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Abstract: The obese population is increasing rapidly due to the change of lifestyle and diet habits.
Obesity can cause various complications and is becoming a social disease. Nonetheless, many obese
patients are unaware of the medical treatments that are right for them. Although a variety of
online and offline obesity management services have been introduced, they are still not enough
to attract the attention of users and are not much of help to solve the problem. Obesity healthcare
and personalized health activities are the important factors. Since obesity is related to lifestyle habits,
eating habits, and interests, I concluded that the big data analysis of these factors could deduce the
problem. Therefore, I collected big data by applying the machine learning and crawling method to
the unstructured citizen health data in Korea and the search data of Naver, which is a Korean portal
company, and Google for keyword analysis for personalized health activities. It visualized the big
data using text mining and word cloud. This study collected and analyzed the data concerning the
interests related to obesity, change of interest on obesity, and treatment articles. The analysis showed
a wide range of seasonal factors according to spring, summer, fall, and winter. It also visualized
and completed the process of extracting the keywords appropriate for treatment of abdominal
obesity and lower body obesity. The keyword big data analysis technique for personalized health
activities proposed in this paper is based on individual’s interests, level of interest, and body type.
Also, the user interface (UI) that visualizes the big data compatible with Android and Apple iOS.
The users can see the data on the app screen. Many graphs and pictures can be seen via menu, and the
significant data values are visualized through machine learning. Therefore, I expect that the big
data analysis using various keywords specific to a person will result in measures for personalized
treatment and health activities.

Keywords: big data; personalized health activities; machine learning (ML); automatic keyword
extraction; visualization

1. Introduction

Nowadays, there was significant development in the field of intelligent big data (IBD) analysis
where a multicore platform based on a large computing cluster was used. Despite the improvement,
too much complex information is still being provided for a single institute or a computing center
for processing.

Especially, the number of multimedia and user population will increase continuously and
exponentially due to the rapid spread of smartphones and social networking sites.

The obese population is increasing rapidly in Korea due to the change of lifestyle and diet
habits. According to the Ministry of Health and Welfare, the prevalence of obesity (over 19 years
old, standardization) has increased from 26.0% in 1998 to 29.2% in 2001 and 31.7% in 2007. For the
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last seven years, it has remained at 31~32%. During the same period, obesity in men increased from
25.1% in 1998 to 36.2% in 2007—up by 11.1% in the past nine years—and remained at around 35~38%.
Obesity in women remained at around 25% from 1998 to 2014 [1].

Obesity can cause various complications, and it has become a social disease. Nonetheless, there
are many obese patients who have no medical measures that are right for them. Although various
online and offline obesity management services are emerging, they are not enough to attract the
attention of users and have yet to be helpful in solving the problems.

The emergence of big data due to the spread of digital economy in the 21st century can provide
a clue to solving some problems in our society and economy. One of the most valuable uses of big data
is the health and fitness industry. The development of IT technology has given birth to a new phase of
transformation in the medical field. Note, however, that the introduction of big data in the domestic
medical industry has yet to be activated. It is still restricted in terms of actual use due to difficulties in
the search and statistics of atypical data. Big data can produce very meaningful results depending on
the collection and analysis method of a vast volume of data. The purpose of this study is to visualize
big data using text mining and word clouds and to prepare measures, if any, of personalized health
activities from more various perspectives.

The big data analysis can visualize a form by collected unstructured data fragments as a puzzle
generates a picture by matching scattered pieces. It can show meaningful results depending on
which algorithms or techniques it applies. Therefore, this study collected big data using crawling
method, visualized big data using text mining and word cloud, and took a machine learning approach
to prepare measures for personalized health activities in a variety of viewpoints. Figure 1 shows
bird’s-eye view of machine learning processing for automatic keyword extraction approach.

|

Crawling method

terabytes

Machine Learning

Visualized big data using
Text mining and Word cloud

Figure 1. Bird’s-eye view of machine learning processing for automatic keyword extraction.

