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Abstract: Recently, real-time human age estimation based on facial images has been applied in various
areas. Underneath this phenomenon lies an awareness that age estimation plays an important role
in applying big data to target marketing for age groups, product demand surveys, consumer trend
analysis, etc. However, in a real-world environment, various optical and motion blurring effects can occur.
Such effects usually cause a problem in fully capturing facial features such as wrinkles, which are essential
to age estimation, thereby degrading accuracy. Most of the previous studies on age estimation were
conducted for input images almost free from blurring effect. To overcome this limitation, we propose the
use of a deep ResNet-152 convolutional neural network for age estimation, which is robust to various
optical and motion blurring effects of visible light camera sensors. We performed experiments with
various optical and motion blurred images created from the park aging mind laboratory (PAL) and
craniofacial longitudinal morphological face database (MORPH) databases, which are publicly available.
According to the results, the proposed method exhibited better age estimation performance than the
previous methods.

Keywords: age estimation; deep ResNet-152; CNN; optical and motion blurring; visible light camera
sensor

1. Introduction

Human age estimation based on facial images is currently a hot research topic being applied
in many areas, including demographic analysis, consumer analysis, visual surveillance, and aging
process analysis [1,2]. To obtain an accurate age estimation, facial features containing age information
need to be extracted from images captured by a camera. Typical features conveying age information in
facial images are depth, length, and thickness of wrinkles. Various methods, such as the local binary
pattern (LBP), the multilevel local binary pattern (MLBP), and the Gabor filter, have been used to
extract such features. Recently, the convolutional neural network (CNN) method has been used to
train an optimal feature extractor and classifier for age estimation. However, as shown in a previous
study [3], training a nonstationary kernel for a regression problem can easily cause overfitting. Several
studies are currently under way to solve this problem, and many algorithms have been developed so
far. Although age estimation has been actively investigated by the existing studies, most of them have
dealt with input images with little blurring effect. However, in a real-world environment, various
optical and motion blurring effects can occur due to movement of the camera or its user. Such effects
cause problems in identifying important facial features such as wrinkles, thereby degrading estimation
accuracy. To solve this problem, this study examines an age estimation method that is robust to various
optical and motion blurring effects.
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To recover wrinkles from blurred face images, image restoration methods have been used, but they
require an accurate estimation of the point spread function (PSF) of optical and motion blurring, which is
very difficult and takes processing time [4,5]. In addition, in case both optical and motion blurring occur
at the same time, the conventional image restoration method is difficult to use. Therefore, we used deep
convolutional neural network (CNN), which can extract the important low-, mid-, and high-frequency
features for age estimation and is robust to the various qualities of image input, such as unblurred, optical
blurred, or motion blurred images. By using one deep CNN without an additional image restoration
method, our method does not require estimating accurate PSF and can deal with various cases, including
unblurred images or images where both optical and motion blurring occur at the same time.

2. Related Works

Facial features reflecting age, such as length, depth, and number of wrinkles and skin condition [6],
need to be extracted from facial images in order to estimate a person’s age. A previous study [7]
introduced algorithms and their performance that were used by higher-rank teams on an age estimation,
accessory classification, and smile and gender classification contest, held at the 2016 challenge in
machine learning (ChaLearn) Looking at People and Faces of the World Challenge and Workshop.
The teams using the visual geometry group-16 net exhibited high performance for age estimation.
Other studies [8,9] also conducted CNN-based age estimation. However, two studies [7,9] calculated
errors on the basis of face-apparent age rather than ground-truth age. One study [8] calculated only
classification errors of predetermined age classes, which were not age estimation errors.

Table 1 presents the feature extraction methods, database, and errors of the existing age estimation
studies that calculated the mean absolute error (MAE) between estimated age and ground-truth age.

Table 1. Comparison of age estimation performance among the existing studies.

Methods Database Age Features
Mean

Absolute Error
(MAE) (Years)

Lanitis et al. [10] 400 images from 40 individuals Active appearance model (AAM) feature 3.82

Choi et al. [11]

Biometrics engineering research
center (BERC) Gaussian high-pass filter feature (GHPF) 6.85

Park aging mind
laboratory (PAL) GHPF 8.44

Nguyen et al. [12] PAL Multilevel local binary pattern (MLBP) and Gabor
filter features 6.52

Li et al. [13] Face and gesture recognition
network (FG-NET)

Gabor filter with feature selection method (preserving
locality and ordinal (PLO) feature) 4.82

Geng et al. [14]

MORPH
Aging pattern subspace (AGES) 8.83

AGES (with linear discriminant analysis (LDA)) 8.07

FG-NET
AGES 6.77

AGES (with LDA) 6.22

Guo et al. [15] FG-NET Bio-inspired features (BIF) 4.77

Luu et al. [16]
PAL Contourlet appearance model (CAM) and

nonsubsampled contourlet transform (NSCT) features

6.0

FG-NET 4.12

Günay et al. [17]
PAL

AAM, Gabor, and local binary pattern (LBP) features
5.38

FG-NET 4.87

Bekhouche et al. [18]
PAL

Binarized statistical features (BSIF) and LBP features
6.25

FG-NET 6.34

Belver et al. [19]
PAL

Deep expectation (DEX)-ChaLearn
3.79

MORPH 3.67

Han et al. [20]

MORPH

Demographic informative features (DIF)

3.6

FG-NET 3.8

Pinellas county sheriff’s
office (PCSO) 4.1
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Table 1. Cont.

Methods Database Age Features
Mean

Absolute Error
(MAE) (Years)

Nguyen et al. [21]

PAL with motion blurred
images of PAL MLBP and Gabor filtering features with principal

component analysis (PCA)

6.48

MORPH with motion blurred
images of MORPH 6.05

Nguyen et al. [22]

PAL with optical blurred images
of PAL

MLBP and Gabor filtering features with PCA
6.845

MORPH with optical blurred
images of MORPH 6.607

The above list of studies demonstrates that extraction techniques for human age estimation have
been continuously studied. However, input images of a real-world environment often have optical and
motion blurring. In this case, important facial age features such as wrinkles cannot be fully captured,
and thus the accuracy of age estimation is degraded. However, the previous studies, including those
in Table 1, showed little interest in the robustness of age estimation to blurring, and most of them were
conducted for unblurred images without blurring. One study [21] dealt with age estimation robust to
motion blurring. It applied the adaptive boosting (Adaboost) method to extract face and eye regions from
input images, corrected the in-plane rotation on the basis of eye location, and then redefined the facial
region of interest (ROI). After this process, LBP and Gabor filtering were used to extract age features from
facial images, and the support vector regression (SVR) method, which had already been trained according
to the direction and size of motion blurring, was used for age estimation. One study [22] identified the
degree of optical blurring caused by the camera by focus-checking, and used the SVR method to estimate
a person’s age. Two studies [21,22] assumed that motion blurring and optical blurring occur separately.
However, these two types of blurring often occur simultaneously in a real-world environment, which has
not been considered in related research. Besides, two studies [21,22] attempted SVR-based age estimation
according to focus scores of input images. If the focus score of an input image is incorrectly measured,
an incorrect SVR is selected and the age estimation error increases. To solve these problems, we propose a
CNN-based age estimation method that considers both optical and motion blurring. Our research is novel
in the following three ways.

