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Abstract: The code reviewer assignment problem affects the reviewing time of a source code
change. To effectively perform the code review process of a software project, the code reviewer
assignment problem must be dealt with. Reviewer recommendation can reduce the time required
for finding appropriate reviewers for a given source code change. In this paper, we propose
a reviewer recommendation approach based on latent Dirichlet allocation (LDA). The proposed
reviewer recommendation approach consists of a review expertise generation phase and a reviewer
recommendation phase. The review expertise generation phase generates the review expertise of
developers for topics of source code changes from the review history of a software project. The reviewer
recommendation phase computes the review scores of the developers according to the topic
distribution of a given source code change and the review expertise of the developers. In an empirical
evaluation of five open source projects, we confirm that the proposed reviewer recommendation
approach obtains better average top-10 accuracy than existing reviewer recommendation approaches.

Keywords: software engineering; machine learning; reviewer recommendation

1. Introduction

Software project developers often perform code reviews to reduce maintenance costs and ensure
sustainability of a software project [1,2]. Code review is a manual inspection of the source code that is
performed by developers. Inefficient logic and latent bugs in the source code significantly increase the
maintenance costs of a software project. Although code reviews are time consuming, it is beneficial to
detect the defects in the source code at an early software development stage [1,3–9].

Recently, a modern code review process has been adopted to more efficiently perform code
reviews in both open source projects and industry software projects [10]. The modern code review
process is a tool-based, lightweight code review mechanism [11]. When a source code change is
submitted, the code review process for the submitted source code change begins. The author of the
submitted source code change and the project manager request reviews from developers who are
suitable to review the source code change. The developers who accept the review request perform the
review of the source code change and provide valuable feedback to the author. The author improves
the source code change by referring to the feedback provided by the reviewers.

The reviewer assignment is a major challenge in performing the code review process rapidly and
successfully [2,5–7,10,12,13]. Thongtanunam et al. investigated the impact of the reviewer assignment
problem by conducting an exploratory study in open source projects. They found that reviews with the
code reviewer assignment problem took much more time to complete the review process. In particular,
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as open source project development is usually developed by the voluntary participation of many
developers, it is difficult to rapidly find appropriate reviewers who have the approximate expertise
for a given source code change. Hence, the author of a source code change and the project manager
devote much effort to finding appropriate reviewers.

A code reviewer recommendation tool can be helpful in reducing the reviewer assignment time.
In previous research in the software engineering field, reviewer recommendation approaches have
been considered for resolving the reviewer assignment problem. Thongtanunam et al. proposed a file
location-based reviewer recommendation approach called REVFINDER. REVFINDER recommends
reviewers based on the similarity of file paths. Developers who often reviewed the files located in
paths similar to the path of the changed files in a given review request are more likely recommended
as suitable reviewers. Zanjani et al. proposed a reviewer recommendation approach, cHRev,
which considers the review count of developers to source files as a basic factor for computing review
expertise. cHRev recommends as suitable reviewers the developers who reviewed the changed files
in the recent past. Both REVFINDER and cHRev consider only file-level features, such as the name
and location of files, as a factor for computing the review expertise of developers. The approaches
do not consider the information of source code changes that are actually reviewed by developers to
determine the review expertise of developers.

In this paper, we present a way to compute the review expertise of developers at the source code
change level. More specifically, we compute the review expertise of developers based on the source
code changes reviewed by the developer. The intuition of this idea assumes that developers typically
tend to review the source code changes that are associated with their expertise or that interest them.
Therefore, to more widely understand review expertise, it is necessary to derive the review expertise
of developers from source code changes that are frequently reviewed by the developer. Similar to
a typical text document, a source code change submitted to a software project consists of textual
content that belongs to one or more specific topics that are related to some functionality of a software
project [14]. Latent Dirichlet allocation (LDA) is a generative statistical model [15]. Previous studies on
text analysis [16–18] used LDA to extract topic distribution from textual data.

Based on LDA, we propose a novel reviewer recommendation approach. The proposed reviewer
recommendation approach consists of a review expertise generation phase and a reviewer recommendation
phase. The review expertise generation phase extracts the K topics of source code changes reviewed by
developers using LDA and computes the review expertise of the developers for K topics. The reviewer
recommendation phase computes the review scores of the developers with their review expertise for K
topics and recommends the top N reviewers according to the computed review scores. In an empirical
study of five open source projects, we compared the proposed reviewer recommendation approach
with REVFINDER and cHRev. For the top-10 recommendations by the reviewer recommendation
approaches, the proposed reviewer recommendation approach obtained better recommendation results
than REVFINDER and cHRev. The proposed reviewer recommendation approach, REVFINDER,
and cHRev achieved 64%, 60%, and 54% of the average top-10 accuracy, respectively.

The remainder of this paper is organized as follows. First, we introduce the basic background of
the code review process and LDA in Section 2. In Section 3, we present a motivation example of this
study. We propose the process of our reviewer recommendation approach in Section 4. In Section 5,
we report the results of the empirical evaluation performed for evaluating the effectiveness of the
proposed reviewer recommendation approach. In Section 6, we introduce related work. Finally,
we conclude this study with future research directions in Section 7.