The research team led by Professor Dev Roy at the MIT Media Lab worked with six fact-checking
organizations such as PolitiFact and factcheck.org to analyze 126,000 news articles that were categorized
as real or fake in 2006-2017 and confirm that the dissemination speed of fake news overwhelmed real
news. It published an article in Science [2]. Professor Roy and his research team used Al to collect the
activity data of 3 million users who directly referred or shared the categorized news and analyzed
the dissemination speed and the number of sharing on the network. The analysis result showed that
the number of shared fake news was 70% higher than the real news. It meant that fake news spread
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much more widely than real news. The research team reported that the statistical physical analysis of
comments to news showed that disgusting and amazing fake news is shared much faster than real
news. The paper explained that “fake news with new and exciting features can be easily transmitted
on the Internet and SNS” [2]. Such studies of big data analysis can visualize a form by collected
unstructured data fragments as a puzzle generates a picture by matching scattered pieces.

2. Related Works

Accordingly, the market for the big data is becoming larger over time and the data is being
used in different areas of our daily lives and much information is shared by the general population.
However, since the analysis of big data is very complicated and difficult that sometimes it is quite
hard to recognize its meaning and direction, the visualization of big data has come into the picture.
Recently, the big data analysis is shifting from SPSS/AMOS to R/TensorFlow.

Machine learning (ML) refers to studying various methods of achieving human-like learning
ability through machines, and from the data analysis results, the program can learn about rules or new
knowledge by extracting them automatically by itself. The techniques related to machine-learning
remaining at the basic level is now becoming more sophisticated due to the emergence of new data
mining techniques which can maximize their potential.

Recently, ML is one of the major areas of interest for the artificial intelligence systems, being at
the intersection of informatics and statistics and closely related to the data science and knowledge
discovery as well as the healthcare industry [3,4]. Especially, probabilistic ML is quite useful for the
health informatics where most of the problem-solving process involves removing of uncertainties.
The theoretical basis of the probabilistic ML was initially laid by Thomas Bayes (1701-1761) [5].
The probabilistic inference holds a key position in artificial intelligence and statistical learning where
the inverse probability allows one to infer unknown facts, deducing them from the available data and
making predictions [6,7].

Meanwhile, the scale of big data is much larger than that of the data generated from the analog
environment of the past, shorter in generation cycles, and not only the numerical data but the character
and image data are included in the big data as well. Since the use of PC, internet, or mobile devices
has become part of people’s daily routine, the volume of data left behind by them is increasing rapidly.

Along with the fact that the volume of big data has increased explosively, the types of data have
been also diversified such that people’s behaviors, as well as their thoughts and opinions can be
anticipated through positional information and SNS services. Many countries and companies are
attempting to construct and utilize the big data system now.

Accordingly, the market for the big data is becoming larger over time and the data is being
used in different areas of our daily lives and much information is shared by the general population.
However, since the analysis of big data is very complicated and difficult that sometimes it is quite hard
to recognize its meaning and direction, the visualization of big data has come into the picture [8].

Wau et al. [9] have argued that a large volume of data (big data) can be problematic when frequent
itemset mining has been used for the following reasons: (1) spatial complexity: the algorithm may not
be run as the system memory deal with a large input data as well as large intermediate results and
output pattern; (2) time complexity: many existing approaches depend on an exhaustive search or
a complicated data structure to obtain a frequent pattern but this is not suitable for big data. Thus,
they proposed an iterative sampling-based frequent itemset mining that samples the subsets instead of
processing entire dataset all together and then extracting the frequent itemsets from them.

Yang Luo et al. [10] maintained that segmenting the Left Ventricle (LV) from the cardiac MRI
image is essential when computing the clinical indices such as stroke volume, ejection fraction, etc.
Thus, in this study, an automated LV segmenting method where the hierarchical extreme learning
machine (H-ELM) is combined with a new location recognition method is proposed.

Ghadah Aldehim [11] claimed that using all the data for the feature selection, which is becoming
increasingly important in big data analysis and machine-learning, may lead to a selection bias while
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using the partial data could lead to an underestimation the relevant features under some conditions.
Thus, a research on the method with which can decide a suitable method for a specific dataset in terms
of reliability and effectiveness is being introduced in this study. Also, Tri Doan et al. [12] maintained
that selecting an appropriate categorization (classification) algorithm is a very important step in all the
data mining procedures. The run-time is used to assess the efficiency of a categorization algorithm.
In this study, a method that is helpful in finding an adequate algorithm in terms of efficiency has been
studied by introducing a tool that estimates the run-time of a particular categorization algorithm used
for a dataset based on the concept referred as meta-learning.

