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Abstract: Motivated by dynamical models describing phase separation and the motion of interfaces
separating phases, we study the stability of dynamical networks in planar domains formed by triple
junctions. We take into account symmetry, angle-intersection conditions at the junctions and at the
points at which the curves intersect with the boundary. Firstly, we focus on the case of a network
where two triple junctions have all their branches unattached to the boundary and then on the case of
a network of hexagons, with one of them having all its branches unattached to the boundary. For both
type of networks, we introduce the evolution problem, identify the steady states and study their
stability in terms of the geometry of the boundary.
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1. Introduction

The study of the geometric evolution problem of dynamical networks in planar domains formed
by triple junctions has always been very important in the modelling of many phenomena in various
fields of science, physics and engineering; see [1–3]. In Figure 1, we see the evolution of such a network;
see also [4].

In many cases, this type of dynamical network forms hexagonal networks. The hexagon is the
highest-sided tessellate regular polygon; see [5]. This makes it uniquely important in a variety of
fields, since it has the advantage of spacing out each constituent hexagon more or less evenly from
its neighbours. Common examples of this use of hexagonal cells can be found in such varied fields
as cellular automaton, statistical sampling, board games, computer games, the comb of the esteemed
honeybee, and so on; see [5,6]. Hence, we see hexagonal dynamical networks in several evolution
problems in nature like polycrystalline camphor-ethanol mixture, soap bubbles and honeycombs;
see Figure 2.

About 20 years ago, motivated by dynamical models in material science describing phase
separation and the motion of interfaces’ separating phases, Bronsard et al. [7–10] introduced the
problem of networks of curves in a planar domain with normal velocity proportional to the curvature
and fixed angle conditions at the point at which the curves intersect. From the underlying model,
they derived the equations of motion, as well as the boundary conditions. The angles formed by the
curves at a node are constant throughout the evolution and intersect the boundary of the domain
orthogonally at all times. Our interest is in studying a network of curves that is in motion, with the
normal velocity equal to the curvature. Note that Freire (see [11]) has considered similar graphs over a
bounded domain in R2, intersecting along a time-dependent curve and moving by mean curvature
while preserving the pairwise angles at the curve of intersection (equal to 2π

3 ). For the corresponding
two-dimensional parabolic free boundary problem, he proved the short-time existence of classical
solutions, for sufficiently regular initial data satisfying a compatibility condition.
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Figure 1. Evolution of a network in 57 s.

Figure 2. Polycrystalline camphor-ethanol mixture, soap bubbles and honeycomb.

For some recent contributions, see [12–14] and the references therein. For recent applications
using the mathematics of networks, see [15–18]. Some common results with graph theory can be found
in [19–23].

A network of three curves that intersect at a node is the simplest case. This case, as well as the
cases of a network of two triple junctions and a hexagonal network with one hexagon have been
studied in [24,25].

1.1. Problem Formulation

Mathematically, a bounded dynamical network of m curves can be formulated as follows. Let Ω ⊂ R2

be a bounded domain. Consider the increasingly-smooth functions Li : [0,+∞)→ [0,+∞), i = 1, 2, ..., m
satisfying Li(0) = 0. For each t ≥ 0, let:

Gi(·, t) : [0, Li(t)]→ Ω, i = 1, 2, ..., m,

Be smooth functions such that Gi(s, t) is an embedding describing the curve i contained in Ω;
t ≥ 0 is time, s, 0 ≤ s ≤ Li(t), the arc length parameter. The evolution of Gi(s, t) is described by:

∂Gi
∂t

=
∂2Gi
∂s2 , i = 1, 2, ..., m, (1)
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Subject to the following conditions:

1. Incidence conditions: A curve i has two ends at s = 0 and at s = Li(t).

(a) If at the point s = 0, curve i intersects with two other curves, namely curves j and q, at
their starting point for example, then:

Gi(0, t) = Gj(0, t) = Gq(0, t).

Then, at the other end of curve i, at point s = Li(t), curve i intersects:

• with two other curves, namely curves p and r at their ending points:

Gi(Li(t), t) = Gp(Lp(t), t) = Gr(Lr(t), t),

or,
• at the boundary ∂Ω:

b(Gi(Li(t), t)) = 0.

where b(·, ·) is a C1 real function of two variables that describes locally the
boundary ∂Ω.

(b) If at the point s = 0, curve i intersects with the boundary instead of two other curves, then:

b(Gi(0, t)) = 0.

In this case, at the other end of curve i, at point s = Li(t), curve i intersects with two other
curves, namely curves p and r, at their ending point:

Gi(Li(t), t) = Gp(Lp(t), t) = Gr(Lr(t), t).

2. Angle conditions:

(a) At the point at which the curves intersect: If curves i, j, q intersect at their starting points,
for example, then:

Gis(0, t) · Gjs(0, t) = cos 2π
3 ,

Gqs(0, t) · Gis(0, t) = cos 2π
3 ;

(b) At ∂Ω:

< Gis(Li(t), t),

(
0 1
−1 0

)
∇b(Gi) >= 0.

where Gis =
∂Gi
∂s , Giss =

∂2Gi
∂s2 , Git =

∂Gi
∂t and < ·, · > is the Euclidean inner product.

Remark 1. Gi(s, t) are embeddings in the plane, and the network is in motion with the normal velocity equal to
the curvature law:

VN
i = ki.

VN
i = Git · Ni is the normal velocity of the curve Gi; Ni is the unit normal vector to Gi; Ti=Gis is the unit

tangent vector; and the vector (Ni, Ti) has the orientation of the coordinate system, which is valid locally.