2. Background

2.1. Code Review Process

Recent software projects actively employ the code review process [19]. The code review process
begins with the reviewer assignment. When a new review request for a source code change is submitted
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to a software project, a reviewer assigner ought to select appropriate reviewers to review the submitted
source code change. The selected reviewers read the source code change and then send the review
outcomes to the author in order to improve the quality of the source code change. The author modifies
the source code change again according to the received review outcomes and then requests further
code reviews for the newly modified source code change. Such a code review process is repeated until
the quality of the submitted source code change is satisfactory.

The role of the reviewer assigner is important in order to efficiently perform the code review
process [7]. If a reviewer assigner assigns an unsuitable reviewer who does not deeply understand the
given source code change, the author of the source code change may obtain poor review outcomes.
The poor review outcomes cause unintended modifications and make the review process repetitious.
This may hinder the improvement of the source code change and delay the code review process.
Therefore, a reviewer assigner must closely understand the review expertise of the developers to avoid
failure of the reviewer assignment.

2.2. Topic Modeling

Topic modeling is a statistical model based on an unsupervised machine-learning algorithm [20].
Various topic modeling algorithms, including latent semantic indexing (LSI) [21], probabilistic LSI
(pLSI) [22], and LDA [15], were proposed to extract topics from text documents. LDA is a generative
statistical model and the most recently proposed topic modeling algorithm among them.

LDA assumes that a text document contains a mixture of several topics; various words in a text
document are related to their topic. For example, words such as “computer”, “network”, and “software”
typically appear in text documents related to computer science. LDA extracts topics based on the
co-appearances of words in a collection of text documents. In LDA, a topic is defined as a set of words
that are semantically related to each other. Each word in a text document is assigned to one of several
topics. Each text document has a word-topic vector, which indicates the topic assignments of its words.
The topic distribution of each text document is computed according to its word-topic vector.

Previous studies on software engineering often used LDA for analysis of unstructured data similar
to a text document. Xie et al. [17] used LDA to extract topics from bug reports. Chen et al. [18] used
LDA to extract topics from source files. In this paper, we used LDA to extract topics from source
code changes.

3. Motivation

In this study, we assumed that developers will typically review source code changes with topics
in which they are interested. To confirm the validity of this assumption, we empirically analyzed the
review history of an open source project developed on GitHub (https://github.com). GitHub is a
web-based software development hosting service that provides a pull-based development environment.
In GitHub, a developer submits a pull request to commit his/her own source code changes to a software
project. A pull request contains source code changes and its detailed description. A submitted pull
request is committed to the source code repository of a software project after it is reviewed and
approved by several participants in the project. A large number of open source projects are developed
on GitHub. Thus, we were able to easily obtain the review history of source code changes for an open
source project on GitHub.

We performed an empirical analysis of the review history of the bitcoin project (https://github.
com/bitcoin). The bitcoin project is an open source project that maintains and releases a bitcoin
client software. Many developers have participated in the bitcoin project. First, we collected the
review history of the source code changes of the bitcoin project from the GHTorrent project [23].
The GHTorrent project provides various development history data of the open source projects collected
from GitHub for research purposes. Second, we extracted topic distributions of the collected source
code changes using an LDA implementation of MALLET (http://mallet.cs.umass.edu/). LDA has
three parameters: K, alpha, and beta. K is the number of topics to be extracted, alpha is the mixture
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of topics per document, and beta is the mixture of words per topic. The parameter K is sensitive
in analyzing the topics of a software project because a value of K that is too large or too small will
hinder exact topic generation [24]. Hence, according to [24], we set the value of K to 20. The values of
alpha and beta were set to 5.0 and 0.01, respectively. The details of the process of topic extraction are
described in the following section. Finally, after extracting the topics of all of the collected source code
changes, we manually investigated whether developers often reviewed source code changes that had
similar topic distributions.

Table 1 shows three reviewed commits found in the bitcoin project. “Review #” corresponds to
a review identification number for a commit we arbitrarily assigned. “Commit sha” is a hash value
of a commit with a length of 40. “Commit date” refers to the date on which the source code changes
were committed. “Changed files” refer to the changed (reviewed) files in a commit. “Reviewer”
corresponds to the developers who reviewed the changed files. Table 2 shows the topic distributions of
the source code changes for 20 topics. Although the changed files are different, the topic distributions
of their source code changes are quite similar to each other. The source code changes all have the
same dominant topic. Topic 16 that is marked with bold in Table 1 constitutes over 97% of the topic
distribution of the source code changes for all the three files.

Table 1. Details of reviewed commits in the bitcoin project.

Review # 1 2 3

Commit sha 08836972c093eb137e1c11eb
9596e7d12d600332

04da9306c62c062536a30
9e99178c9b742a01560

16d35eb228232ed53f87
cee233d0c8c3a9ca39eb

Commit date 2016-03-29 2016-04-13 2016-05-13

Changed files src/rpcmisc.cpp src/addressindex.h
src/txdb.cpp

src/main.cpp
src/main.h

Reviewers UdjinM6
schinzelh

UdjinM6
schinzelh

UdjinM6
schinzelh

Table 2. The topic distributions of the reviewed source code changes in Table 1 for 20 topics.