(1) It is the first age estimation that considers both optical and motion blurring in various environments.
(2) Without preclassifying the degree and direction of blurring and without training an age estimation

classifier separately according to the preclassification result, a deep ResNet-152 CNN is used for
age estimation so that the incidence of erroneous estimation due to errors in the preclassification
of blurring degree and direction and the system complexity are reduced.

(3) Automatic training of the coefficients of an optimal feature extractor and the weights of a classifier
using the deep ResNet-152 CNN removes the process of manual selection of coefficients and
weights. We also open the CNN model obtained from the training in [23] so that other researchers
can compare the performance easily.

Table 2 compares the advantages and disadvantages of the proposed method and previous methods.

Table 2. Summary of previous and proposed studies on age estimation.

Category Method Kind of Blurring Advantages Weakness

Age estimation not
considering
blurring effect

AAM feature [10], GHPF [11],
MLBP and Gabor [12], PLO feature [13],
AGES [14], BIF [15],
CAM and NSCT features [16],
BSIF and LBP [18],
DEX-CHALEARN [19], DIF [20],
convolutional neural network (CNN) [8,9]

None

Processing speed is
faster than the method
considering
blurring effect

In case of image blurring,
the accuracy of age
estimation degrades
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Table 2. Cont.

Category Method Kind of Blurring Advantages Weakness

Age estimation
considering
blurring effect

MLBP, Gabor filter, PCA, and support
vector regression (SVR) [21] Motion blurring

Age estimation robust
to motion
blurring effect

- Can deal only with
motion blurring

- Incorrect
estimation of
amount and length
of motion blurring
causes incorrect
age estimation

MLBP, Gabor filter, PCA, and SVR [22] Optical blurring
Age estimation robust
to optical
blurring effect

- Can deal only with
optical blurring

- Incorrect
estimation of
amount of optical
blurring causes
incorrect
age estimation

CNN-based age estimation
(proposed method)

Optical blurring and
motion blurring

Age estimation robust
to both optical and
motion blurring effects

Training of CNN
is necessary

This paper proceeds as follows: Section 3 explains the proposed CNN-based age estimation method,
Section 4 presents experimental results and analyses, and Section 5 concludes the paper.

3. Proposed Human Age Estimation Based on Deep ResNet

3.1. Overall Flowchart of the Proposed Method

Figure 1 shows the overall flowchart of the proposed method. In the first stage, a face and eyes are
detected from input facial images using the Adaboost detector. In the second stage, the in-plane rotation
of the face is compensated on the basis of the detected eye region [12,21,22]. Finally, in the third stage,
a pretrained ResNet-152 CNN is applied to the redefined face region to estimate the age of the person in
the input facial image.

Figure 1. Overall flowchart of proposed method. ROI, region of interest.

3.2. Data Preprocessing

Since facial images obtained by a camera usually show a mixture of the face and the background,
this study used the well-known Adaboost detector algorithm to detect a face region and eye location,
as shown in Figure 2a. The detected eye location formed the criterion for compensating the in-plane
rotation of the face, and thus a corrected facial image such as the one shown in Figure 2b.
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Figure 2. Procedure of data preprocessing of face region. (a) Before in-plane rotation compensation;
(b) After in-plane rotation compensation; (c) Face ROI redefinition.

Equation (1) shows in-plane rotation [12,21,22]:

θ = tan−1(
Ry − Ly

Rx − Lx
) (1)

where Rx and Ry are the x- and y-coordinates, respectively, of the right eye and Lx and Ly are the x-
and y-coordinates of the left eye. In this corrected face region, a face ROI with reduced background
is redefined based on the already detected distance between the locations of the eyes, as shown in
Figure 2c. This ROI is used to train and test a CNN [12,21,22].

3.3. Age Estimation by Deep ResNet

After the data preprocessing was completed, CNN-based age estimation was conducted. We modified
the number of output nodes in the final fully connected (FC) layer of the ResNet-152 CNN model [24] from
1000 to that of age classes distinguished in this study (Section 4.3), and fine-tuned by using the augmented
PAL and MORPH databases. If a ResNet-152 CNN model is to be used through fine-tuning, the size of the
input image should be 224× 224 pixels. For this reason, we resized the face ROI of Figure 2c to a 224× 224
pixel image by applying bilinear interpolation. However, because the size of face ROI such as in Figure 2c
is almost similar to (or a little larger than) 224× 224 pixels, rescaling does not introduce additional blur in
the image. Table 3 presents the ResNet-152 CNN architecture used in this study.

In Table 3, the dimension (output width or height) of the feature map, which is obtained by
applying a filter to each layer, is calculated by the following equation:

Output width (or height) = round_down(
D− F + 2P

S
+ 1) (2)

where D is the input width (or height), F is the filter width (or height), P is padding, and S is a
stride [25]. Round_down() means the function of rounding half down. For instance, in Conv1 of Table 3,
input height, filter height, padding, and stride are 224, 7, 3, and 2, respectively. Therefore, the output
height becomes 112 ((224 − 7 + 2 × 3)/2 + 1). The output feature map for standard convolution is
usually obtained based on stride one and padding as [26]:

Ok, l, n = ∑i, j, m (Ki, j, m, n × Ik + i − 1, l + j − 1, m) (3)
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In Equation (3), Ik + i − 1, l + j − 1, m is the input feature map of the size of M × RF × RF. M is the
number of input channels (input depth), and RF is the width and height of a square input feature
map. Ok, l, n is the output feature map of size N × SF × SF. N is the number of output channels
(output depth), and SF is the spatial width and height of a square output feature map. Ki, j, m, n is the
convolution kernel of size M × N × RK × RK, and RK is the spatial dimension of the convolution
kernel. Then, standard convolutions can have the following computational cost of:

C = RK × RK ×M × N × RF × RF (4)

Based on Equation (4), we can find that the computational cost is determined based on multiplying
the kernel size RK × RK, the number of input channels M, the number of output channels N,
and the input feature map size RF × RF [26].

Table 3. Our deep residual CNN structure (3* represents that 3 pixels are included as padding in,
respectively, left, right, up, and down positions of an input image of 224 × 224 × 3 pixels, whereas
1* means that 1 pixel is included as padding in the left, right, up, and down positions of the feature
map; 2/1** means 2 at the first iteration and 1 from the second iteration).

