s for computer calculation)
which is not suitable for practical application. These traditional methods only consider the information
in one slice; our algorithm shows more precise results because it combines 3D information between
slices as domain knowledge. In conclusion, our method outperforms the previous methods in pixel
accuracy (3).

Attributed to the fast computational power of GPU, the inference time of DCNN is almost the
same as traditional methods which may favor real-time processing.

4. Conclusions

In this paper, we proposed a novel deep learning-based image segmentation for Al–La alloy
microscopic images using symmetric 3D information. In short, our method yields three contributions:
(1) We trained an image segmentation network based on DeepLab architecture and yield precise
results. (2) We applied a symmetric overlap-tile strategy for local processing which made it possible to
segment high resolution images. (3) We employed symmetric rectification after the segmentation of
the deep convolutional network which could enhance the accuracy of result by using 3D information.
Experiments showed that the proposed method achieved the highest accuracy compared to the current
state of the art method.

One limitation of our method is that it does not segment well when two dendrite structures are
close together. Our team will work on this problem in subsequent work. Additionally, we will consider
merging 3D information in the architecture of networks.
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Appendix A

Figure A1. Segmentation result with success and failure example.
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