Review # 1 2 3

Topic-0 0.000 0.000 0.000
Topic-1 0.002 0.001 0.000
Topic-2 0.001 0.001 0.000
Topic-3 0.001 0.001 0.000
Topic-4 0.002 0.001 0.000
Topic-5 0.002 0.001 0.000
Topic-6 0.001 0.001 0.000
Topic-7 0.002 0.001 0.000
Topic-8 0.001 0.001 0.000
Topic-9 0.001 0.000 0.000

Topic-10 0.003 0.001 0.000
Topic-11 0.003 0.001 0.000
Topic-12 0.002 0.001 0.000
Topic-13 0.001 0.000 0.000
Topic-14 0.002 0.001 0.000
Topic-15 0.002 0.001 0.000
Topic-16 0.970 0.987 0.999
Topic-17 0.001 0.001 0.000
Topic-18 0.001 0.000 0.000
Topic-19 0.001 0.001 0.000
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4. LDA-Based Reviewer Recommendation Approach

4.1. Overall Process

Figure 1 shows the overall process of the reviewer recommendation approach that we propose in
this paper. The proposed approach consists of two phases: the review expertise generation phase and
the reviewer recommendation phase. In the review expertise generation phase, the review expertise
of the developers is determined from the review history of source code changes. In the reviewer
recommendation phase, reviewer candidates are recommended according to their review scores
computed based on the result of the review expertise generation phase.

Figure 1. Overall process of our reviewer recommendation approach.

The review expertise generation phase is performed according to the following sub-steps. First,
source code changes and a list of developers who reviewed the source code changes are extracted from
the past review history of a software project. Second, the source code changes are preprocessed using
several natural language processing techniques. After the preprocessing, the preprocessed source code
changes are passed to LDA as input. LDA extracts the topic distributions of the given source code
changes and generates a topic model. Lastly, the review expertise of the developers is computed.

The reviewer recommendation phase is performed according to the following sub-steps.
When a new source code change is submitted, the submitted source code change is preprocessed.
The topic distribution of the preprocessed new source code change is then inferred using the topic
model generated at the review expertise generation phase. The review scores of the reviewer
candidates are computed with the inferred topic distribution of the new source code change and
the review expertise of the reviewer candidates. According to the computed review scores, the top-k
reviewers are recommended. We describe in detail the processes of the proposed approach in the
following subsections.
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4.2. Review Expertise Generation Phase

The review expertise generation phase consists of three steps: preprocessing source code changes,
extracting topics from source code changes, and computing the review expertise of developers.
The following subsections describe each step in detail.

4.2.1. Preprocessing of Source Code Changes

A source code change is human-readable text data that are treated in a way similar to a text
document. Figure 2 shows a source code change related to “http header cookie encoding”. In general,
frequently appeared words are less important in a text document. For example, words that are
prepositions, articles, or conjunctions in English frequently appear in several texts and do not have
a specific meaning. Hence, such words are typically treated as stop words in modeling an LDA
model [25]. As the stop words, keywords, and operators frequently appear in several source code
changes and are not related to any specific functionality of a software, they may affect the results
of topic extraction by LDA. Therefore, a source code change needs to be preprocessed before being
passed to LDA.

Figure 2. Source code change related to http header cookie encoding.

In this paper, we propose preprocessing a source code change through tokenization, camel case
splitting, lowercase transformation, stemming, and stop word removal, in that order. Tokenization
splits a sequence of words into word tokens with delimiters, which are typically white spaces.
Camel case splitting splits a word that consists of two or more words, such as “nameToIndex” and
“hasDupdName”, into each separate word. Lowercase transformation converts uppercase characters
in a word to lowercase characters. Stemming reduces a word to its base form. For example, “work”,
“working”, and “worked” are all converted to “work” with stemming. Stop word removal removes
specified stop words, keywords, and operators.

We implemented a source code change analyzer to perform the text processing using Apache Lucene
6.3.0 (https://lucene.apache.org/core/). The source code change analyzer uses WhitespaceTokenizer,
WordDelimiterFilter, LowerCaseFilter, PorterStemFilter, and StopFilter. WhitespaceTokenizer splits a
sequence of words into word tokens with whitespace delimiters. WordDelimiterFilter splits a word

https://lucene.apache.org/core/
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token that consists of more than two words into its separate word tokens. LowerCaseFilter replaces
uppercase characters in a word token with lowercase characters. PorterStemFilter reduces a word
token into its base form. StopFilter removes English stop words and keywords of a programming
language. We used the WordDelimiterFilter with WordDelimiterFilter.GENERATE_WORD_PARTS,
WordDelimiterFilter.SPLIT_ON_CASE_CHANGE, and WordDelimiterFilter.SPLIT_ON_NUMERICS
flags, and the StopFilter with the StopAnalyzer.ENGLISH_STOP_WORDS_SET option.

4.2.2. Extraction of Topics from Source Code Changes

LDA consists of training and inference phases. The training phase extracts topic distributions
from given text documents. The inference phase infers topic distributions of new source code changes
that are not included in the given text documents used in the training phase. The reviewer expertise
generation and reviewer recommendation phases rely on LDA to extract the topic distributions of
the source code changes. In this section, we briefly introduce the LDA topic extraction process with a
collection of source code changes.