Layer Name Number
of Filters

Size of Feature Map (Height
× Width × Channels) Size of Filters Number

of Strides
Amount of

Padding
Number of
Iterations

Image input layer 224 × 224 × 3

Conv1 64 112 × 112 × 64 7 × 7 × 3 2 3* 1

Max pool 1 56 × 56 × 64 3 × 3 2 0 1

Conv2

Conv2-1 64 56 × 56 × 64 1 × 1 × 64 1 0

3
Conv2-2 64 56 × 56 × 64 3 × 3 × 64 1 1*

Conv2-3 256 56 × 56 × 256 1 × 1 × 64 1 0

Conv2-4
(Shortcut) 256 56 × 56 × 256 1 × 1 × 64 1 0

Conv3

Conv3-1 128 28 × 28 × 128 1 × 1 × 256 2/1** 0

8

Conv3-2
(Bottleneck) 128 28 × 28 × 128 3 × 3 × 128 1 1*

Conv3-3 512 28 × 28 × 512 1 × 1 × 128 1 0

Conv3-4
(Shortcut) 512 28 × 28 × 512 1 × 1 × 256 2 0

Conv4

Conv4-1 256 14 × 14 × 256 1 × 1 × 512 2/1** 0

36

Conv4-2
(Bottleneck) 256 14 × 14 × 256 3 × 3 × 256 1 1*

Conv4-3 1024 14 × 14 × 1024 1 × 1 × 256 1 0

Conv4-4
(Shortcut) 1024 14 × 14 × 1024 1 × 1 × 512 2 0

Conv5

Conv5-1 512 7 × 7 × 512 1 × 1 × 1024 2/1** 0

3

Conv5-2
(Bottleneck) 512 7 × 7 × 512 3 × 3 × 512 1 1*

Conv5-3 2048 7 × 7 × 2048 1 × 1 × 512 1 0

Conv5-4
(Shortcut) 2048 7 × 7 × 2048 1 × 1 × 1024 2 0

AVG pool 1 1 × 1 × 2048 7 × 7 1 0 1

FC layer Number of classes 1

Softmax Number of classes 1

In Table 3, Conv1–Conv5 refer to convolutional layers, and Max pool and AVG pool are the
pooling layers choosing the maximum value and the mean value, respectively. They are also called
subsampling layers. As shown in Table 3, Conv2-1 performs the convolution operation with 64 filters
of size 1 × 1 × 64, and explores in the vertical and horizontal directions while striding by a one-pixel
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unit. Conv2-2 performs the convolution operation with 64 filters of size 3 × 3 × 64, and explores in the
vertical and horizontal directions while striding by a one-pixel unit with padding of 1 pixel.

Conv3–Conv5 include a bottleneck structure. In other words, the first convolution operation uses
1 × 1 × 256 (or 512 or 1024) filters (stride 2) to reduce the dimensions of the feature map, the second
convolution operation adopts 3 × 3 × 128 (or 256 or 512) filters, and the final convolution operation
uses a larger number of 1 × 1 × 128 (or 256 or 512) filters to expand the dimension of the feature map
again. Consequently, the layers (Conv3-2, Conv4-2, and Conv5-2) performing the convolution operation
with 3× 3× 128 (or 256 or 512) filters have smaller input and output [24]. The operation becomes faster
compared to the case in which 3× 3× 128 (or 256 or 512) convolution is performed twice.

The steps of Conv2–Conv5 are repeated by the number of iterations in Table 3. In Conv2–Conv5,
features are extracted in two branches, as shown in Figure 3. One is the convolutional layers operating
sequentially from Conv2 to Conv5. The other is when the information in the feature map (residual
information) prior to Conv2-1, Conv3-1, Conv4-1, and Conv5-1 is element-wise added through the
shortcut layer to the output feature map of Conv2-3, Conv3-3, Conv4-3, and Conv5-3, as shown in
Figure 3 and Table 3. By using small filters of size 1 × 1 × 256 (or 512 or 1024) or 1 × 1 × 128 (or 256 or
512), the number of filter parameters that require training is significantly reduced. The problem of
information loss, which is the limitation of deep CNN, can be solved using the shortcut to maintain the
residual information that has not been reduced by the convolution filter. This is the most remarkable
characteristic of this ResNet [24]. There are many types of ResNets, such as ResNet-50, -101, and -152,
which are most clearly distinguished by the number of iterations shown in Table 3 [24]. In this study,
we compared the performance of AlexNet [27], ResNet-50, and ResNet-152 on the basis of various
numbers of age classes (see details in Section 4.3).

Figure 3. CNN architecture used in our research. For simplicity, we show the CNN structure assuming
that all iteration numbers in Table 3 are 1.
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We used the augmented PAL and MORPH databases, explained in Section 4, to fine-tune the
ResNet-152 CNN model. Batch normalization was conducted according to the average and standard
deviation of the data obtained after each convolution layer. A ReLU layer was also applied as an
activation function after each batch normalization, as shown in Equation (5) [28,29]:

y = max(0, x) (5)

where x and y are the input and output of a ReLU function, respectively. As shown in Equation (5),
since the output range of y can be reduced to 0 or a positive value, the ReLU function can be partially
or sparsely activated, and thus can facilitate the training of the CNN model. Besides, the mathematical
equation for training becomes simpler and can prevent the vanishing gradient problem [28,30]. The softmax
function [31,32] can be applied to the FC layer output to detect an age class that corresponds to the input
face ROI, as shown in Equation (6):

σ(s)j =
esj

∑K
n=1 esn

(6)

When the array of output neurons is set to s, the probability of the neurons belonging to the jth
class is obtained by dividing the value of the jth element by the sum of the values of all elements.

The final class categorization in the classification layer selects the element with the highest
probability among the values obtained from softmax regression [32] as the final estimated age.
In this study, we significantly increased the amount of learning data to prevent overfitting, and used
the data augmentation method [27] to improve learning speed (see details in Section 4.1).

4. Experimental Results

4.1. Experimental Data and Environment

We selected input facial images from the PAL database as shown in Figure 4 [33,34]. This database
classifies the ages of 576 persons who are between 18 and 93 years old. In ethnicity, the database
consists of 76% Caucasian, 16% African-American, and the remaining 8% as Asian, South Asian,
and Hispanic backgrounds.

Figure 4. Images from PAL database.
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For the 580 PAL database images of 576 persons, the following data augmentation was used [27,35]:
17 cases underwent vertical and horizontal image translation and cropping with the previously detected
face region (Figure 2c), and horizontal mirroring was applied to the images to get the augmented data
of 19,720 (= 580 × 17 × 2) images. Sample images by this data augmentation can be seen in [35].

There is no open database of images obtained in a blurring environment. For this reason, we created
artificially blurred images by applying five sigma values of Gaussian filtering to optical blurring,
four directions of motion blur on the basis of the point spread function of motion blurring, which was
introduced in study [36], and seven types of strength of motion blur. In other words, 81,200 (= 580 × 5
(sigma value) × 4 (motion direction) × 7 (strength of motion blur)) optical and motion blurred images
were added. Consequently, 100,920 (= 19,720 + 81,200) pieces of data were obtained. Figure 5 shows some
examples of the generated optical and motion blurred images.