Remark 2. VT
i is the tangential velocity of curve Gi and ki the curvature of curve Gi. Moreover, the velocity Vi

of the curve i is given by:
Vi = (VN

i , VT
i ),
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or, equivalently,
Vi = (Git · Ti, Git · Ni).

Note that Git · Ti = 0, because Giss is perpendicular to Ti, and thus:

Vi = (0, Git · Ni) and Git · Ni = Giss · Ni,

or, equivalently,
VN

i = ki.

1.2. Changing the Domain

It would be more convenient to formulate the problem in a way that the arc length parameter s
takes its values in a domain independent of time t. For this purpose, let:

Γi(·, t) : [0, li]→ Ω, i = 1, 2, ..., m,

and:
s(x) =

∫ x

0
|Γix(p, t)|dp,

with ds
dx = |Γix(x, t)|, t ≥ 0 and x ∈ [0, li]. Then:

Gis = Gix
dx
ds

.

Furthermore:
Giss =

∂Gix
∂s

dx
ds

+ Gix
∂

∂s
1

ds/dx
,

or, equivalently,

Giss = Gixx(
dx
ds

)2 − Gix
1

(ds/dx)3
d2s
dx2 ,

or, equivalently,

Γiss =
Γixx
|Γix|2

− Γix
1

(ds/dx)3
d2s
dx2 .

The system of equations (1) will then take the form:

Γit =
Γixx
|Γix|2

− Γix
1

(ds/dx)3
d2s
dx2

and will be defined in the set D = [0, li] × [0,+∞). Let Ti, Ni be the tangent and normal vector,
respectively, of curve i. Then, by multiplying the above expression by Ni, we get:

Γit · Ni =
Γixx
|Γix|2

· Ni + Γix
d2x
ds2 · Ni,

or, equivalently, by taking into account that Γix · Ni = 0:

Γit · Ni =
Γixx
|Γix|2

· Ni.

The tangential term in the equation can be assigned at will without affecting the equations
VN

i = ki. Thus, the m equations that are compatible with motion by curvature are the following:

Γit =
Γixx
|Γix |2

, i = 1, 2, ..., m, x ∈ [0, li], t ≥ 0. (2)
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Equations (2) have to be supplemented with the conditions of (1), which will take the following form:

1. Incidence conditions: A curve i has two ends at x = 0 and at x = li.

(a) If at the point x = 0, curve i intersects with two other curves, namely curves j and q, at
their starting points for example, then:

Γi(0, t) = Γj(0, t) = Γq(0, t).

Then, at the other end of curve i, at point x = li, curve i intersects:

• with two other curves, namely curves p and r, at their ending points for example:

Γi(li, t) = Γp(lp, t) = Γr(lr, t),

or,
• at the boundary ∂Ω:

b(Γi(li, t)) = 0.

(b) If at the point x = 0, curve i intersects with the boundary instead of two other curves then:

b(Γi(0, t)) = 0.

In this case, at the other end of curve i, at point x = li, curve i intersects with two other
curves, namely curves p and r, at their ending points for example:

Γi(li, t) = Γp(lp, t) = Γr(lr, t).

2. Angle conditions:

(a) At the point at which the curves intersect: If curves i, j, q intersect at their starting point for
example, then:

Γis(0,t)
|Γis(0,t)| ·

Γjs(0,t)
|Γjs(0,t)| = cos 2π

3 ,

Γqs(0,t)
|Γqs(0,t)| ·

Γis(0,t)
|Γis(0,t)| = cos 2π

3 ;

(b) at ∂Ω:

< Γis(li, t),

(
0 1
−1 0

)
∇b(Γi) >= 0.

The condition VN
i = ki is not sufficient by itself to determine the evolution. Different equations

for the embedding are expected to lead to different evolutions for the curves in which the nodes do not
affect the evolution.

1.3. Stability

In this subsection, we present the eigenvalue problem related to the equations of (2) in order to
study the stability of the steady states. We define the family of perturbations Γ̃ε

i = Γ̃i:

Γ̃i = Γi + ε(hN
i Ni + hT

i Ti), 0 < ε << 1,

where hN
i , hT

i : [0, li] → R are real-valued functions of class C2 and li is the length of curve Γ̃i. If ki
is the curvature of curve i, then from the Frenet formulas and [25–27], ∀i = 1, 2, ..., m, we obtain the
following eigenvalue problem:
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h′′Ni + hT
i kix − hN

i k2
i + 2kihT

i = −λhN
i ,

−2h′Ni ki − hNkix + h′′Ti − hT
i k2

i = −λhT
i .

(3)

The conditions of (2) will take the following form:

1. Incidence conditions: A curve i has two ends at x = 0 and at x = li.

(a) If at the point x = 0, curve i intersects with two other curves, namely curves j and q, at
their starting points for example, then:

hN
i (0) + hN

j (0) + hN
q (0) = 0,

hT
i (0) + hT

j (0) + hT
q (0) = 0;

Then, at the other end of curve i, at point x = li curve i intersects:

• with two other curves, namely curve p and r, at their ending points for example:

hN
i (li) + hN

p (lp) + hN
r (lr) = 0,

hT
i (li) + hT

p (lp) + hT
r (lr) = 0;

or,
• at the boundary ∂Ω:

hT
i (li) = 0.

(b) If at the point x = 0, curve i intersects with the boundary instead of two other curves, then:

hT
i (0) = 0.