We define several notations by borrowing the basic LDA notations of [15] for describing the
topic extraction process for source code changes. LDA requires a collection of source code changes,
the number of sampling repetitions, a number of topics (K) to be extracted, and alpha and beta values
as input. Given a collection of source code changes as R = {r1, . . . , rn}, where ri is a source code
change, LDA first produces word-topic vectors zri and then topic distribution vectors θri for each
source code change in R. zri represents the topic assignments of words in ri. The topic assignment
of each word in zri is estimated to one of K topics through repetitive sampling. At the beginning of
the sampling, the topic assignments of all the words in zri are initialized randomly. At each sampling
step, for each source code change ri and each topic k, LDA estimates the probability of topic k being
assigned to the jth word in ri. This is computed as follows:

p
(

ri,wj = k
)
=

Nri,−wj+α

Nri − 1 + Wα
×

NR,−wj+β

NR − 1 + Kβ
(1)

where Nri is the total number of words in ri. Nri,−wj is the number of words in ri assigned to topic k,
excluding the word wj. NR is the number of words assigned to topic k in all the source code changes
in R. NR,−wj is the number of times the word wj is assigned to topic k in all source code changes in
R, excluding the occurrence of the word wj in ri. W is the total number of words in R. α is the prior
weight of a word in a topic. β is the prior weight of a topic in a source code change. LDA randomly
assigns one of K topics to the word wj according to the probabilities of the K topic computed by
Equation (1) at each sampling process. At the end of the entire sampling process, LDA computes the
topic distribution of each source code change θri based on the results of the topic assignments of the
words in ri. The topic distribution of a source code change is defined as follows:

θri = 〈∅z1 , . . . ,∅zK〉 (2)

The distribution value of each topic ∅z is computed as follows:

∅zk =
#. words assigned to the topic k in ri

#. words in ri
(3)

where zk is a topic k and ∅zk is the distribution value of the topic k, which ranges from 0 to 1. The sum
of all the values of θri is 1.

4.2.3. Computation of the Review Expertise of the Developers

The last step of the review expertise generation phase is to compute the review expertise of the
given developers. In this paper, we regarded that the review expertise of the developer is reflected by
the review contribution of a developer to source code changes. At the beginning of the review expertise
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generation phase, the past review history of the developers is given. The review history provides the
review contributions of the developers to the source code changes. We define the review contribution
of a developer as Rd = {r1, . . . , rn}, where ri is a source code change and d is the developer who
reviewed the source code changes.

We propose here a method to compute the review expertise of a developer for topics of the source
code changes based on the review contributions of the developer. As described in Section 4.2.2, a source
code change has distribution values for K topics, as described by Equation (2). The review expertise of
a developer for K topics is determined by the proportion of the source code changes reviewed by the
developer. That is, for a specific topic, the review expertise of a developer is computed by dividing the
sum of the distribution values of the topic in the source code changes reviewed by the developer with
the sum of the distribution values of the topic in all reviewed source code changes R, as follows:

Ed(z) =
∑ri∈Rd

θri [z]

∑rj∈R θrj [z]
(4)

where z is a topic, θri [z] is the distribution value of topic z in a source code change ri. Ed(z) indicates
the cumulative review contribution of topic z of a developer in all the reviewed source code changes.
Ed(z) has a value between 0 and 1 and becomes larger as a developer reviews additional source code
changes associated with topic z. Based on Equation (4), the overall review expertise of a developer on
K topics is computed. We define the review expertise of a developer on K topics as a vector expression:

RevExpd = 〈Ez1 , . . . , EzK〉 (5)

where Ezi is the abbreviation of Ed(zi) and RevExpd represents the review expertise of a developer on
K topics.

4.3. Reviewer Recommendation Phase

The reviewer recommendation phase consists of two steps: inferring topics of a new source code
change and computing the developers’ review scores. In the following subsections, we describe the
steps in detail.

4.3.1. Inference of Topics of New Source Code Change

The reviewer recommendation phase takes a new source code change as input in order to
recommend reviewers. Before extracting a topic distribution of a new source code change, the new source
code change is also preprocessed as in the review expertise generation phase. Then, the preprocessed
source code change and the topic model that has been generated in the training phase of the LDA are
passed to LDA as input. The LDA inference process for a new source code change is the same to the
LDA training process described in Section 4.2.2. LDA randomly assigns topics to the words in a new
source code change based on the following equation through repetitive sampling:

p
(

rnew,wj = k
)
=

Nrnew,−wj+α

Nrnew − 1 + Wα
×

NR,−wj+β

NR − 1 + Kβ
(6)

where rnew is a new source code change, rnew, wj is a word wj in rnew, Nrnew is the total number of words
in rnew, Nrnew,−wj is the number of words in rnew that are assigned to topic k, excluding the word wj.
The rest of the parameters have the same meaning as in Equation (1). After the entire sampling process,
the topic distribution of a new source code change is finally determined based on Equations (2) and (3).