Figure 5. Examples of generated optical and motion blurred images.

For the experiment, we used a desktop computer equipped with a 3.50 GHz CPU (Intel (R) Core
(TM) i7-3770K) [37] and 24 GB RAM. Windows Caffe [38] was utilized for training and testing. We used
an Nvidia graphic card with 1920 compute unified device architecture (CUDA) cores and 8 GB memory
(Nvidia GeForce GTX 1070) [39]. To extract the face ROI, we used the C/C++ program and OpenCV
library [40] with Microsoft Visual Studio 2015 [41].

4.2. Training

This study applied fourfold cross-validation [42] to 100,920 augmented pieces of data to conduct
learning in each fold. In other words, 75,690 (= 100,920 × (3/4)) pieces of data were used for learning.
The testing, which is explained in Section 4.3, used the original images that were not augmented.
The stochastic gradient descent (SGD) method [43], as shown in Equation (7), was used to train
the CNN:

ω := ω− η∇Qi(ω) (7)

where ω is the weight to be trained, η is the learning rate, and Q is the loss function. This method obtains the
optimal ω by iterating the learning until the loss function is converged. The SGD method finds an optimal
weight, which minimizes the difference between the desired and calculated outputs, as the derivative base.
Unlike the existing gradient descent (GD) method, the SGD method defines the size of the training set
divided by the mini-batch size as iteration. One epoch is the time in which training is completed as many
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times as the number of iterations. The training is conducted for the predetermined epochs. This study used
the following parameters for the SGD method: mini-batch size = 5, learning rate = 0.001, learning rate drop
factor = 0.1, learning rate drop period = 10, L2 regularization = 0.0001, momentum = 0.9. For the meaning
of each parameter, please refer to [44]. During the training, data were shuffled and the learning rate was
multiplied by the learning rate drop factor for each 10-epoch period. The weights used in the FC layer
were initialized randomly using a Gaussian distribution with mean = 0 and standard deviation = 0.001,
and the biases were initialized as default 0. Figure 6 shows graphs of the training loss value and training
accuracy value (%), which were obtained by training the ResNet-152 with the SGD method for the number
of epochs. We experimentally determined the optimal parameters for the SGD method so as to obtain the
lowest loss value and the highest accuracy of training data, shown in Figure 6. As shown in the figure,
the training made the loss and accuracy approach 0% and 100%, respectively, which indicates a good result.

Figure 7 shows an example of the trained filter images. These filters are used in Conv1 in Table 3,
and 64 filters of 7 × 7 size are displayed, as in Table 3. The figure is an enlargement of the 7 × 7 size
for visibility. That is, we trained CNN that can extract the important low-, mid-, and high-frequency
features (as shown in Figure 7) for age estimation robust to the various qualities of input image, such
as unblurred, optical blurred, or motion blurred images.

Figure 6. Cont.
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Figure 6. Loss and accuracy curves with training data of fourfold cross validation: (a) first fold;
(b) second fold; (c) third fold; (d) fourth fold cross-validation (in a–d, the horizontal axis shows the
number of epochs).

Figure 7. Example of trained filter image.
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4.3. Testing with PAL Database

We conducted testing by using the original 81,780 (= 580 + 81,200) images, which were not
augmented, as explained in Section 4.1. Here, 580 pieces were the original PAL database images
obtained from 576 persons, and 81,200 pieces were the optical and motion blurred images artificially
created from the 580 pieces according to motion blur direction (four directions) and strength (seven
degrees), as explained in Section 4.1. As also mentioned above, since the fourfold cross-validation was
applied to training and testing, testing was conducted with 20,445 (= 81,780/4) pieces for each fold.

Summarized explanations of training and testing images are as follows. From the original 580 PAL
images, 19,720 (= 580× 2× 17) images were obtained by data augmentation, which included horizontal
mirroring, and 17 cases of vertical and horizontal image translation with cropping. Then, 81,200
(= 580 × 5 (sigma value of Gaussian function) × 4 (motion direction) × 7 (strength of motion blur))
optical and motion blurred images were obtained from the original 580 PAL images. Consequently,
100,920 (= 19,720 + 81,200) images were finally obtained.

This study applied fourfold cross-validation [42]. In other words, 75,690 (= 100,920 × (3/4))
images were used for learning, and testing was conducted with 20,445 (= 81,780 (580 (original) + 81,200
(optical and motion blurred))/4) images without the augmented images for each fold.

In our experiments, images from the same person were not included in both training and testing
folds. The persons in the data of the training fold were different from those in the testing fold.
For example, in the PAL database, the total number of classes (persons) was 576, and data of 432 (576×
3/4) classes (persons) were used for training, whereas data of another 144 classes (576 × 1/4) (persons)
were used for testing. Because the number of classes was so large, it took too much time to leave
one person out of cross-validation, because the experiment would have to be performed 576 times.
Therefore, in our experiments, we performed fourfold cross-validation.

The PAL database includes various types of images, such as neutral, happy, and profile. Among
them, the number of neutral and frontal images is 580 [33,34]. In previous research [11,12,16–19,21,22],
they used these 580 images for experiments, and we used the same 580 images for comparison with
previous methods, as shown in Table 4.

This study adopted MAE for age estimation accuracy, which has been widely used in existing
studies [10–22]. The equation of MAE is as follows [45]:

MAE =
1
n

n

∑
i=1
| fi − yi| (8)

where n is the number of input images, fi is estimated age, and yi is ground-truth age. Table 4 presents
the MAEs of age estimation produced by the existing methods using the original PAL database.
As shown in the table, Belver et al.’s method showed the most accurate MAE of 3.79 years. However,
this experimental result was based on the original unblurred images in the PAL database without
optical and motion blurring. Optical and motion blurring make important facial age features, such as
wrinkles and texture, vanish from the captured images, thereby increasing error in age estimation.
For this reason, as mentioned above, we evaluated the age estimation performance for the original
PAL database images and the optical and motion blurred images.

Comparative evaluation of performance was performed by varying the number of classes,
which is the final output node of ResNet-152 in Table 3. Since the PAL database, as explained in
Section 4.1, was established based on data of people in the age range 18 to 93, the total number of
classes of age should be 76 (= 93 − 18 + 1). However, there is no image in the PAL database for two
age classes, so the total number of classes becomes 74. Accordingly, to obtain the results of ResNet-152
for every age, we conducted training and testing by designating the number of classes, which is the
final output node of ResNet-152, i.e., 74.

However, there were too many final output nodes of ResNet-152, which were reduced to decrease
the complexity of the CNN structure and training. That is, if we tried to estimate age by one-year
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intervals, the number of output nodes in ResNet-152 should be 74. Using many output nodes increases
the complexity of the CNN structure and makes its training difficult. Therefore, we reduced the
number of output nodes in ResNet-152 by the following methods.