In this case, at the other end of curve i, at point x = li, curve i intersects with two other
curves, namely curves p and r, at their ending points for example:

hN
i (li) + hN

p (lp) + hN
r (lr) = 0,

hT
i (li) + hT

p (lp) + hT
r (lr) = 0;

2. Angle conditions:

(a) At the point at which the curves intersect: If curves i, j, q intersect at their starting points
for example, then:

h′Ni (0) + hT
i (0)ki = h′Nj (0) + hT

j (0)k j = h′Nq (0) + hT
q (0)kq;

(b) at ∂Ω:
K∂Ω

i hN
i (li) = h′Ni (li).

The following Lemma has been proven in [25].

Lemma 1. If hN
i (x) ≡ 0, i = 1, 2, 3, 4, 5 and x ∈ [0, li], then hT

i (x) ≡ 0.

2. A Bounded Network with Two Inner Triple Junctions

We will begin the section with the following definition:

Definition 1. A junction of a network inside a bounded domain will be called an internal junction if all its
branches have their ends unattached to the boundary.
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We will now consider a network with a minimum number of inner junctions. Let Ω ⊂ R2 be a
bounded domain with boundary ∂Ω and a network formed of triple junctions and Γi(x, t), i = 1, 2, ..., 13
curves inside of Ω, as seen in Figure 3. Based on (2), where Γi(x, t) is the solution of the following
initial and boundary value problem:

Γit =
Γixx
|Γix |2

, i = 1, 2, ..., 13, x ∈ [0, li], t ≥ 0,

with conditions of the following form:

1. Incidence at the junctions:

Γ1(0, t) = Γ2(0, t) = Γ3(0, t);
Γ3(l3, t) = Γ4(l4, t) = Γ5(l5, t);
Γ5(0, t) = Γ6(0, t) = Γ7(0, t);

Γ8(l8, t) = Γ9(l9, t) = Γ10(l10, t);
Γ10(0, t) = Γ4(0, t) = Γ11(0, t);

Γ11(l11, t) = Γ12(l12, t) = Γ13(l13, t).

2. Incidence at the boundary ∂Ω:

b(Γi(li, t)) = 0, i = 1, 2, 6, 7;
b(Γi(0, t)) = 0 i = 8, 9, 12, 13.

3. Angle conditions at the junctions:

Γix(0,t)
|Γix(0,t)| ·

Γ(i+1)x(0,t)
|Γ(i+1)x(0,t)| = cos 2π

3 , i = 1, 2, 5, 6;

Γix(li ,t)
|Γix(li ,t)|

· Γ(i+1)x(li+1,t)
|Γ(i+1)x(li+1,t)| = cos 2π

3 , i = 3, 4, 8, 9, 11, 12;

Γ10x(0,t)
|Γ10x(0,t)| ·

Γ4x(0,t)
|Γ4x(0,t)| = cos 2π

3 ;

Γ4x(0,t)
|Γ4x(0,t)| ·

Γ11x(0,t)
|Γ11x(0,t)| = cos 2π

3 .

4. Angle conditions at ∂Ω:

< Γis(li, t),

(
0 1
−1 0

)
∇b(Γi(li, t)) >= 0, i = 1, 2, 6, 7;

< Γis(0, t),

(
0 1
−1 0

)
∇b(Γi(0, t)) >= 0, i = 8, 9, 12, 13.

Note that under these conditions, we have some sort of symmetry for the dynamical network
under study. The eigenvalue problem (3) will then take the form:

h′′Ni + hT
i kix − hN

i k2
i + 2kihT

i = −λhN
i , i = 1, 2, ..., 13;

−2h′Ni ki − hNkix + h′′Ti − hT
i k2

i = −λhT
i , i = 1, 2, ..., 13,

(4)

with conditions:
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1. Incidence at the junctions:

hN
i (0) + hN

i+1(0) + hN
i+2(0) = 0, i = 1, 5;

hT
i (0) + hT

i+1(0) + hT
i+2(0) = 0, i = 1, 5;

hN
i (li) + hN

i+1(li+1) + hN
i+2(li+2) = 0, i = 3, 8, 11;

hT
i (li) + hT

i+1(li+1) + hT
i+2(li+2) = 0, i = 3, 8, 11;

hN
10(0) + hN

4 (0) + hN
11(0) = 0,

hT
10(0) + hT

4 (0) + hT
11(0) = 0.

2. Incidence at the boundary ∂Ω:

hT
i (li) = 0, i = 1, 2, 6, 7;

hT
i (0) = 0, i = 8, 9, 12, 13.

3. Angle conditions at the junctions:

h′N1 (0) + hT
1 (0)k1 = h′N2 (0) + hT

2 (0)k2 = h′N3 (0) + hT
3 (0)k3;

h′N3 (l3) + hT
3 (l3)k3 = h′N4 (l4) + hT

4 (l4)k4 = h′N5 (l5) + hT
5 (l5)k5;

h′N5 (0) + hT
5 (0)k5 = h′N6 (0) + hT

6 (0)k6 = h′N7 (0) + hT
7 (0)k7;

h′N8 (l8) + hT
8 (l8)k8 = h′N9 (l9) + hT

9 (l9)k9 = h′N10 (l10) + hT
10(l10)k10;

h′N10 (0) + hT
10(0)k10 = h′N4 (0) + hT

4 (0)k4 = h′N11 (0) + hT
11(0)k11;

h′N11 (l11) + hT
11(l11)k11 = h′N12 (l12) + hT

12(l12)k12 = h′N13 (l13) + hT
13(l13)k13.

4. Angle conditions at ∂Ω:

K∂Ω
i hN

i (li) = h′Ni (li), i = 1, 2, 6, 7;

K∂Ω
i hN

i (0) = h′Ni (0), i = 8, 9, 12, 13.

