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Abstract: In this paper, the numerical solutions of von Kármán swirling viscous flow are obtained
based on the effective combination of the symmetry method and the Runge-Kutta method.
Firstly, the multi-parameter symmetry of von Kármán swirling viscous flow is determined based
on the differential characteristic set algorithm. Secondly, we used the symmetry to reduce von
Kármán swirling viscous flow to an initial value problem of the original differential equations.
Finally, we numerically solve the initial value problem of the original differential equations by using
the Runge-Kutta method.

Keywords: von Kármán swirling viscous flow; symmetry; differential characteristic set algorithm;
Runge-Kutta method

1. Introduction

The symmetry group method is very important in the analysis of partial differential equations
(PDEs), and this method is applied widely in many field [1–3]. The applications of Lie’s continuous
symmetry groups include such diverse fields as differential geometry, bifurcation theory, mechanics,
hydrodynamics, relativity, diffusion and wave phenomena, astrophysics, plasma and so on [3–7].
There have been several studies about the symmetry method, such as symmetry classification [8],
potential symmetry [9], approximate symmetry [10], etc. Based on the symmetries of a PDE,
many important properties of the equation such as Lie algebras [11,12], conservation laws [13–18],
and exact solutions [16–22] can be considered successively. Recently, some researchers focus on the
applications of the symmetry method for solving boundary value problems (BVP) of a PDE [2,23–25].

As it is well known, the similarity transformation is used frequently in solving nonlinear
PDEs problems. The Lie transformation group of PDEs can yield a more general form of similarity
transformation, and these transformations have more significance for mathematics and physics. So the
symmetry method has a higher superiority than the similarity transformation in BVP of nonlinear
PDEs. At present, combining the symmetry method with other methods to solve BVP of the nonlinear
PDEs are the new research subjects. Recently, we have studied this topic based on the differential
characteristic set algorithm [26–28].

It is an new research to the application of the Lie symmetry method in the BVP for nonlinear
PDEs in fluid mechanics. We will study the symmetry reduction and the numerical solutions of von
Kármán swirling viscous flow based on the effective combination of the Lie symmetry method and the
Runge-Kutta method. This investigation will widen the application of Lie symmetry. The rest of the
paper is organized as follows. In Section 2, we give the formulation of invariance for a BVP of PDEs.
In Section 3, we obtain the symmetry of von Kármán swirling viscous flow based on the differential
characteristic set algorithm and then we reduce it. In Section 4, we give numerical solutions of von
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Kármán swirling viscous flow by applying the Runge-Kutta method. In Section 5, we give a discussion
and conclusion remarks.

2. Formulation of Invariance for a BVP of PDEs

Consider a BVP for kth order scalar PDEs (k ≥ 2)

Fµ(x, u, ∂u, ∂2u, . . . , ∂ku) = ui1,i2,··· ,il − f µ(x, u, ∂u, ∂2u, . . . , ∂ku) = 0, (1)

(where f µ(x, u, ∂u, ∂2u, . . . , ∂ku) does not depend on ui1,i2,··· ,il ) where x = (x1, x2, · · · , xn) are n
independent variables, u = (u1, u2, · · · , um) are m dependent variables and defined on a domain Ωx

in x-space with boundary conditions

Bν
α(x, u, ∂u, ∂2u, . . . , ∂k−1u) = 0, ν = 1, 2, · · · , m (2)

prescribed on boundary surfaces

ωα(x) = 0, α = 1, 2, · · · , s. (3)

Assume that BVP (1)–(3) has a unique solution. Consider an infinitesimal generator of the form

X = ξi(x, u)
∂

∂xi
+ ην(x, u)

∂

∂uν
, i = 1, 2, · · · , n; ν = 1, 2, · · · , m. (4)

which defines a one-parameter Lie group of transformations in x-space as well as in (x, u)-space.