When the data were classified by age classes divided into three-year intervals, as shown in Table 5,
the number of final output nodes of ResNet-152 decreased from 74 to 25. Similarly, when the data were
classified by age classes divided into five-year intervals, the number of final output nodes decreased
from 74 to 15. In addition, when the data were classified by age classes divided into seven-year
intervals, as shown in Table 5, the number of final output nodes decreased from 74 to 11. In each case,
the output age obtained by CNN was the middle age of each age range, as shown in Table 5.

Table 4. Accuracy of age estimation in previous research with the original PAL database without
blurred images.

Methods MAE (Years)

Choi et al. [11] GHPF and SVR 8.44
Nguyen et al. [12] MLBP, Gabor filter, and SVR 6.52

Bekhouche et al. [18] BSIF, LBP, and SVR 6.25
Luu et al. [16] CAM, NSCT, and SVR 6.0

Günay et al. [17] AAM, Gabor filter, and LBP 5.38
Belver et al. [19] DEX-CHALEARN 3.79

Table 5. Descriptions of age classes according to age intervals.

Interval Age Ranges Class Label Output Age Obtained by CNN

Three years

18–20 Class 1 19
21–23 Class 2 22
24–26 Class 3 25

. . . . . . . . .

Five years

18–22 Class 1 20
23–27 Class 2 25
28–32 Class 3 30

. . . . . . . . .

Seven years

18–24 Class 1 21
25–31 Class 2 28
32–38 Class 3 35

. . . . . . . . .

Besides using ResNet-152, we also compared the age estimation performance of the various
existing CNN models, such as AlexNet and ResNet-50. As is clear from Table 6, ResNet-152 with 25
classes (age classes divided into three-year intervals) had the lowest MAE, 6 years. That is, ResNet-152
including 152 layers showed higher accuracy than ResNet-50 including 50 layers and AlexNet including
8 layers. This result was lower than those in the existing research [21,22] by about 0.42–0.48 year,
but unlike the current study, these studies considered either optical blur [22] or motion blur [21],
not both types of blur at the same time. In addition, since the existing studies [21,22] conducted
preclassification of direction or degree of blur, a long processing time was needed, a separate training
of classifier for preclassification was necessary, and an age estimator needed to be separately trained
according to the preclassification results. This increased system complexity. On the other hand,
this research did not have a separate process of preclassification, but used a single ResNet-152 to
design an age estimator that is robust to various conditions, including unblurred or optical and motion
blurred. Among the existing studies, only [21,22] considered the blur of facial images, and thus we
compared our study with those.

Figure 8 illustrates examples of age estimation by the proposed and existing methods. As seen in
the figure, our method shows more accurate results of age estimation compared to previous methods.



Symmetry 2018, 10, 108 14 of 23

Figure 8. Comparative examples of age estimation by proposed and previous methods: (a) optical blurring;
(b) motion blurring.

Table 6. Comparison of accuracy of age estimation by previous and proposed methods with original
and blurred PAL databases.

Approach Blurring Effect The Number
of Classes MAE (Years)

Nguyen et al. [22] Preclassification of optical blur, MLBP,
Gabor filter, PCA, and SVR Optical blur 74 6.42

Nguyen et al. [21] Preclassification of motion blur, MLBP,
Gabor filter, PCA, and SVR Motion blur 74 6.48

Our method
CNN without

preclassification of
optical and motion blur

AlexNet [27]

Optical and
motion blur

74 10.65

25 8.40

15 7.98

11 6.38

ResNet-50 [24]
74 8.07

25 6.65

ResNet-152 25 6.0

4.4. Testing with MORPH Database

Our next experiment used the MORPH database, another open database. The MORPH database
(album 2) contains 55,134 facial images of 13,617 individuals, with ages ranging from 16 to 77 years [46].
From this database, we randomly selected 1574 images of individuals of different genders ranging in
age from 16 to 65 years for our new experiments. In detail, 31 or 32 images were randomly selected
from each age class, 16 to 65 (50 age classes), to guarantee a demographic distribution of the images
from the whole database.

The same methods as those described in Sections 4.2 and 4.3 were applied to conduct data
augmentation and create optical and motion blurred images, and fourfold cross-validation was used
to obtain MAE, as with the PAL database. For the 1574 MORPH database images, the following data
augmentation was used [27,35]: 17 cases underwent vertical and horizontal image translation and
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cropping with the previously detected face region (Figure 2c), and horizontal mirroring was applied
to the images to get augmented data of 53,516 (= 1574 × 17 × 2) images. Sample images by this data
augmentation can be seen in [35].

As with the PAL database, we created artificially blurred images by applying five sigma values
of Gaussian filtering to optical blurring, four directions of motion blurring on the basis of the point
spread function, which was introduced in [36], and seven types of strength of motion blur. In other
words, 220,360 (= 1574 × 5 (sigma value) × 4 (motion direction) × 7 (strength of motion blur)) optical
and motion blurred images were added. Consequently, 273,876 (= 53,516 + 220,360) pieces of data
were obtained.

This study applied fourfold cross-validation [42] to 273,876 augmented pieces of data to conduct
learning in each fold. In other words, 205,407 (= 273,876 × (3/4)) images were used for training.
The testing used the original 221,934 (= 1574 + 220,360) images that were not augmented.

As shown in Table 7, Han et al. produced an age estimation MAE of 3.6 years, which was the
most accurate result. However, this result is attributed to the experiment that dealt with the original
unblurred MORPH database images, including no optical and motion blurred images. As mentioned
above, this study evaluated age estimation performance by dealing with both the original MORPH
database and optical and motion blurred images. Table 8 presents the results, comparing the proposed
method and previous methods.

Table 7. Accuracy of age estimation by previous studies with the original MORPH database without
blurred images.

Methods MAE (Years)

Geng et al. [14] AGES with LDA 8.07
Belver et al. [19] DEX-CHALEARN 3.67
Han et al. [20] DIF 3.6

As with testing with the PAL database, as described in Section 4.3, comparative evaluation of
performance was performed by varying the number of classes, which is the final output node of
ResNet-152 in Table 8. Since the MORPH database used in our experiments included data of people
in the age range 16 to 65, the total number of age classes should be 50 (= 65 − 16 + 1). Besides using
ResNet-152, we also compared the age estimation performance of various existing CNN models,
such as AlexNet and ResNet-50.

Table 8. Comparison of accuracy of age estimation by previous and proposed methods with original
and blurred MORPH database images.

Approach Blurring Effect The Number
of Classes MAE (Years)

Nguyen et al. [22] Preclassification of optical blur, MLBP,
Gabor filter, PCA, and SVR Optical blur 50 6.607

Nguyen et al. [21] Preclassification of motion blur, MLBP,
Gabor filter, PCA, and SVR Motion blur 50 6.05

Our method
CNN without

preclassification of
optical and motion blur

AlexNet [27]

Optical and
motion blur

50 10.72

17 9.11

ResNet-50 [24]
50 6.89

17 6.23

ResNet-152 17 5.78

As is clear from Table 8, ResNet-152 with 17 classes (age classes divided into three-year intervals)
had the lowest MAE, 5.78 years. That is, ResNet-152 including 152 layers shows higher accuracy than
ResNet-50 including 50 layers and AlexNet including 8 layers. This result was lower than the results
of the existing studies [21,22] by about 0.27–0.83 years.
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The MAE with the MORPH database by our method was a little lower than that with the PAL
database, as shown in Tables 6 and 8. That is because the amount of training data in the MORPH
database was larger than that of the PAL database.