Meanwhile, Junhai et al. [13] proposed an algorithm having a higher performance level
(i.e, in G-mean) than other existing ensemble algorithms in terms of speed and scalability to effectively
categorize the imbalanced data into two classes.

A number of research directions are recognized [14,15]. First, sentimental classification which
classifies the contents in relation to the sentiments involving the opinion targets. Second, feature
(aspect)-based opinion mining that analyzes the sentiment towards certain characteristics of an object.
The examples of this can be found in [16,17]. Third, comparison-based opinion mining focuses on the
text where similar objects are being compared [18]. It is essential that the opinion mining methods are
identified with three individual levels: document, sentence, or entity/aspect levels but most of the
classification methods depend on identifying the opinion words or phrases involved. Also, their basic
algorithms are categorized as (1) supervised learning of which can be found in [19,20]; (2) unsupervised
learning as described in [21]; (3) partially supervised learning illustrated in [22]; and (4) other
approaches using the algorithms that use some of the latent variable models such as hidden markov
model (HMM) [23], conditional random fields (CRF) [24], latent semantic association (LSA) [25],
or pointwise mutual information (PMI) [26]. For these varying techniques, a number of researchers
had experimented them with a series of different algorithms and made comparisons [27-29].

A few research works have clearly focused on Web 2.0. In that case, while many of research
had dealt with weblogs [30-33] mainly investigating the correlation between blog posts and ‘real-life’
situations, a few other researchers evaluated the techniques used for the opinion mining targeting
the context of weblogs such that the main trend in the mining technique has not been identified
or suggested. Liu et al. made a comparison between varying linguistic features when classifying
the blog sentiment [34]. Some of the experimental studies were made with lexical and sentimental
features using separate learning algorithms to identify the opinionated blogs [35]. It is quite interesting
that there are so little research has been conducted about the opinion mining in the field of
“Discussion Forums” [36,37] whereas quite a number of researchers carried out their research focusing
on the microblogs (for Twitter, especially) and published the papers on them [38—42].

For the opinion mining of microblogs, the researchers primarily adopt the supervised or the
semi-supervised learning technique for the microblogs. Contrary to the rapid spread of social network
services led by Facebook and Twitters, the number of research concerning the opinion mining in the
social networks is not enough [43,44]. Although there have been quite a number of research works
published in the past decade concerning product reviews, it seems very little works for determining
the most effective opinion mining technique were introduced. It is evident that most of the researchers
are using the tex classification algorithms such as SVM, naive Bayes, or a combination of different
methods to enhance the reliability of opinion mining results but one of the most encouraging mining
technique would be LDA [45,46]. The LDA-based model that identifies both aspects and sentiments
together is proposed in [47]. Such a model also described in [48,49] stands on the premise that entire
words used in a sentence are relevant to a single topic. Gerald Petz introduced his research in the paper
titled “Opinion Mining on Characteristics of User Generated Content and Their Impacts” [50-59].

2.1. National Health Information Data

Among the data held by National Health Insurance Corporation according to the Korean
Government 3.0 Policy, the national health information data is public data that is open to the public
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and which enjoys high demand from the private sector. National health information data are “medical
history information” and “prescription medicine information and health examination information” of
national health insurance subscribers accumulated by the corporation as the corporation serves the
role of national health insurance data provider. In order to open safe data, the corporation excluded or
masked personal information and sensitivity data, and the target date of data provided is from 2002 to
2016. It is planning to expand the target period continually in the future.

2.2. National Health Data Selection Criteria
Table 1 shows national health data selection criteria.

Table 1. National Health Data Selection Criteria.