Definition 1. X is admitted by BVP (1)–(3) if and only if [2]

X(k)F(x, u, ∂u, ∂2u, . . . , ∂ku) = 0, when F(x, u, ∂u, ∂2u, . . . , ∂ku) = 0; (5)
Xωα(x) = 0, when ωα(x) = 0, α = 1, 2, · · · , s; (6)

X(k−1)Bν
α(x, u, ∂u, ∂2u, . . . , ∂k−1u) = 0, when Bν

α(x, u, ∂u, ∂2u, . . . , ∂k−1u) = 0, ωα(x) = 0,
α = 1, 2, · · · , s

(7)

where X(k) is kth (k ≥ 1) extended infinitesimal generator of X given by

X(k) = ξi(x, u) ∂
∂xi

+ ην(x, u) ∂
∂uν + η

(1)ν
i (x, u, ∂u) ∂

∂uν
i
+ · · ·

+η
(k)ν
i1i2···ik (x, u, ∂u, ∂2u, · · · , ∂ku) ∂

∂uν
i1 i2 ···ik

,
(8)

uν
i =

∂uν

∂xi
, η

(1)ν
i = Diη

ν − (Diξ j)uν
j , η

(t)ν
i1i2···it = Dit η

(t−1)ν
i1i2···it−1

− (Dit ξ j)
ν
i1i2···it−1 j, (9)

Di =
∂

∂xi
+ uν

i
∂

∂uν
+ uν

ij
∂

∂uν
j
+ · · ·+ uν

ii1i2···in
∂

∂uν
i1i2···in

+ · · ·, (10)

and i = 1, 2, · · · , n; ν = 1, 2, · · · , m; i` = 1, 2, · · · , n; ` = 1, 2, · · · , t, t ≥ 2.

3. The Symmetry and Symmetry Reduction of von Kármán sWirling Viscous Flow

Let us consider von Kármán swirling viscous flow which is a famous classical problem in fluid
mechanics. The governing equations are as follows:
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1
r

∂(rVr)

∂r
+

1
r

∂Vθ

∂θ
+

∂Vz

∂z
= 0, (11)

Vr
∂Vr

∂r
+ Vz

∂Vr

∂z
−

V2
θ

r
= ν

(
∂2Vr

∂r2 +
1
r

∂Vr

∂r
+

∂2Vr

∂z2 −
Vr

r2

)
− 1

ρ

∂p
∂r

, (12)

Vr
∂Vθ

∂r
+ Vz

∂Vθ

∂z
+

VrVθ

r
= ν

(
∂2Vθ

∂r2 +
1
r

∂Vθ

∂r
+

∂2Vθ

∂z2 −
Vθ

r2

)
, (13)

Vr
∂Vz

∂r
+ Vz

∂Vz

∂z
= ν

(
∂2Vz

∂r2 +
1
r

∂Vz

∂r
+

∂2Vz

∂z2

)
− 1

ρ

∂p
∂z

, (14)

where Vr, Vθ , Vz, p are all functions of r, θ, z. ρ is the fluid density, ν is the kinematic viscosity, p is the
pressure. The boundary conditions of Equations (11)–(14) are

Vr(r, θ, 0) = B1(r, θ), Vrz(r, θ, 0) = B2(r, θ), V(r, θ,+∞) = 0, (15)

Vθ(r, θ, 0) = B3(r, θ), Vθz(r, θ, 0) = B4(r, θ), V(r, θ,+∞) = 0, (16)

Vz(r, θ, 0) = B5(r, θ), Vzz(r, θ, 0) = B6(r, θ), (17)

p(r, θ, 0) = B7(r, θ), pz(r, θ, 0) = B8(r, θ), (18)

where Urz = ∂Ur/∂z, Uθz = ∂Uθ/∂z, Uzz = ∂Uz/∂z, and Bi(r, θ)(i = 1, · · · , 8) are the functions of
(r, θ) to be determined later.

3.1. First Symmetry Reduction

The symmetry group of Equations (11)–(14) will be generated by the vector field of the form

X1 = ξ1
∂

∂r
+ ξ2

∂

∂θ
+ ξ3

∂

∂z
+ η1

∂

∂Vr
+ η2

∂

∂Vθ
+ η3

∂

∂Vz
+ η4

∂

∂p
, (19)

where ξi = ξi(r, θ, z, Vr, Vθ , Vz, p), ηj = ηj(r, θ, z, Vr, Vθ , Vz, p) are the infinitesimal functions of
the symmetry.

We obtain the determining equations of symmetry (19) by using the Lie algorithm, but it is too
difficult to get their solutions. However, we use the differential characteristic set algorithm to obtain
the following equivalent system of the determining equations [29].