Figure 9 shows some age estimation results by the proposed method and the previous ones.
As shown in this figure, our method shows more accurate results of age estimation compared to
previous methods.

Figure 9. Comparative examples of age estimation by the proposed and previous methods: (a) optical
blurring; (b) motion blurring.

4.5. Comparing Accuracy by Another Age Estimation Method and Deblurring Method

As the next experiment, we compared the accuracy of our method with that of another age
estimation system, OpenBR [47]. For this purpose, we used all the original and blurred images of the
PAL database, and the average MAE using the OpenBR age estimation method was about 16.72 years.
Compared to our method, which produced an MAE of 6 years (Table 6), we can conclude that our
method outperforms the OpenBR age estimation method. In Figure 10, we show some estimation
results using our method and the OpenBR age estimation method. As shown in the figure, estimated
ages by our method are closer to ground-truth ages than those by the OpenBR method irrespective of
degree of blurring.

Figure 10. Cont.
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Figure 10. Comparison of estimation results using the OpenBR age estimation method and our method.
The images are of people ages (a) 64; (b) 27; (c) 20; and (d) 33 with different degrees of optical and
motion blurring.

As the last experiment, we compared the performance of age estimation after the deblurring filter
(Wiener filter) [48] with that of our CNN-based method on the original and blurred PAL database
images as shown in Figure 11. Experimental results show that that the accuracy of age estimation by
our method (MAE of 6 years, Table 6) is higher than that by age estimation after the deblurring filter
(MAE of 8.12 years).

Figure 11. Examples of age estimation results by our method and the deblurring filter method: left
images show results of our method and right images show results of the deblurring filter method.
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4.6. Comparing Accuracy According to Changes in Image Resolution

We compared the accuracy of age estimation according to reduced image size (smaller pixel
sizes), as shown in Figure 12 and Table 9. Because ResNet-152 shows the highest accuracy, as shown
in Tables 6 and 8, this CNN was used for the experiments. As shown in Table 9, the MAE of age
estimation with original images is 4.55, and it increased with reduced image resolution (MAE of 8.21
in a subsampled image of 1/512). In a subsampled image of 1/8, the MAE increase was not large,
but in subsampled images of 1/64 and 1/512 the increase was much larger. That is because all the
important information, such as wrinkles, disappears in the subsampled images.

Figure 12. Examples of original and low-resolution images from the PAL database: (a,e) original
images; (b,f) subsampled images of 1/8 compared to original images; (c,g) subsampled images of 1/64
compared to original images; (d,h) subsampled images of 1/512 compared to original images.

Table 9. Comparison of accuracy of age estimation according to change in image resolution.

Image Resolution MAE (Years)

Original images 4.55
Subsampled images of 1/8 4.93

Subsampled images of 1/64 7.02
Subsampled images of 1/512 8.21

4.7. Comparing Accuracy with Self-Collected Database

The real application of age estimation from blurry images is for people on the move in surveillance
environments. In this field, even modern cameras that include the functionality of auto-focusing cannot
provide sharp images due to people being in motion, as shown in Figure 13d.

In this environment, face recognition can be considered. However, face recognition requires
enrollment of the user’s face, and it performs matching with features from enrolled and input face
images. However, in many applications, the user does not want to enroll his or her face due to anxiety
over private face information being divulged. In addition, in applications such as analysis of the ages
of visitors at shopping centers for marketing, it is difficult to enroll the faces of all visitors in advance.
However, our research on age estimation does not require enrollment, and the user’s age is estimated
directly from the input image without any matching. Therefore, our method can be used in various
fields without causing resistance by users to enrolling their face information.

Most of the images from the PAL and MORPH databases used in our experiments show frontal
faces. Because these open databases have been widely used for evaluating the accuracy of age
estimation [11,12,14,16–22], we used them for comparisons with previous methods. There is no open
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database (providing ground-truth age information) in which faces are captured at different angles and
distances, some part of the face is obscured, and real blurred images are included. Therefore, in order
to conduct experiments, we gathered a self-collected database of images of 20 participants including
the factors of different angles and distances, obstruction, and real blurring, which were obtained by
an auto-focusing camera set 2.4 m from the ground in an indoor surveillance environment. Figure 13
shows examples of images in this database. For fair comparison, we have made our database available
to other researchers. As shown in Figure 13d, real blurred images were captured due to people moving,
in spite of the auto-focusing functionality of the camera.

Figure 13. Examples of images from self-collected database: (a,b) images from different distances;
(b) images from different angles; (c) images including obstruction; (d) real blurred images.

As shown in Table 10, the MAE of age estimation for different distances was as large as 8.03.
That is because important features, such as wrinkles, disappear in low-resolution images captured
at a far distance. Real blurred images and images from different angles did not have much effect on
the accuracy of age estimation. However, in case of obstruction, MAE was a little increased. That is
because the important features for age estimation around the nose and mouth could not be used
for estimation.

Table 10. Comparison of accuracy of age estimation with self-collected database.

Cases MAE (Years)

Real blurred images 4.56
Images from different angles 4.62
Images including obstruction 5.45

Images from different distances 8.03

4.8. Comparing Accuracy According to Kind of Database

We tested the PAL-learned CNN using the MORPH database and vice versa to prove the quality
of the received age estimators. Because ResNet-152 showed the best accuracy, as shown in Tables 6
and 7, this CNN was used for the experiments. As shown in Table 11, the increase of MAE when using
different databases for training and testing was not large compared to when the same databases for
training and testing were used. That is because image blurring makes the image characteristics of the
PAL and MORPH databases become similar.
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Table 11. Comparison of accuracy of age estimation when using the same databases for training and
testing vs. using different databases for training and testing.

Methods
MAE (Years)

Training Testing

PAL database PAL database 6.0
MORPH database MORPH database 5.78

PAL database MORPH database 6.08
MORPH database PAL database 5.84

5. Conclusions

In this study, we aimed to solve the problem of degraded accuracy in capturing important facial age
features, such as wrinkles, and proposed the use of a deep ResNet-152 CNN age estimation method that
was robust to various optical and motion blurring effects. Unlike the existing methods, no preclassification
of blurring degree and direction of input images was needed, and the age estimation classifier did not
need to be trained according to the preclassification results. Only a single deep ResNet-152 CNN was used
for age estimation, so that errors due to preclassification could be reduced and system complexity could be
improved. In addition, key learning from our exercise is that one deep ResNet-152 can be used for accurate
age estimation and is robust to various image qualities of unblurred, optical blurring, and motion blurring
without the conventional algorithm of image restoration.