The eigenvalues of (4) will give information about the stability of the network. Actually, we will
prove that the stability depends on the geometry of the boundary Ω.

Definition 2. We define the sign of a curvature as follows. At the points at which a curve is convex, we define
the sign of the curvature as positive, and at the points at which a curve is non-degenerate concave, we define the
sign of the curvature as negative.

Theorem 1. Let Ω be a bounded domain on the plane that contains a network formed by curves and triple
junctions, including inner junctions, as seen in Figure 3. Then:

(a) If the domain Ω is convex (an ellipse for example) at the points at which the steady state of the network
meets the boundary, then the steady state is unstable.
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(b) If the domain Ω is non-degenerate concave at the points at which the steady state of the network meets the
boundary, then the steady state is stable.

(c) If the domain Ω is flat at the points at which the steady state of the network meets the boundary, then the
steady state is neutrally stable.

Figure 3. A bounded network with two inner triple junctions.

Proof. Since we study the stability of the steady states, we shall rewrite the eigenvalue problem (4)
and its conditions by substituting ki = 0, ∀i = 1, 2, ..., 13. Also note that by using Lemma 1, we can
focus only on the functions hN

i . We have:

h′′Ni = −λhN
i , i = 1, 2, ..., 13, (5)

with conditions of the following form:

hN
i (0) + hN

i+1(0) + hN
i+2(0) = 0, i = 1, 5;

hN
i (li) + hN

i+1(li+1) + hN
i+2(li+2) = 0, i = 3, 8, 11;

hN
10(0) + hN

4 (0) + hN
11(0) = 0;

h′Ni (0) = h′Ni+1(0) = h′Ni+2(0), i = 1, 5;

h′Ni (li) = h′Ni+1(li+1) = h′Ni+2(li+2), i = 3, 8, 11;

h′N10 (0) = h′N4 (0) = h′N11 (0);

K∂Ω
i hN

i (li) = h′Ni (li), i = 1, 2, 6, 7;

K∂Ω
i hN

i (0) = h′Ni (0), i = 8, 9, 12, 13.

If λ < 0, then the solution of (5) is equal to:

hN
i = Cicosh(x

√
−λ) + Disinh(x

√
−λ), i = 1, 2, ..., 13, (6)

where Ci,Di are unknown real variables. By replacing (6) into the conditions of (5), we get:
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Ci + Ci+1 + Ci+2 = 0, i = 1, 5;

Ci + Ditanh(li
√
−λ) + Ci+1 + Ditanh(li+1

√
−λ) + Ci + Di+2tanh(li+2

√
−λ) = 0, i = 3, 8, 11;

C10 + C4 + C11 = 0;

Di = Di+1 = Di+2, i = 1, 5;

Citanh(li
√
−λ) + Di = Ci+1tanh(li+1

√
−λ) + Di+1 = Ci+2tanh(li+2

√
−λ) + Di+2, i = 3, 8, 11;

D10 = D4 = D11;

Ci(K∂Ω
i −

√
−λtanh

√
−liλ)− Di(

√
−λ− K∂Ω

i tanh
√
−liλ) = 0, i = 1, 2, 6, 7;

CiK∂Ω
i − Di

√
−λ = 0, i = 8, 9, 12, 13.

From the above equations, we have a homogeneous linear system of 26 unknowns (the real
variables Ci, Di, i = 1, 2, ..., 13) and 26 equations. In fact, by setting:

X = [C1, C2, ..., C13, D1, D2, ..., D13]
T ,

we can rewrite the above homogeneous linear system of equations in matrix form, i.e., AX = 026,1,
and get that the determinant of the matrix A is zero ∀li, i = 1, 2, ..., 13 if and only if:

√
−λtanh(li

√
−λ)− K∂Ω

i = 0, i = 1, 2, 6, 7. (7)

For the proof of (a), since Ω is a strictly convex domain, we have K∂Ω
i > 0, ∀i = 1, 2, 6, 7, 8, 9, 12, 13.

Hence, there exist λ < 0 given by (7), i.e., the determinant of the matrix A is zero, which means X
is non-zero and consequently hN

i 6= 0, ∀ i = 1, 2, ..., 13. Thus, the eigenvalue problem has negative
eigenvalues, which are the solutions of (7), i.e., the eigenvalue problem (5) has negative eigenvalues,
and the steady state is unstable.

For the proof of (b), since the curvature of the boundary (at the points at which it meets
the network) is assumed negative, K∂Ω

i < 0, ∀i = 1, 2, 6, 7, 8, 9, 12, 13, for λ < 0, we have√
−λtanh(li

√
−λ) > 0, −K∂Ω

i > 0, and hence, there do not exist λ < 0 such that (7) holds.
Consequently, the determinant of the matrix A in non-zero and X = 026,1, i.e., hN

i = 0, i = 1, 2, ..., 13..
Thus, the eigenvalue value problem (5) does not have negative eigenvalues, i.e., for λ ≤ 0, we get
hN

i = hT
i = 0, i = 1, 2, ..., 13. However, we need to consider the case of λ = 0. By replacing this into (5),

we get:
hN

ixx = 0, i = 1, 2, ..., 13,

or, equivalently,
hN

i = Aix + Bi, i = 1, 2, ..., 13.

Furthermore, the conditions of (5) take the form:

Bi + Bi+1 + Bi+2 = 0, i = 1, 5;

Aili + Ai+1li+1 + Ai+2li+2 + Bi + Bi+1 + Bi+2 = 0, i = 3, 8, 11;

B10 + B4 + B11 = 0;
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Ai = Ai+1 = Ai+2, i = 1, 3, 5, 8, 11;

A10 = A4 = A11;

K∂Ω
i (Aili + Bi) = Ai, i = 1, 2, 6, 7;

K∂Ω
i Bi = Ai, i = 8, 9, 12, 13.