ξ1θ = ξ1z = ξ1Vr = ξ1Vθ
= ξ1Vz = ξ1p = 0, ξ2r = ξ2θ = ξ2z = ξ2Vr = ξ2Vθ

= ξ2Vz = ξ2p = 0,

ξ3r = ξ3θ = ξ3Vr = ξ3Vθ
= ξ3Vz = ξ3p = 0, η4r = η4z = η4Vr = η4Vθ

= η4Vz = 0, (20)

ξ1 − rξ1r = 0, ξ1 − rξ3z = 0, rη1 + Vrξ1 = 0, rη2 + Vθξ1 = 0, rη3 + Vzξ1 = 0, rη4 + 2ξ1 = 0.

By solving the above PDEs, we get

ξ1 = a1r, ξ2 = a2, ξ3 = a1z + a3, η1 = −a1Vr, η2 = −a1Vθ , η3 = −a1Vz, η4 = f (θ)− 2a1 p. (21)

where a1, a2, a3 are arbitrary symmetry parameters, and f (θ) is an arbitrary function. Then the
corresponding infinitesimal vector has the following form

X1 = a1r
∂

∂r
+ a2

∂

∂θ
+ (a1z + a3)

∂

∂z
− a1Vr

∂

∂Vr
− a1Vθ

∂

∂Vθ
− a1Vz

∂

∂Vz
+ [ f (θ)− 2a1 p]

∂

∂p
. (22)

The characteristic equations for the symmetry X1 are as follows

dr
a1r

=
dθ

a2
=

dz
a1z + a3

=
dVr

−a1Vr
=

dVθ

−a1Vθ
=

dVz

−a1Vz
=

dp
f (θ)− 2a1 p

. (23)
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By solving dr
a1r = dθ

a2
and dθ

a2
= dz

a1z+a3
, we obtain two invariants as follows

ς = re−
a1
a2

θ , τ =
a1z + a3

a1
e−

a1
a2

θ . (24)

By using the invariant form method, we get the solutions of Equations (23)

Vr =
U(ς, τ)

r
, Vθ =

V(ς, τ)

r
, Vz =

W(ς, τ)

r
, p = e−

2a1
a2

θ
[

P(ς, τ) +
1
a2

∫ θ

1
f (t)e

2a1t
a2 dt

]
. (25)

By substituting (25) into Equations (11)–(14), we obtain PDEs as follows

a1τ
∂V
∂τ
− ς

(
a2

∂W
∂τ

+ a2
∂U
∂ς
− a1

∂V
∂ς

)
= 0, (26)

U2 + V2 − ς3

ρ

∂P
∂ς
− ς

(
ν

∂U
∂ς

+ U
∂U
∂ς

+ W
∂U
∂τ

)
+ νς2

(
∂2U
∂ς2 +

∂2U
∂τ2

)
= 0, (27)

ν
∂V
∂ς

+ U
∂V
∂ς

+ W
∂V
∂τ
− νς

(
∂2V
∂ς2 +

∂2V
∂τ2

)
= 0, (28)

W
(

ν + U − ς
∂W
∂τ

)
− ς3

ρ

∂P
∂τ
− ς(ν + U)

∂W
∂ς

+ νς2
(

∂2W
∂ς2 +

∂2W
∂τ2

)
= 0. (29)

According to invariance for a BVP of the PDEs, the symmetry X1 leaves the boundary
conditions (15)–(18) invariant, namely

X1[Vr(r, θ, z)− B1(r, θ)] = 0, when Vr(r, θ, 0) = B1(r, θ), (30)

X(1)
1 [Vrz(r, θ, z)− B2(r, θ)] = 0, when Vrz(r, θ, 0) = B2(r, θ), (31)

X1[Vθ(r, θ, z)− B3(r, θ)] = 0, when Vθ(r, θ, 0) = B3(r, θ), (32)

X(1)
1 [Vθz(r, θ, z)− B4(r, θ)] = 0, when Vθz(r, θ, 0) = B4(r, θ), (33)

X1[Vz(r, θ, z)− B5(r, θ)] = 0, when Vz(r, θ, 0) = B5(r, θ), (34)

X(1)
1 [Vzz(r, θ, z)− B6(r, θ)] = 0, when Vzz(r, θ, 0) = B6(r, θ), (35)

X1[p(r, θ, z)− B7(r, θ)] = 0, when p(r, θ, 0) = B7(r, θ), (36)