The experiments using fourfold cross-validation showed that when the PAL database and blurred
dataset based on it were used, MAE was 6.0 years, and when the MORPH database and blurred dataset
based on it were used, the MAE was 5.78 years, which indicated an improvement in the accuracy of
age estimation. In addition, we opened the ResNet-152 CNN model in [23], which was acquired by
training, so that other researchers could easily compare performance.

Recently, various deep learning–based super-resolution reconstruction methods have been
studied [49–52]. In these methods, high-resolution images could be obtained from the input
low-resolution images based on the power of generating missing pixel information in low-resolution
images by deep CNN, which was trained with intensive data pairs of input low-resolution and
output high-resolution images. In typical image processing–based super-resolution, sophisticated
interpolation methods, such as bilinear, cubic spline, and Lanczos, have been used for generating
missing pixel information in low-resolution images. Then, blur reconstruction based on accurate
estimation of point spread function (PSF) was adopted to obtain the final high-resolution images.
However, accurate estimation of PSF and the optimal filters for interpolation are very difficult
to determine manually. Therefore, through deep CNN intensively trained with lots of pairs of
input low-resolution and output high-resolution images, optimal PSF, filters, and parameters can
be obtained automatically irrespective of the kinds of low-resolution images. Because our CNN
model for age estimation has a limitation in the case of low-resolution images, as shown in Table 10,
the method of combining CNN-based super-resolution reconstruction and age estimation can be
researched in future work. As the first approach, we can consider the scheme that the first CNN
for super-resolution reconstruction and the second CNN for age estimation are trained separately.
In addition, as the second approach, the scheme combining these two CNNs for training (not trained
separately) can be attempted.

In addition, in future research, we would apply our algorithm and CNN model to various
conditions, such as faces in outdoor environments and low lighting. We also want to apply our
algorithm and CNN model to age image synthesis.

Acknowledgments: This research was supported by the Bio & Medical Technology Development Program of
the NRF funded by the Korean government, MSIT (NRF-2016M3A9E1915855), by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2017R1D1A1B03028417), and by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (Ministry of Science and ICT) (NRF-2017R1C1B5074062).



Symmetry 2018, 10, 108 21 of 23

Author Contributions: Jeon Seong Kang and Kang Ryoung Park designed the CNN-based age estimation system
and wrote the paper. Chan Sik Kim, Young Won Lee, and Se Woon Cho helped to implement the algorithm of
facial feature detection and the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Riaz, Q.; Vögele, A.; Krüger, B.; Weber, A. One small step for a man: Estimation of gender, age and height
from recordings of one step by a single inertial sensor. Sensors 2015, 15, 31999–32019. [CrossRef] [PubMed]

2. Zhao, W.; Wang, H. Strategic decision-making learning from label distributions: An approach for facial age
estimation. Sensors 2016, 16, 994. [CrossRef] [PubMed]

3. Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; Hua, G. Ordinal regression with multiple output CNN for age
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 4920–4928.

4. Kang, B.J.; Park, K.R. Restoration of motion-blurred iris image on mobile iris recognition devices. Opt. Eng.
2008, 47, 117202-1–117202-8.

5. Kang, B.J.; Park, K.R. A study on restoration of iris images with motion-and-optical blur on mobile iris
recognition devices. Int. J. Imaging Syst. Technol. 2009, 19, 323–331. [CrossRef]

6. Fu, Y.; Guo, G.; Huang, T.S. Age synthesis and estimation via faces: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2010, 32, 1955–1976. [PubMed]

7. Escalera, S.; Torres, M.T.; Martínez, B.; Baro, X.; Escalante, H.J.; Guyon, I.; Tzimiropoulos, G.; Corneanu, C.;
Oliu, M.; Bagheri, M.A.; et al. ChaLearn looking at people and faces of the world: Face analysis workshop
and challenge 2016. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 706–713.

8. Levi, G.; Hassner, T. Age and gender classification using convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015;
pp. 34–42.

9. Rothe, R.; Timofte, R.; Gool, L.V. Dex: Deep EXpectation of apparent age from a single image. In Proceedings
of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015;
pp. 252–257.

10. Lanitis, A.; Draganova, C.; Christodoulou, C. Comparing different classifiers for automatic age estimation.
IEEE Trans. Syst. Man Cybern. 2004, 34, 621–628. [CrossRef]

11. Choi, S.E.; Lee, Y.J.; Lee, S.J.; Park, K.R.; Kim, J. A comparative study of local feature extraction for age
estimation. In Proceedings of the 11th IEEE International Conference on Control Automation Robotics and
Vision, Singapore, 7–10 December 2010; pp. 1280–1284.

12. Nguyen, D.T.; Cho, S.R.; Shin, K.Y.; Bang, J.W.; Park, K.R. Comparative study of human age estimation
with or without preclassification of gender and facial expression. Sci. World J. 2014, 2014, 1–15. [CrossRef]
[PubMed]

13. Li, C.; Liu, Q.; Liu, J.; Lu, H. Learning ordinal discriminative features for age estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012;
pp. 2570–2577.

14. Geng, X.; Zhou, Z.-H.; Smith-Miles, K. Automatic age estimation based on facial aging patterns. IEEE Trans.
Pattern Anal. Mach. Intell. 2007, 29, 2234–2240. [CrossRef] [PubMed]

15. Guo, G.; Mu, G.; Fu, Y.; Huang, T.S. Human age estimation using bio-inspired features. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009;
pp. 112–119.

16. Luu, K.; Seshadri, K.; Savvides, M.; Bui, T.D.; Suen, C.Y. Contourlet appearance model for facial age
estimation. In Proceedings of the IEEE International Joint Conference on Biometrics, Washington, DC, USA,
11–13 October 2011; pp. 1–8.

17. Günay, A.; Nabiyev, V.V. Age Estimation Based on Hybrid Features of Facial Images. In Information Sciences
and Systems; Springer International Publishing: Cham, Switzerland, 2015; pp. 295–304.

http://dx.doi.org/10.3390/s151229907
http://www.ncbi.nlm.nih.gov/pubmed/26703601
http://dx.doi.org/10.3390/s16070994
http://www.ncbi.nlm.nih.gov/pubmed/27367691
http://dx.doi.org/10.1002/ima.20209
http://www.ncbi.nlm.nih.gov/pubmed/20847387
http://dx.doi.org/10.1109/TSMCB.2003.817091
http://dx.doi.org/10.1155/2014/905269
http://www.ncbi.nlm.nih.gov/pubmed/25295308
http://dx.doi.org/10.1109/TPAMI.2007.70733
http://www.ncbi.nlm.nih.gov/pubmed/17934231


Symmetry 2018, 10, 108 22 of 23

18. Bekhouche, S.E.; Ouafi, A.; Taleb-Ahmed, A.; Hadid, A.; Benlamoudi, A. Facial age estimation using BSIF
and LBP. In Proceedings of the 1st International Conference on Electrical Engineering, Biskra, Algeria,
7–8 December 2014; pp. 1–5.