The above homogeneous linear system has only the zero solution, i.e.,

Ai = Bi = 0, i = 1, 2, ..., 13,

Thus, for λ = 0, we have hN
i = 0, ∀i = 1, 2, ..., 13, i.e., the eigenvalue problem (5) does not have

zero eigenvalues.
For the proof of (c), we have that the boundary is flat at the points where it meets the network

(see Figure 4). This means that K∂Ω
i = 0, ∀i = 1, 2, 6, 7, 8, 9, 12, 13. In this case, since

√
−λtanh(li

√
−λ) > 0,

(7) does not hold. Hence, the determinant of the matrix A in non-zero and X = 026,1, i.e., hN
i = 0,

i = 1, 2, ..., 13.. Thus, the eigenvalue value problem (5) does not have negative eigenvalues. In the case of
λ = 0, the differential Equation (5) takes the form:

hN
ixx = 0, i = 1, 2, ..., 13,

or, equivalently,
hN

i = AN
i x + BN

i , i = 1, 2, ..., 13.

Figure 4. Flat boundary at the points where it meets the network.

Furthermore, the conditions take the form:

Bi + Bi+1 + Bi+2 = 0, i = 1, 5;
Aili + Ai+1li+1 + Ai+2li+2 + Bi + Bi+1 + Bi+2 = 0, i = 3, 8, 11;

B10 + B4 + B11 = 0;
Ai = Ai+1 = Ai+2, i = 1, 3, 5, 8, 11;

A10 = A4 = A11;
Ai = 0, i = 1, 2, 6, 7, 8, 9, 12, 13.

From the above equations, we get the solutions:
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Ai = 0, i = 1, 2, ..., 13;
Bi = αi, i = 2, 6, 7, 9, 10, 12, 13;

B1 = −α2 − α6 − α7 − α10 + α12 + α13;
B3 = α6 + α7 + α10 − α12 − α13;

B4 = −α10 + α12 + α13;
B5 = −α6 − α7;
B8 = −α9 − α10;

B11 = −α12 − α13,

where αi ∈ R are parameters. Hence, the problem has the zero eigenvalue. The zero eigenvalue has
geometric multiplicity seven. The proof is completed.

3. Hexagonal Network with an Internal Hexagon

In this section, we will study the case of a network of hexagons, with one of them having all its
branches unattached to the boundary.

Definition 3. A hexagonal network, which is part of a network inside a bounded domain, will be called an
internal hexagon if all its curves have their ends unattached to the boundary.

We will now consider a network with one internal hexagon, i.e., a hexagonal network with the
minimum number of hexagons that supports internal hexagons. We assume a bounded domain on the
plane that contains a network formed by seven hexagons, one of which is internal. An example of the
steady state of such a network is shown in Figure 5. As seen, the network has 24 junctions, 42 curves
and 7 hexagons; 12 curves out of the 42 have one end attached to the boundary. Below we provide
information regarding which curves are passing through each junction.

Junction 1 consists of Curves 1, 2, 3
Junction 2 consists of Curves 3, 4, 5
Junction 3 consists of Curves 5, 6, 7
Junction 4 consists of Curves 7, 8, 9
Junction 5 consists of Curves 9, 10, 11
Junction 6 consists of Curves 11, 12, 13
Junction 7 consists of Curves 13, 14, 15
Junction 8 consists of Curves 15, 16, 17
Junction 9 consists of Curves 17, 18, 19
Junction 10 consists of Curves 19, 20, 21
Junction 11 consists of Curves 21, 22, 23
Junction 12 consists of Curves 23, 24, 25
Junction 13 consists of Curves 25, 26, 27
Junction 14 consists of Curves 27, 28, 29
Junction 15 consists of Curves 29, 30, 31
Junction 16 consists of Curves 31, 32, 33
Junction 17 consists of Curves 33, 34, 35
Junction 18 consists of Curves 35, 1, 36
Junction 19 consists of Curves 36, 37, 38
Junction 20 consists of Curves 38, 6, 39
Junction 21 consists of Curves 39, 12, 40
Junction 22 consists of Curves 40, 18, 41
Junction 23 consists of Curves 41, 24, 42
Junction 24 consists of Curves 42, 30, 37.
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Written in bold are the curves that have one end attached to the boundary. Based on (2), Γi(x, t),
i = 1, 2, ..., 42 is the solution of the following initial and boundary value problem:

Γit =
Γixx
|Γix |2

, i = 1, 2, ..., 42, x ∈ [0, li], t ≥ 0,

with conditions:

1. Incidence at the junctions:

Γi(0, t) = Γi+1(0, t) = Γi+2(0, t), i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;
Γi(li, t) = Γi+1(li+1, t) = Γi+2(li+2, t), i = 3, 7, 11, 15, 19, 23, 27, 31;

Γ35(l35, t) = Γ1(l1, t) = Γ36(l36, t);
Γ38(l38, t) = Γ6(l6, t) = Γ39(l39, t);

Γ39(0, t) = Γ12(0, t) = Γ40(0, t);
Γ40(l40, t) = Γ18(l18, t) = Γ41(l41, t);

Γ41(0, t) = Γ24(0, t) = Γ42(0, t);
Γ42(l42, t) = Γ30(l30, t) = Γ37(l37, t).