X(1)
1 [pz(r, θ, z)− B8(r, θ)] = 0, when pz(r, θ, 0) = B8(r, θ), (37)

X1[V(r, θ,+∞)] = 0, when V(r, θ,+∞) = 0, (38)

X1[V(r, θ,+∞)] = 0, when V(r, θ,+∞) = 0, (39)

where X(1)
1 is the 1st extended infinitesimal generator of X1 as follow

X(1)
1 = X1 − 2a1Vrr

∂

∂Vrr
− a1Vrθ

∂

∂Vrθ
− 2a1Vrz

∂

∂Vrz
− 2a1Vθr

∂

∂Vθr
− a1Vθθ

∂

∂Vθθ
− 2a1Vθz

∂

∂Vθz

− 2a1Vzr
∂

∂Vzr
− a1Vzθ

∂

∂Vzθ
− 2a1Vzz

∂

∂Vzz
− 3a1 pr

∂

∂pr
− [ f ′(θ)− 2a1 pθ ]

∂

∂pθ
− 3a1 pz

∂

∂pz
. (40)
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We can determine the functions B1(r, θ), · · · , B8(r, θ) by solving (37)–(59), namely

B1(r, θ) =
1
r

B̃1(θ −
a2

a1
ln r), B2(r, θ) =

1
r2 B̃2(θ −

a2

a1
ln r), (41)

B3(r, θ) =
1
r

B̃3(θ −
a2

a1
ln r), B4(r, θ) =

1
r2 B̃4(θ −

a2

a1
ln r), (42)

B5(r, θ) =
1
r

B̃5(θ −
a2

a1
ln r), B6(r, θ) =

1
r2 B̃6(θ −

a2

a1
ln r), (43)

B7(r, θ) =
1
r2 B̃7(θ −

a2

a1
ln r), B8(r, θ) =

1
r3 B̃8(θ −

a2

a1
ln r), (44)

where ci (i = 1, · · · , 8) are arbitrary constants. Because the arbitrary function f (θ) does not affect the
reduced results (26)–(29), we let f (θ) = 0 in the process of calculation (44).

Let a3 = 0, then we have

τ = 0, when z = 0; τ −→ +∞, when z −→ +∞, (45)

according to (15)–(18) and (25), we get boundary conditions of Equations (26)–(29) as follows

U(ς, 0) = B̃1(−
a2

a1
ln ς), Uτ(ς, 0) =

1
ς

B̃2(−
a2

a1
ln ς), U(ς,+∞) = 0, (46)

V(ς, 0) = B̃3(−
a2

a1
ln ς), Vτ(ς, 0) =

1
ς

B̃4(−
a2

a1
ln ς), V(ς,+∞) = 0, (47)

W(ς, 0) = B̃5(−
a2

a1
ln ς), Wτ(ς, 0) =

1
ς

B̃6(−
a2

a1
ln ς), (48)

P(ς, 0) =
1
ς2 B̃7(−

a2

a1
ln ς), Pτ(ς, 0) =

1
ς3 B̃8(−

a2

a1
ln ς), (49)

where B̃i(i = 1, · · · , 8) are the functions of ς.

3.2. Second Symmetry Reduction

By the same manner, we get the following infinitesimal vector of symmetry

X2 = b1ς
∂

∂ς
+ b1τ

∂

∂τ
+ (b2 − 2b1P)

∂

∂P
, (50)

for the system (26)–(29), where b1, b2 are arbitrary symmetry parameters.
In the following, the BVP for PDEs (26)–(49) will be reduced to the initial value problem of the

ordinary differential equations (ODEs) by using the invariant form method [2].
The characteristic equations for the symmetry X2 are as follows

dς

b1ς
=

dτ

b1τ
=

dU
0

=
dV
0

=
dW
0

=
dP

b2 − 2b1P
. (51)

By solving dς
ς = dτ

τ , we obtain the invariant as follows

ζ =
τ

ς
. (52)

By using the invariant form method, we get the solutions of Equations (51) as follows

U = u(ζ), V = v(ζ), W = w(ζ), P =
b2

2b1
+

1
ς2 g(ζ). (53)
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By substituting (52) and (53) into Equations (26)–(29), we obtain ODEs as follows