19. Belver, C.; Arganda-Carreras, I.; Dornaika, F. Comparative Study of Human Age Estimation Based on
Hand-Crafted and Deep Face Features; Video Analytics, Face and Facial Expression Recognition and
Audience Measurement. Lect. Notes Comput. Sci. 2016, 10165, 98–112.

20. Han, H.; Otto, C.; Liu, X.; Jain, A.K. Demographic estimation from face images: Human vs. machine
performance. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1148–1161. [CrossRef] [PubMed]

21. Nguyen, D.T.; Cho, S.R.; Pham, T.D.; Park, K.R. Human age estimation method robust to camera sensor
and/or face movement. Sensors 2015, 15, 21898–21930. [CrossRef] [PubMed]

22. Nguyen, D.T.; Cho, S.R.; Park, K.R. Age estimation-based soft biometrics considering optical blurring based
on symmetrical sub-blocks for MLBP. Symmetry 2015, 7, 1882–1913. [CrossRef]

23. Dongguk Age Estimation CNN Model (DAE-CNN). Available online: http://dm.dgu.edu/link.html
(accessed on 17 May 2017).

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. CS231n Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/
convolutional-networks/#overview (accessed on 19 September 2017).

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.
04861v1.

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: New York, NY, USA, 2012;
pp. 1097–1105.

28. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

29. Rectifier (Neural Networks). Available online: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
(accessed on 3 July 2017).

30. Multilayer Perceptron. Available online: http://deeplearning.net/tutorial/mlp.html (accessed on
19 September 2017).

31. Heaton, J. Artificial Intelligence for Humans; Deep Learning and Neural Networks; Heaton Research, Inc.:
St. Louis, MO, USA, 2015; Volume 3.

32. Softmax Function. Available online: https://en.wikipedia.org/wiki/Softmax_function (accessed on
17 May 2017).

33. Minear, M.; Park, D.C. A lifespan database of adult facial stimuli. Behav. Res. Methods Instrum. Comput. 2004,
36, 630–633. [CrossRef] [PubMed]

34. PAL Database. Available online: http://agingmind.utdallas.edu/download-stimuli/face-database/ (accessed
on 17 May 2017).

35. Kim, K.W.; Hong, H.G.; Nam, G.P.; Park, K.R. A study of deep CNN-based classification of open and closed
eyes using a visible light camera sensor. Sensors 2017, 17, 1534. [CrossRef] [PubMed]

36. Tiwari, S.; Shukla, V.P.; Singh, A.K.; Biradar, S.R. Review of motion blur estimation techniques. J. Image Graph.
2013, 1, 176–184. [CrossRef]

37. Intel®Core™ i7-3770K Processor. Available online: http://ark.intel.com/products/65523/Intel-Core-i7-
3770K-Processor-8M-Cache-up-to-3_90-GHz (accessed on 24 July 2017).

38. Caffe. Available online: http://caffe.berkeleyvision.org/ (accessed on 24 July 2017).
39. NVIDIA GeForce GTX 1070. Available online: https://www.nvidia.com/en-us/geforce/products/10series/

geforce-gtx-1070/ (accessed on 24 August 2017).
40. OpenCV Library. Available online: http://opencv.org/ (accessed on 24 July 2017).
41. Microsoft Visual Studio. Available online: https://www.visualstudio.com/ (accessed on 24 July 2017).
42. Cross-Validation (Statistics). Available online: https://en.wikipedia.org/wiki/Cross-validation_(statistics)

(accessed on 3 July 2017).

http://dx.doi.org/10.1109/TPAMI.2014.2362759
http://www.ncbi.nlm.nih.gov/pubmed/26357339
http://dx.doi.org/10.3390/s150921898
http://www.ncbi.nlm.nih.gov/pubmed/26334282
http://dx.doi.org/10.3390/sym7041882
http://dm.dgu.edu/link.html
http://cs231n.github.io/convolutional-networks/#overview
http://cs231n.github.io/convolutional-networks/#overview
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
http://deeplearning.net/tutorial/mlp.html
https://en.wikipedia.org/wiki/Softmax_function
http://dx.doi.org/10.3758/BF03206543
http://www.ncbi.nlm.nih.gov/pubmed/15641408
http://agingmind.utdallas.edu/download-stimuli/face-database/
http://dx.doi.org/10.3390/s17071534
http://www.ncbi.nlm.nih.gov/pubmed/28665361
http://dx.doi.org/10.12720/joig.1.4.176-184
http://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
http://caffe.berkeleyvision.org/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070/
http://opencv.org/
https://www.visualstudio.com/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)


Symmetry 2018, 10, 108 23 of 23

43. Stochastic Gradient Descent. Available online: https://en.wikipedia.org/wiki/Stochastic_gradient_descent
(accessed on 3 July 2017).

44. TrainingOptions. Available online: http://kr.mathworks.com/help/nnet/ref/trainingoptions.html (accessed on
17 May 2017).

45. Mean Absolute Error. Available online: https://en.wikipedia.org/wiki/Mean_absolute_error (accessed on
3 July 2017).

46. MORPH Database. Available online: https://ebill.uncw.edu/C20231_ustores/web/store_main.jsp?STOREID=4
(accessed on 17 May 2017).

47. OpenBR. Available online: http://openbiometrics.org/ (accessed on 14 December 2017).
48. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Education Inc.: Upper Saddle River,

NJ, USA, 2010.
49. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 1646–1654.

50. Dahl, R.; Norouzi, M.; Shlens, J. Pixel recursive super resolution. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5449–5458.

51. Yamanaka, J.; Kuwashima, S.; Kurita, T. Fast and accurate image super resolution by deep CNN with skip
connection and network in network. In Proceedings of the International Conference on Neural Information
Processing, Guangzhou, China, 14–18 November 2017; pp. 1–9.

52. Precision and Recall. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on
3 July 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://kr.mathworks.com/help/nnet/ref/trainingoptions.html
https://en.wikipedia.org/wiki/Mean_absolute_error
https://ebill.uncw.edu/C20231_ustores/web/store_main.jsp?STOREID=4
http://openbiometrics.org/
https://en.wikipedia.org/wiki/Precision_and_recall
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Proposed Human Age Estimation Based on Deep ResNet 
	Overall Flowchart of the Proposed Method 
	Data Preprocessing 
	Age Estimation by Deep ResNet 

	Experimental Results 
	Experimental Data and Environment 
	Training 
	Testing with PAL Database 
	Testing with MORPH Database 
	Comparing Accuracy by Another Age Estimation Method and Deblurring Method 
	Comparing Accuracy According to Changes in Image Resolution 
	Comparing Accuracy with Self-Collected Database 
	Comparing Accuracy According to Kind of Database 

	Conclusions 
	References