2. Incidence at the boundary ∂Ω:

b(Γi(li, t)) = 0, i = 2, 10, 14, 22, 26, 34;
b(Γi(0, t)) = 0 i = 4, 8, 16, 20, 28, 32.

3. Angle conditions at the junctions:

Γix(0,t)
|Γix(0,t)| ·

Γ(i+1)x(0,t)
|Γ(i+1)x(0,t)| = cos 2π

3 ,

for i = 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 36, 37;

Γix(li ,t)
|Γix(li ,t)|

· Γ(i+1)x(li+1,t)
|Γ(i+1)x(li+1,t)| = cos 2π

3 ,

for i = 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32;

Γix(li ,t)
|Γix(li ,t)|

· Γ1x(l1,t)
|Γ1x(l1,t)| = cos 2π

3 , i = 35, 36;

Γix(li ,t)
|Γix(li ,t)|

· Γ6x(l6,t)
|Γ6x(l6,t)| = cos 2π

3 , i = 38, 39;

Γix(li ,t)
|Γix(li ,t)|

· Γ18x(l18,t)
|Γ18x(l18,t)| = cos 2π

3 , i = 40, 41;

Γix(li ,t)
|Γix(li ,t)|

· Γ30x(l30,t)
|Γ30x(l30,t)| = cos 2π

3 , i = 37, 42;

Γix(0,t)
|Γix(0,t)| ·

Γ12x(0,t)
|Γ12x(0,t)| = cos 2π

3 , i = 39, 40;

Γix(0,t)
|Γix(0,t)| ·

Γ24x(0,t)
|Γ24x(0,t)| = cos 2π

3 , i = 41, 42.

4. Angle conditions at ∂Ω:

< Γis(li, t),

(
0 1
−1 0

)
∇b(Γi(li, t)) >= 0, i = 2, 10, 14, 22, 26, 34;

< Γis(0, t),

(
0 1
−1 0

)
∇b(Γi(0, t)) >= 0, i = 4, 8, 16, 20, 28, 32.
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Note that under these conditions, we have some sort of symmetry for the dynamical network
under study. Furthermore, the eigenvalue problem (3) will take the form:

h′′Ni + hT
i kix − hN

i k2
i + 2kihT

i = −λhN
i = −λhN

i , i = 1, 2, ..., 45

−2h′Ni ki − hNkix + h′′Ti − hT
i k2

i = −λhT
i , i = 1, 2, ..., 45,

(8)

with conditions:

1. Incidence at the junctions:

hN
i (0) + hN

i+1(0) + hN
i+2(0) = 0 and hT

i (0) + hT
i+1(0) + hT

i+2(0) = 0,
for i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

hN
i (li) + hN

i+1(li+1) + hN
i+2(li+2) = 0 and hT

i (li) + hT
i+1(li+1) + hT

i+2(li+2) = 0,
for i = 3, 7, 11, 15, 19, 23, 27, 31;

hN
35(l35) + hN

36(l36) + hN
1 (l1) = 0 and hT

35(l35) + hT
36(l36) + hT

1 (l1) = 0;

hN
38(l38) + hN

39(l39) + hN
6 (l6) = 0 and hT

38(l38) + hT
39(l39) + hT

6 (l6) = 0;

hN
40(l40) + hN

41(l41) + hN
18(l18) = 0 and hT

40(l40) + hT
41(l41) + hT

18(l18) = 0;

hN
42(l42) + hN

30(l30) + hN
37(l37) = 0 and hT

42(l42) + hT
30(l30) + hT

37(l37) = 0;

hN
39(0) + hN

40(0) + hN
12(0) = 0 and hT

39(0) + hT
40(0) + hT

12(0) = 0;

hN
41(0) + hN

42(0) + hN
24(0) = 0 and hT

41(0) + hT
42(0) + hT

24(0) = 0.

2. Incidence at the boundary ∂Ω:

hT
i (li) = 0, i = 2, 10, 14, 22, 26, 34 and hT

i (0) = 0, i = 4, 8, 16, 20, 28, 32.

3. Angle conditions at the junctions:

h′Ni (0) + hT
i (0)ki = h′Ni+1(0) + hT

i+1(0)ki+1 = h′Ni+2(0) + hT
i+2(0)ki+2,

for i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

h′Ni (li) + hT
i (li)ki = h′Ni+1(li+1) + hT

i+1(li+1)ki+1 = h′Ni+2(li+2) + hT
i+2(li+2)ki+2,

for i = 3, 7, 11, 15, 19, 23, 27, 31;

h′N35 (l35) + hT
35(l35)k35 = h′N36 (l36) + hT

36(l36)k36 = h′N1 (l1) + hT
1 (l1)k1;

h′N38 (l38) + hT
38(l38)k38 = h′N39 (l39) + hT

39(l39)k39 = h′N6 (l6) + hT
6 (l6)k6;

h′N40 (l40) + hT
40(l40)k40 = h′N41 (l41) + hT

41(l41)k41 = h′N18 (l18) + hT
18(l18)k18;

h′N37 (l37) + hT
37(l37)k37 = h′N42 (l42) + hT

42(l42)k42 = h′N30 (l30) + hT
30(l30)k30;

h′N39 (0) + hT
39(0)k39 = h′N40 (0) + hT

40(0)k40 = h′N12 (0) + hT
12(0)k12;

h′N41 (0) + hT
41(0)k41 = h′N42 (0) + hT

42(0)k42 = h′N24 (0) + hT
24(0)k24.
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4. Angle conditions at ∂Ω:

K∂Ω
i hN

i (li) = h′Ni (li), i = 2, 10, 14, 22, 26, 34;

K∂Ω
i hN

i (0) = h′Ni (0), i = 4, 8, 16, 20, 28, 32.