ζu′ − w′ = 0, (54)

u2 + v2 +
2g + ζg′

ρ
+ (3νζ + ζu− w)u′ + ν(1 + ζ2)u′′ = 0, (55)

(3νζ + ζu− w)v′ + ν(1 + ζ2)v′′ = 0, (56)

(ν + u− w′)w + ζ(3ν + u)w′ + ν(1 + ζ2)w′′ − g′

ρ
= 0. (57)

The symmetry X2 leaves the boundary conditions (46)–(49) invariant, namely

X2[U(ς, τ)− B̃1(−
a2

a1
ln ς)] = 0, when U(ς, 0) = B̃1(−

a2

a1
ln ς); (58)

X(1)
2 [Uτ(ς, τ)− 1

ς
B̃2(−

a2

a1
ln ς)] = 0, when Uτ(ς, 0) =

1
ς

B̃2(−
a2

a1
ln ς), (59)

X2[V(ς, τ)− B̃3(−
a2

a1
ln ς)] = 0, when V(ς, 0) = B̃3(−

a2

a1
ln ς); (60)

X(1)
2 [Vτ(ς, τ)− 1

ς
B̃4(−

a2

a1
ln ς)] = 0, when Vτ(ς, 0) =

1
ς

B̃4(−
a2

a1
ln ς), (61)

X2[U(ς, τ)− B̃5(−
a2

a1
ln ς)] = 0, when W(ς, 0) = B̃5(−

a2

a1
ln ς); (62)

X(1)
2 [Wτ(ς, τ)− 1

ς
B̃6(−

a2

a1
ln ς)] = 0, when Wτ(ς, 0) =

1
ς

B̃6(−
a2

a1
ln ς), (63)

X2[P(ς, τ)− 1
ς2 B̃7(−

a2

a1
ln ς) = 0, when P(ς, 0) =

1
ς2 B̃7(−

a2

a1
ln ς); (64)

X(1)
2 [Pτ(ς, τ)− 1

ς3 B̃8(−
a2

a1
ln ς)] = 0, when Pτ(ς, 0) =

1
ς3 B̃8(−

a2

a1
ln ς), (65)

X2[U(ς, τ)] = 0, when U(ς,+∞) = 0, (66)

X2[V(ς, τ)] = 0, when V(ς,+∞) = 0, (67)

where X(1)
2 is the 1st extended infinitesimal generator of X2 as follow

X(1)
2 = X2 − b1Uς

∂

∂Uς
− b1Uτ

∂

∂Uτ
− b1Vς

∂

∂Vς
− b1Vτ

∂

∂Vτ
− b1Wς

∂

∂Wς
− b1Wτ

∂

∂Wτ

− 3b1Pς
∂

∂Pς
− 3b1Pτ

∂

∂Pτ
. (68)

We can determine the functions B̃1(ς), · · · , B̃8(ς) by solving (58)–(65), namely

B̃1(ς) = c1, B̃2(ς) = c2, B̃3(ς) = c3, B̃4(ς) = c4, (69)

B̃5(ς) = c5, B̃6(ς) = c6, B̃7(ς) =
b2

2b1
ς2 + c7, B̃8(ς) = c8, (70)

where ci (i = 1, · · · , 8) are arbitrary constants.
Because of

ζ = 0, when τ = 0; ζ −→ +∞, when τ −→ +∞, (71)

according to the boundary conditions (46)–(49) and the expression (53), we obtain the initial conditions
as follows
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u(0) = c1, u′(0) = c2, v(0) = c3, v′(0) = c4, w(0) = c5, w′(0) = c6, g(0) = c7, g′(0) = c8, (72)

u(+∞) = 0, v(+∞) = 0. (73)

4. Numerical Solutions

According to (54) one has

w′ = ζu′. (74)

Substitute (74) into (57), one has

(ν + u− ζu′)w + ζ2(3ν + u)u′ + ν(1 + ζ2)w′′ − g′

ρ
= 0. (75)

In order to solve the numerical solutions of the initial value problems in ODEs (55), (56),(75) and
(72) by using the Runge-Kutta method, we considers g(ζ) = c7 + c8ζ. Firstly, we change (55), (56), (75)
and (72) into first order initial value problems in ODEs. Let

y1 = u, y2 = u′, y3 = v, y4 = v′, y5 = w, y6 = w′, (76)

then Equations (55), (56) and (75) are changed into the following form

y′1 = y2, y′2 = − 1
ν(1 + ζ2)