4.3.2. Computation of the Review Score

The final step of the reviewer recommendation phase is computing the review scores of the
given developers for a new source code change. In this step, the review expertise of the developers
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determined in the review expertise generation phase and the topic distribution of the new source code
change inferred in the prior section are used. As a new source code change has a topic distribution for
K topics, we believe that the developers who often reviewed the topics of the new source code change
that have distribution value higher than 0 are more likely to be suitable as reviewers. The review score
of a developer is computed as follows:

RevScore(d, θnew) = ∑
zi∈θnew

RevExpd[zi]× θnew[zi] (7)

where θnew is a topic distribution of a new source code change, RevScore(d, θnew) has a value of 0 or
more and becomes larger as a developer has higher review expertise on the topics of a new source code
change that have a distribution value higher than 0. The reviewer recommendation phase recommends
the top-N developers in order of the high review scores of the developers computed with Equation (7).

Suppose that a topic distribution of a new source code change θnew and review expertise of four
developers for five topics is given as in Table 3. The new source code change only has distributions
for topic 4 (0.8) and topic 5 (0.2). Thus, developers who have the review expertise for topic 4 and
topic 5 are suitable to review the new source code change. For topic 4 and topic 5, the developers
d1, d2, d3, and d4 have 0.9, 0.1, 0.3, and 0 and 0.6, 0.5, 0.3, and 0 of the review expertise, respectively.
The developer d4 should be excluded or has the lowest priority in the recommendation as d4 does not
have any review expertise for topic 4 and topic 5. On the other hand, it is reasonable to recommend
developer d1 as a reviewer with the highest priority as d1 has much higher review expertise for both
topic 4 and topic 5 than the developers d2 and d3. The developer d3 should have higher priority
than the developer d2 as d3 has higher review expertise for topic 4 despite having a little less review
expertise for topic 5 than d2. As a result, the developers are listed as reviewers in order of d1, d3, d2,
and d4 based on their review scores.

Table 3. An example of a topic distribution of a new source code change and review expertise of four
developers for five topics.

T1 T2 T3 T4 T5 RevScore

θnew 0 0 0 0.8 0.2 -
d1 0 0 0 0.9 0.6 0.8
d2 0 0 0 0.1 0.5 0.2
d3 0 0 0 0.3 0.3 0.3
d4 0.8 0.6 0 0 0 0

4.4. Algorithm of the Proposed Approach

Figure 3 shows the algorithm of the proposed reviewer recommendation approach in pseudo
code. The algorithm takes a set of source code changes reviewed, a set of developers, a number of
K to be extracted, a number of sampling, the values of alpha and beta for LDA, a new source code
change to be reviewed and a number of recommended developers as input, and then outputs a list
of recommended reviewers. The body of the algorithm consists of two parts, the review expertise
generation phase (from line 1 to line 17) and the reviewer recommendation phase (from line 18 to
line 33). In the part of the review expertise generation phase, the reviewed source code changes
given as an input are preprocessed (line 2). The preprocessing process is performed as described in
Section 4.2.1. Then, the topic distributions of the reviewed source code changes are extracted using an
LDA implementation with the values of K, S, α, β (line 3). After extracting the topic distributions of
the source code changes, the review expertise for K topics are computed for each developer in the set
of developers given as an input (from line 4 to line 17). For each topic k, the review contributions of a
developer, ReviewContributiond,k, is computed based on a set of source code changes reviewed by the
developer (from line 9 to line 11) and the total topic distribution, TotalTopicProportionk, is computed
from all the source code changes (line 12 to line 14). Then, the review expertise of the developer
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for topic k, RevExpd,zk
, is determined by dividing his/her review contributions by the total topic

distribution of topic k (line 15). In the part of the reviewer recommendation phase, the new source
code change is preprocessed and then its topic distribution is inferred using an LDA implementation
with the values of K, S, α and β (from line 19 to line 20). After that, for each developer and each topic
k, the review scores of the developers are computed with the topic distribution of the new source
code change and the computed review expertise of the developers (from line 22 to line 27). Finally,
the developers are sorted by the computed review scores in descending order and top-N developers
are selected from the ordered developers as the reviewer candidates (from line 30 to line 32).

Figure 3. Algorithm of the proposed approach.
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5. Empirical Evaluation

We performed an empirical study to evaluate the proposed reviewer recommendation approach.
In this section, we first introduce in Section 5.1 the subject projects used to perform the empirical
study. In Section 5.2, we describe the collected data from the subject projects. In Section 5.3,
we describe the implementation details of the proposed approach. We also introduce existing
reviewer recommendation approaches used for comparison with the proposed approach in Section 5.4.
In Section 5.5, we present the evaluation metric used for evaluating the reviewer recommendation
performance. In Section 5.6, we report and discuss the results of the empirical study. Lastly, we present
threats to the validity of this study in Section 5.7.

5.1. Subject Projects

To evaluate the effectiveness of the proposed reviewer recommendation approach, we consider
open source projects on GitHub as our subject projects. As mentioned in Section 3, GitHub provides
the pull-based development mechanism. Therefore, we can easily obtain various developers’ review
data from open source projects on GitHub. The review data is suitable for performing the reviewer
recommendation experiments. In addition, GitHub also provides various software project development
data. Hence, the data of GitHub has been widely used in previous studies [26–30].