The eigenvalues of (8) will give information about the stability of the network. Actually, we will
prove that stability depends on the geometry of the boundary Ω.

Figure 5. Hexagonal network with an internal hexagon.

Theorem 2. Let Ω be a bounded domain on the plane that contains a hexagonal network with one internal
hexagon; see Figure 5. Then:

1. If the domain Ω is convex (an ellipse for example) at the points where the steady state of the network meets
the boundary, then the steady state is unstable.

2. If the domain Ω is non-degenerate concave at the points where the steady state of the network meets the
boundary, then the steady state is stable.

3. If the domain Ω is flat at the points where the steady state of the network meets the boundary, then the
steady state is neutrally stable.

Proof. Since we study the stability of the steady states, we shall rewrite the eigenvalue problem (8)
and its conditions substituting ki = 0, ∀i = 1, 2, ..., 42. Note that by using Lemma 1, we can limit our
study only to the function hN

i . We have:

h′′Ni = −λhN
i , i = 1, 2, ..., 42, (9)

with conditions of the following form:

hN
i (0) + hN

i+1(0) + hN
i+2(0) = 0, i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

hN
i (li) + hN

i+1(li+1) + hN
i+2(li+2) = 0, i = 3, 7, 11, 15, 19, 23, 27, 31;

hN
35(l35) + hN

36(l36) + hN
1 (l1) = 0;

hN
38(l38) + hN

39(l39) + hN
6 (l6) = 0;
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hN
40(l40) + hN

41(l41) + hN
18(l18) = 0;

hN
42(l42) + hN

30(l30) + hN
37(l37) = 0;

hN
39(0) + hN

40(0) + hN
12(0) = 0;

hN
41(0) + hN

42(0) + hN
24(0) = 0;

h′Ni (0) = h′Ni+1(0) = h′Ni+2(0), i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

h′Ni (li) = h′Ni+1(li+1) = h′Ni+2(li+2), i = 3, 7, 11, 15, 19, 23, 27, 31;

h′N35 (l35) = h′N36 (l36) = h′N1 (l1);

h′N38 (l38) = h′N39 (l39) = h′N6 (l6);

h′N40 (l40) = h′N41 (l41) = h′N18 (l18);

h′N37 (l37) = h′N42 (l42) = h′N30 (l30);

h′N39 (0) = h′N40 (0) = h′N12 (0);

h′N41 (0) = h′N42 (0) = h′N24 (0);

K∂Ω
i hN

i (li) = h′Ni (li), i = 2, 10, 14, 22, 26, 34;

K∂Ω
i hN

i (0) = h′Ni (0), i = 4, 8, 16, 20, 28, 32.

Under these conditions, we have some sort of symmetry at the steady states for the network
under study. For more details about the structure, the symmetry and the hexagon decomposition that
appears, see [11]. If λ < 0, then the solution of (9) is equal to:

hN
i = Cicosh(x

√
−λ) + Disinh(x

√
−λ), i = 1, 2, ..., 42, (10)

where Ci,Di are unknown real variables. By replacing (10) into the conditions, we have:

Ci + Ci+1 + Ci+2 = 0, i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

Ci + Ditanh(li
√
−λ) + Ci+1 + Ditanh(li+1

√
−λ) + Ci + Di+2tanh(li+2

√
−λ) = 0,

for i = 3, 7, 11, 15, 19, 23, 27, 31;

C35 + D35tanh(l35
√
−λ) + C36 + D36tanh(l36

√
−λ) + C1 + D1tanh(l1

√
−λ) = 0;

C38 + D38tanh(l38
√
−λ) + C39 + D39tanh(l39

√
−λ) + C6 + D6tanh(l6

√
−λ) = 0;

C40 + D40tanh(l40
√
−λ) + C41 + D41tanh(l41

√
−λ) + C18 + D18tanh(l18

√
−λ) = 0;

C42 + D42tanh(l42
√
−λ) + C30 + D30tanh(l30

√
−λ) + C37 + D37tanh(l37

√
−λ) = 0;

C39 + C40 + C12 = 0;
C41 + C42 + C24 = 0;
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Di = Di+1 = Di+2, i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

Citanh(li
√
−λ) + Di = Ci+1tanh(li+1

√
−λ) + Di+1 = Ci+2tanh(li+2

√
−λ) + Di+2,

for i = 3, 7, 11, 15, 19, 23, 27, 31;

C35tanh(l35
√
−λ) + D35 = C36tanh(l36

√
−λ) + D36 = C1tanh(l1

√
−λ) + D1;

C38tanh(l38
√
−λ) + D38 = C39tanh(l39

√
−λ) + D39 = C6tanh(l6

√
−λ) + D6;

C40tanh(l40
√
−λ) + D40 = C41tanh(l41

√
−λ) + D41 = C18tanh(l18

√
−λ) + D18;

C37tanh(l37
√
−λ) + D37 = C42tanh(l42

√
−λ) + D42 = C30tanh(l30

√
−λ) + D30;

D39 = D40 = D12;
D41 = D42 = D24;

Ci(K∂Ω
i −

√
−λtanh

√
−liλ)− Di(

√
−λ− K∂Ω

i tanh
√
−liλ) = 0, i = 2, 10, 14, 22, 26, 34;

CiK∂Ω
i − Di

√
−λ = 0, i = 4, 8, 16, 20, 28, 32.