[y2
1 + y2

3 +
1
ρ
(2c7 + 3c8ζ) + (3νζ + ζy1 − y5)y2], (77)

y′3 = y4, y′4 = − 1
ν(1 + ζ2)

(3νζ + ζy1 − y5)y4, (78)

y′5 = y6, y′6 = − 1
ν(1 + ζ2)

[y5(ν + y1 − y6) + ζ(3ν + y1)y6 −
c8

ρ
]. (79)

The corresponding initial conditions have the following form

y1(0) = c1, y2(0) = c2, y3(0) = c3, y4(0) = c4, y5(0) = c5, y6(0) = c6. (80)

We let

f1 = y2, f2 = − 1
ν(1 + ζ2)

[y2
1 + y2

3 +
1
ρ
(2c7 + 3c8ζ) + (3νζ + ζy1 − y5)y2], (81)

f3 = y4, f4 = − 1
ν(1 + ζ2)

(3νζ + ζy1 − y5)y4, (82)

f5 = y6, f6 = − 1
ν(1 + ζ2)

[y5(ν + y1 − y6) + ζ(3ν + y1)y6 −
c8

ρ
], (83)

where f1, f2, f3, f4, f5, f6 are the functions of ζ, y1, y2, y3, y4, y5, y6, then we give the following
Runge-Kutta formula

yi,n+1 = yin +
h
6
(Ki1 + 2Ki2 + 2Ki3 + Ki4), i = 1, · · · , 6.

Ki1 = fi(ζn, y1n, y2n, y3n, y4n, y5n, y6n)

Ki2 = fi(ζn +
h
2

, y1n +
h
2

K11, y2n +
h
2

K21, y3n +
h
2

K31, y4n +
h
2

K41, y5n +
h
2

K51, y6n +
h
2

K61)(84)

Ki3 = fi(ζn +
h
2

, y1n +
h
2

K12, y2n +
h
2

K22, y3n +
h
2

K32, y4n +
h
2

K42, y5n +
h
2

K52, y6n +
h
2

K62)

Ki4 = fi(ζn + h, y1n + hK13, y2n + hK23, y3n + hK33, y4n + hK43, y5n + hK53, y6n + hK63)

where ζ0 = 0, ζn = ζ0 + nh, and h is the step size.
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Figures 1 and 2 show the numerical solutions of u(ζ), v(ζ), w(ζ) in [0,2] when the parameters
have the following proper values:

c1 = 2, c2 = 4, c3 = 0, c4 = 1, c5 = 0.3, c6 = 3, c7 = 0.1, c8 = 0.2, ρ = 100, ν = 0.6, h = 0.1. (85)
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Ζ0.5
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1.5

2.0

2.5

uHΖL

0.5 1.0 1.5

Ζ0.2
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0.8

vHΖL

Figure 1. Numerical solutions of u(ζ), v(ζ) in [0,2].

0.5 1.0 1.5

Ζ
0.6

0.8

1.0

1.2

wHΖL

Figure 2. Numerical solutions of w(ζ) in [0,2].

5. Conclusions

In this paper, the application of the symmetry method on BVP for nonlinear PDEs is studied.
Firstly, we have got the multi-parameter symmetry of von Kármán swirling viscous flow based on the
differential characteristic set algorithm. Via twice symmetry reducions, BVP (11)–(18) became an initial
value problem of ODEs. Secondly, we solved numerically the initial value problem of ODEs by using
the Runge-Kutta method. The differential characteristic set algorithm is a key factor which influences
the calculation of the symmetry of PDEs.

We considered that the boundary conditions are the arbitrary functions Bi(r, θ). However, Bi(r, θ)

are determined by using the invariance of the boundary conditions under a multi-parameter Lie group of
transformations. This approach is different from other research. For example, the boundary conditions are
given by the following forms Vr(r, θ, 0) = 0, Vz(r, θ, 0) = 0 in [30]. The Lie symmetry and Runge-Kutta
methods are effective methods which are applied to solving PDEs. Hence, their combination will advance
the availability of solutions. At present, it is very valuable to solve nonlinear PDEs by combining the
symmetry method, the differential characteristic set algorithm and other methods.
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