We selected five open source projects: Bitcoin Core integration-staging tree (bitcoin), Ruby on Rails
(https://github.com/rails/rails) (rails), KODI (https://github.com/xbmc/xbmc) (xbmc), and node-js
(https://github.com/nodejs/node) (node), as the subject projects. bitcoin is an open source project
that maintains and releases a bitcoin client software. rails is an open source project that uses an Model
View Controller (MVC) pattern written in Ruby. xbmc is an open source project media player and
entertainment for digital media. node is a JavaScript runtime built on Chrome’s V8 JavaScript engine.
tensorflow is an open source software library for high-performance numerical computation. As these
projects are popular on GitHub and retain many contributors, there is an abundance of review data.
Hence, we selected those projects as the subject projects for this study.

5.2. Data Collection

We collected the review data of the subject projects from the GHTorrent project. The GHTorrent
project distributes project development data collected through the GitHub event stream as MySQL and
MongoDB dump databases [23,31]. We downloaded a MySQL and a MongoDB dump database that
contained development data from GitHub from December 2015 to October 2016 from the GHTorrent
project website. We then collected pull requests submitted to the subject projects from 1 May 2016
to 31 October 2016. A pull request contains the author of the pull request, changed source file paths,
and the files’ source code changes and reviewers. We excluded the pull requests that did not contain
any source file changes or that were missing reviewers because such pull requests could not be used as
evaluation data. Table 4 shows the experimental datasets collected for each subject project. The columns
are #. Pull requests, #. Commits, #. Reviewers, and #. Source file changes, which correspond to the
number of pull requests, commits, reviewers, and changed source files, respectively.

Table 4. Experimental datasets.

Project #. Pull Requests #. Commits #. Reviewers #. Source File Changes

bitcoin 271 983 65 27949
rails 209 408 57 4521
xbmc 135 333 42 3584
node 573 1766 111 35117

tensorflow 157 359 132 6502

https://github.com/rails/rails
https://github.com/xbmc/xbmc
https://github.com/nodejs/node
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5.3. Implementation of Our Approach

The proposed reviewer recommendation approach requires several text processing techniques
and an LDA implementation. The text processing techniques preprocess the given source code changes.
An LDA implementation extracts the topic distributions of the preprocessed source code changes.
We implemented the proposed reviewer recommendation approach with Apache Lucene Core 6.3 and
MALLET. Apache Lucene Core is a text search engine library written in Java. We built a module of the
text processing techniques, called source code change analyzer, using the Apache Lucene Core library.
MALLET is a Java-based package for statistical natural language processing, document classification,
clustering, topic modeling, information extraction, and other machine learning applications. MALLET
provides a Gibbs sampling-based LDA. The proposed reviewer recommendation approach uses the
LDA implementation of MALLET (http://mallet.cs.umass.edu/). For each subject project, we ran the
LDA implementation with the K, alpha and beta of 20, 5.0, and 0.01, respectively.

5.4. Baseline Approaches

We evaluated the proposed reviewer recommendation approach by comparing it with
REVFINDER [10] and cHRev [13]. REVFINDER is a reviewer recommendation approach based
on file location similarity. By using four string comparison techniques, REVFINDER computes the
review score of a developer by comparing the similarity of the paths of the requested files for review
and the paths of files reviewed by the developer. cHRev is a reviewer recommendation approach based
on the review count of developers to source files. The review score of a developer is computed based
on how many times the developer reviewed the source files requested for review. The factors used
for computing a review score of a developer in the proposed approach, REVFINDER, and cHRev are
different. REVFINDER and cHRev consider the path similarity of the source files and review count of
the source files as the factor for the computation, respectively. On the contrary, the proposed approach
considers the topics of source code changes reviewed by the developers as the factor for review
expertise computation. Therefore, we can investigate the effectiveness of the proposed approach by
comparing the recommendation results of the proposed approach with the recommendation results of
REVFINDER and cHRev.

5.5. Evaluation Metrics

To measure the effectiveness of the proposed reviewer recommendation approach, we used the
top-N accuracy metric. The top-N accuracy metric has been widely used in evaluating recommendation
systems [10,32]. The top-N accuracy of a reviewer recommendation approach is the proportion of
the number of correct recommendation results against the total number of recommendations. Thus,
the top-N accuracy of a reviewer recommendation approach is computed with the following equation:

TopN Accuracy(R) = ∑r∈R isCollect(ActualReviewersr, TopN)

|R| (8)

where R is a set of reviews to be recommended, r is a review, and ActualReviewerr is the actual
reviewer of r. TopN is the list of reviewers that is recommended by a reviewer recommendation
approach. isCollect(ActualReviewersr, TopN) has a value of 1 if TopN includes at least one reviewer
involved in ActualReviewerr; otherwise, it has a value of 0. According to [6,10,33], we chose the value
of N to be 1, 3, 5, and 10.

5.6. Results & Discussion

In this subsection, we report the results of the empirical evaluation. For each subject project, we
ran the proposed approach, cHRev, and REVFINDER. The three reviewer recommendation approaches
all require a training dataset to compute the review scores of the developers. We split the collected
review history data in each subject project into a training dataset and an evaluation dataset. We used

http://mallet.cs.umass.edu/
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the review history data from 1 May 2016 to 31 June 2016 as a training dataset and data from 1 July 2016
to 31 October 2016 as the evaluation dataset. Table 5 shows the number of review data in the training
data and the evaluation data.