We have a homogeneous linear system of 84 unknowns (the real variables Ci, Di, i = 1, 2, ..., 42)
and 84 equations. In fact, by rewriting the above homogeneous linear system of equations in a matrix
form AX = 084,1, where X = [C1, C2, ..., C42, D1, D2, ..., D42]

T and by using MATLAB, we get that the
determinant of the matrix is zero ∀li, i = 1, 2, ..., 42 if and only if:

√
−λtanh(li

√
−λ)− K∂Ω

i = 0, K∂Ω
i > 0, i = 2, 10, 14, 22, 26, 34. (11)

For the proof of (a), since Ω is a strictly convex domain, K∂Ω
i > 0. Hence, there exist λ < 0 given

by (11), i.e., the determinant of A is zero and X has infinitely many solutions. Thus, the eigenvalue
problem (9) has negative eigenvalues, and the steady state is unstable.

For the proof of (b), the curvature of the boundary is negative at the points where it meets the
network (K∂Ω

i < 0). This means that (11) does not hold and the determinant of the matrix A is non-zero.
Hence X = 084,1, i.e.,

Ci = Di = 0, i = 1, 2, ..., 42,

or, equivalently,
hN

i = 0, i = 1, 2, ..., 42.

Thus, the problem does not have negative eigenvalues. In the case of λ = 0, (9) takes the form:

hN
ixx = 0, i = 1, 2, ..., 42,

or, equivalently,
hN

i = Aix + Bi, i = 1, 2, ..., 42.

Furthermore, the conditions take the form:

Bi + Bi+1 + Bi+2 = 0, i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;

Aili + Ai+1li+1 + Ai+2li+2 + Bi + Bi+1 + Bi+2 = 0, i = 3, 7, 11, 15, 19, 23, 27, 31;
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A35l35 + B35 + A36l36 + B36 + A1l1 + B1 = 0;

A38l38 + B38 + A39l39 + B39 + A6l6 + B6 = 0;

A40l40 + A41l41 + B18 + A18l18 + B18 = 0;

A42l42 + B42 + A30l30 + B30 + A37l37 + B37 = 0;

B39 + B40 + B12 = 0;

B41 + B42 + B24 = 0;

Ai = Ai+1 = Ai+2, i = 1, 2, ..., 40;

K∂Ω
i (Aili + Bi) = Ai, i = 2, 10, 14, 22, 26, 34;

K∂Ω
i Bi = Ai, i = 4, 8, 16, 20, 28, 32.

Note that because of the symmetry that appears in several parts at the steady states, every
solution of a difference equation related to the Bi’ s is periodic with a period of three. From the above
equations, Ai = 0, i = 1, 2, ..., 42. Then, the remaining unknowns will be 42 with 36 linear independent
equations. This means that we will have eigenfunctions independent of x, and their eigenspace will
have dimension six. Since the network contains six hexagons attached to the boundary (seven in total),
from the von Neumann–Mullins theorem, the network does not destabilise, but only rotates.

For the proof of (c), we have that the boundary is flat at the points where it meets the network.
This means that K∂Ω

i = 0; see Figure 6.

Figure 6. Flat boundary at the points where it meets the network.

In this case, since
√
−λtanh(li

√
−λ) > 0, (11) does not hold. Hence, the determinant of the matrix

A in non-zero and X = 084,1, i.e., hN
i = 0, i = 1, 2, ..., 42. Thus, the eigenvalue value problem (9) does

not have negative eigenvalues. In the case of λ = 0, the differential Equation (9) takes the form:

hN
ixx = 0, i = 1, 2, ..., 42,

or, equivalently,
hN

i = AN
i x + BN

i , i = 1, 2, ..., 42.
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Furthermore, the conditions take the form:

Bi + Bi+1 + Bi+2 = 0, i = 1, 5, 9, 13, 17, 21, 25, 29, 33, 36;
Bi + Bi+1 + Bi+2 = 0, i = 3, 7, 11, 15, 19, 23, 27, 31;

B35 + B36 + B1 = 0;
B38 + B39 + B6 = 0;
B40 + B18 + B18 = 0;
B42 + B30 + B37 = 0;
B39 + B40 + B12 = 0;
B41 + B42 + B24 = 0;

Ai = 0, i = 2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34.

From the above equations Ai = 0, i = 1, 2, ..., 42. Then, the remaining unknowns will be 42 with
24 linear independent equations. This means that we will have eigenfunctions independent of x and
their eigenspace will have dimension 18. The zero eigenvalue has geometric multiplicity 18. The proof
is completed.

4. Conclusions

In this article, we studied two problems of dynamical networks in the planar domain formed by
triple junctions, with some symmetry, fixed angle conditions at the points at which they intersect and
the normal velocity proportional to the curvature. We introduced the geometric evolution problem and
studied the stability of two cases, a network where two triple junctions have all their branches unattached
to the boundary and a network of hexagons, with one of them having all its branches unattached to the
boundary. In both cases, conditions were identified under which the steady states of these networks are
stable, unstable and neutrally stable. A further extension of this article is the stability investigation of
mixed domains (i.e., the case where at least two types of domains appear during the evolution) and 3D
evolution problems. Finally, there are very interesting applications that could be studied further such as:

• Grain growth problems: the increase in the size of grains (crystallites) in a material at
high temperatures;

• Neural networks that can be applied on the decomposition system (3) for ki = 0;
• Continuum modelling of electromechanical dynamics in large-scale power systems;
• Electrical networks of power systems that are not static and change their shape in time. This type

of network can include synchronization problems of nonlinear circuits in dynamic electrical
networks with general topologies and power system cascading risk assessment based on complex
network theory.

For all these issues, there is already some research in progress.
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