Table 5. Number of review histories in the training and evaluation datasets from the subject projects.

Project #. Train Set #. Evaluation Set

bitcoin 636 347
rails 243 165
xbmc 163 170
node 1207 559

tensorflow 127 232

In this evaluation, we ran the proposed approach by setting K, alpha, and beta to 20, 5.0, and 0.01,
respectively. The value of the parameter K is sensitive when analyzing topics of a software project
because values that are too large or too small hinder exact topic generation [24]. Hence, according
to [24], we set the value of K to 20. The values of alpha and beta were set as 5.0 and 0.01, which are
default values in MALLET, respectively.

For each subject project, we evaluated the performances of the proposed approach, cHRev,
and REVFINDER. Table 6 shows the results of the top-N accuracy of the approaches in the subject
projects. For each subject project, when performing the top-10 recommendations, the proposed
approach achieved 0.72, 0.71, 0.60, 0.75, and 0.39 of the top-10 accuracy, whereas cHRev and
REVFINDER achieved 0.71, 0.58, 0.56, 0.56, and 0.31 and 0.65, 0.68, 0.62, 0.71, and 0.33 of the top-10
accuracy, respectively. The proposed approach obtained better top-10 accuracy than cHRev and
REVFINDER, except for the xbmc project. On average, the proposed approach obtained 10% better
top-10 accuracy than cHRev and obtained 4% better top-10 accuracy than REVFINDER.

Table 6. Results of top-N accuracy.

Our Approach cHRev REVFINDER

Top-N Top-N Top-N

Project 1 3 5 10 1 3 5 10 1 3 5 10

bitcoin 0.06 0.25 0.46 0.72 0.29 0.52 0.57 0.71 0.05 0.17 0.35 0.65
rails 0.22 0.53 0.61 0.71 0.22 0.43 0.48 0.58 0.34 0.56 0.63 0.68
xbmc 0.37 0.44 0.53 0.60 0.24 0.34 0.41 0.56 0.34 0.44 0.46 0.62
node 0.13 0.27 0.38 0.75 0.14 0.25 0.38 0.56 0.07 0.25 0.45 0.71

tensorflow 0.13 0.25 0.29 0.39 0.07 0.20 0.27 0.31 0.07 0.19 0.30 0.33
Avg. 0.18 0.35 0.45 0.64 0.19 0.35 0.42 0.54 0.17 0.32 0.44 0.60

Furthermore, we present the following null hypotheses to evaluate the improvement of the
recommendation result of the proposed approach compared with cHRev and REVFINDER.

Hnull,cHRev: There is no statistically significant difference between the results of the proposed
approach and cHRev.

Halternative, cHRev: There is a statistically significant difference between the results of the proposed
approach and cHRev.

Hnull,REVFINDER: There is no statistically significant difference between the results of the proposed
approach and REVFINDER.

Halternative, REVFINDER: There is a statistically significant difference between the results of the
proposed approach and REVFINDER.

We used t.test function in R (https://www.r-project.org/) package to perform the student’s t-test
with the results of the top-10 accuracy of the recommendation approaches. Table 7 shows the t-values
and p-values obtained with the Student’s t-test. With 95% confidence, we reject Hnull, cHRev in rails,

https://www.r-project.org/
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node, and tensorflow and also reject Hnull, REVFINDER in bitcoin, node, and tensorflow. The results
show that the proposed approach has improved performance compared to cHRev in rails, node, and
tensorflow and compared to cHRev and REVFINDER in bitcoin, node, and tensorflow.

Table 7. Results of the paired student’s t-test.

cHRev REVFINDER

Project t p Decision t p Decision

bitcoin 1.8063 0.07181 Accept 4.7107 3.67× 10−6 Reject
rails 2.6461 0.008957 Reject 0.47026 0.6388 Accept
xbmc 1.4886 0.1385 Accept 0.18516 0.8533 Accept
node 10.122 2.20× 10−16 Reject 3.6361 0.000302 Reject

tensorflow 3.8933 1.30× 10−4 Reject 2.6808 7.87× 10−3 Reject

In the bitcoin project, there was extremely little difference in the top-10 accuracy between the
proposed approach and cHRev. However, in the results of the top-3 accuracy, cHRev obtained
the most superior performance and the proposed approach obtained the second best performance,
followed by REVFINDER. The differences of the top-3 accuracy of the proposed approach and
REVFIDNER with cHRev are 27% and 37%, respectively. To understand why cHRev could obtain
the most superior performance, we manually investigated the recommendation results in the bitcoin
project. For the recommendation results, we compared the top-3 lists of cHRev and the proposed
approach and confirmed that actual reviewers who have extremely little review history were involved
only in the top-3 lists of cHRev. In general, the developers who have much more review history
should be recommended more than those having less review history because the developers have
reviewing experiences in multiple source files. The proposed approach and REVFINDER are basically
designed to assign a high review score to such developers. Therefore, the developers who have
little review history are mostly located with low ranks on the recommendation list by the proposed
approach and REVFINDER. This caused the proposed approach and REVFINDER to have lower
top-5 recommendation accuracy than cHRev. However, the proposed approach and REVFINDER
outperformed cHRev in other projects.

Overall, the proposed approach showed improved performance compared to REVFINDER in the
subject projects. To check out the advantage of the proposed approach in reviewer recommendation
and the reason that the proposed approach could obtain better recommendation performance than
REVFINDER, we also investigated the recommendation results of the proposed approach and
REVFINDER in the bitcoin project. We found that REVFINDER had a limitation in recommending
the correct reviewers for the source file “src/main.cpp”. In the bitcoin project, the source file is
one of the most often changed and reviewed source files. The source file was changed 134 times
and reviewed by 40 developers from 1 May 2016 to 31 June 2016. It is difficult to select some
appropriate reviewers among the developers with only their review expertise of the file path similarity
or review count because most of the developers have a similar review experience for the source
file. On the other hand, the proposed approach can complement such a limitation by considering
the review expertise of the developers for the topic distribution of the source code change of the
source file. In the actually performed recommendation by the proposed approach for the commit
fe6f4056bb1e2be4b0fd84bb1752141b8bef38, which contained the source code change of the source
file “src/main.cpp”, an actual reviewer to the commit was precisely recommended within the top-5
according to his review expertise on the topic distribution of the source code change of the source file.
The recommended reviewer indeed had high review expertise of the dominant topic of the source
code change of the source file “src/main.cpp”.

In this empirical study, we showed that it is effective to consider the information of topics of
source code changes reviewed by developers in reviewer recommendation. The results showed that
the file path similarity and review count based reviewer recommendation approaches have limitations
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in recommending some reviewers. We believe that the proposed approach can complement the
limitations of cHRev and REVFINDER and can improve the code review process of a software project.

5.7. Threat to Validity

The internal threats to the validity of this study are concerned with the result of the topic extraction
of LDA. The computation of the review expertise of our reviewer recommendation approach depends
substantially on LDA. Review expertise is computed based on the topic distributions of source code
changes. An LDA implementation is necessary to extract the topic distributions of source code changes.
The result of the topic extraction of LDA is affected by the number of source code changes used as
input [15]. When an extremely small number of source code changes are used as an input dataset for
LDA, the quality of the topic extraction of the source code changes will decrease. Hence, we cannot
ensure the application of our reviewer recommendation approach in the initial development phase
of a software project. However, the existing reviewer recommendation approaches REVFINDER and
cHRev also have the same limitations.

The external threats to the validity of this study are concerned with the generalization of the result
of the empirical evaluation study. In this study, we used only five open source projects experimental
projects. The result of the study may not be generalizable to other open source projects. To reduce the
bias, we gave much effort to choosing the experiment projects. We selected the experiment projects
to differ in language, domain, and scale. Thus, we expect that results similar to those in this study
can be obtained in other projects that have identical language, similar domain and scale, and a similar
strategy of the review process.

6. Related Work

In software project development, the reviewer assignment problem is a significant matter.
Thongtanunam et al. performed an exploratory study on the impact of the reviewer assignment
problem [10]. They investigated the impact on the reviewing time of the reviews with reviewer
assignment problem in four open source projects: Android, OpenStack, Qt, and LibreOffice. It was
found that 4–30% of the reviews in the open source projects had a reviewer assignment problem.
Furthermore, they found that, on average, the reviews with the reviewer assignment problem
required an extra 12 days to complete the review process. Reviewer recommendation is beneficial
to resolving the reviewer assignment problem. REVFINDER, which is a file location-based reviewer
recommendation approach, was presented by Thongtanunam et al. REVFINDER recommends
reviewers who mainly review files located in paths similar to the files requested for review.
They showed the effectiveness of REVFINDER in the open source projects. Zanjani et al. proposed
cHRev, a reviewer recommendation approach based on review count [13]. cHRev considers how many
times the developer reviewed the source files requested for review as a factor in determining the review
expertise of developers relative to the source files. In an experiment on three open source projects and
a commercial software project, they showed the effectiveness of cHRev. In this study, we proposed an
LDA-based reviewer recommendation approach. The proposed approach extracts topic distributions
of reviewed source code changes using LDA and then computes the review expertise of developers for
the extracted topics. This is a significant difference between our study and the previous studies.

7. Conclusions

After a source code is changed, developers must review the changed source code to integrate
it into a software project. The reviewer assignment problem delays the code review process of a
software project. Hence, developers should rapidly and accurately assign appropriate reviewers
to newly submitted source code changes. In this paper, we proposed a reviewer recommendation
approach based on LDA. The proposed reviewer recommendation approach consists of the review
expertise generation and reviewer recommendation phases. The review expertise generation phase
generates the review expertise of developers for topics of source code changes from the past review



Symmetry 2018, 10, 114 16 of 18

history of a software project. The reviewer recommendation phase computes the review scores of
developers according to the topic distribution of a given source code change and the review expertise
of developers. In an empirical study on five open source projects, the proposed approach obtained
better recommendation accuracy than the existing reviewer recommendation approaches.

In future work, we will conduct more experiments on various projects to reduce the external
threats of generalization of our approach. Additionally, we will explore a way to improve reviewer
recommendation performance. For instance, we will study how much an approach that combines
our approach and other existing reviewer recommendation approaches can improve reviewer
recommendation performance.
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