Category Contents

Extraction of sample Randomized extraction of 1 million patients each year

Individual serial number of each DB and serial number of charge

Limitati bination b cp . . .
titations on combination by resources differing according to sectional data

Removal of personal identifier Resident registration number — personal serial number (8 digits)

Age grouping, Age — Age group (by 5 years), 85 years or older

Cat izati .
ategorization categorized as “85 years or older”

Data masking Sensitive disease D, O, P, X, and Y code (5 types and 114 kinds)

Provided only for try codes (17 units offered) considering the

Top-level local code provision . -
recognition of samples in small areas

2.3. Excluding Personally Identifiable Information

Personal identification information (resident registration number, national health insurance
subscriber number, etc.) and easily identifiable information (name, telephone number, address,
photograph, etc.) are excluded from the national health information data.

2.4. Applying the Personal Information Non-Identifying Processing Technique

Data whose re-identification is possible is excluded from the opening through the prior filtering
of identifiable information by combining with other information. The possibility of identification was
excluded by applying the non-identifying processing technique suitable for individual items.

2.5. Health Checkup Information

Health checkup information is obtained by randomly selecting one million Korean national health
insurance subscribers who had health checkups in the year; the basic information of the selected
subscribers after the item selection process and the examination result information were then extracted.
The data are organized by year, with one million data and 34 attributes per year. Figure 2 shows survey
of Korean national health information data.
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Figure 2. Questionnaire for Citizen Health Data in Korean [1].
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3. A Big Data Analysis Method for Personalized Health Activities

3.1. Data Analysis

Aggregating data into a frequency table can show the overall characteristics better than raw data.
However, a person who is weak in numbers may not get any meaningful idea from the table. Therefore,
I use a graph called histogram to show the full data more intuitively. A histogram is a bar chart with
the class interval of the frequency distribution table on the horizontal axis and the frequency on the
vertical axis. I used R Studio because it was the most appropriate big data analysis tool for our data.

With R Studio, there were 542,321 men and 457,679 women in the total data of 1 million people
in the “Health Examination Information Data Set”. First, the body information of males and females
were checked, and each distribution was compared using histograms.

The health screening information data age group code is shown in Figure 3. The age group codes
of the national health information data set are grouped by age group (categorized by age 5). Therefore,
by using the subset () function of R Studio, the data were categorized according to age. As a result,
in the analysis of height by age, the data were collected by categorizing into 6 groups—20-24 years,
25-29 years, 30-34 years, 35-39 years, 40-44 years, and 45-49 years—and the mean and standard
deviation of height were determined. Table 2 shows data categorization by age and mean and standard
deviation of height.

¢ Code that distinguishes the age of the
examinee in the base year by grouping
(categorizing)
- (Total 14 groups) Grouped by 5 vyears
old until 2-81 years old, grouped by 85+
years old over 85 years

Age
range AGE Group Age Group Age
code (5 " group group
years | CROUP 1 20~24 8 55~59
old) 2 25~29 9 60~64
3 30~34 10 65~69
4 35~39 11 70~74
5 40~44 12 75~79
6 45~49 13 80~84
7 50~54 14 85+

Figure 3. Code and Data Parsing for each Age Group of Health Examination Data.

Table 2. Data Categorization by Age and Mean and Standard Deviation of Height.

Male Female
Age Group
M(cm) SD F(cm) SD
20~24 171.2276 6.087624 159.6198 5.377917
25~29 172.1218 5.981225 159.7551 5.378908
30~34 172.2063 5.879721 159.3983 5.412011
34~39 5.879721 5.792054 158.3623 5.401406
40~44 169.9034 5.799039 157.0913 5.385961
45~49 168.4616 5.667555 155.733 5.28603

In the next place, the study compared the height of the whole age group according to gender by
the histograms in Figure 4. In males, height was most distributed at 165-170 (cm), with females” height
most distributed at 150~155 (cm). The histogram of females showed a symmetrical distribution of the
population according to height, but the male histogram had a long tail to the left. To better understand
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the difference in height between male and female, the distribution of gender by combining histograms
was analyzed. The distribution of male and female histograms according to height shows that the
proportion of males increases with increasing height, whereas the proportion of females increases with
decreasing height.

The results of big data analysis as shown as the histogram of weight in Figure 5, indicate that
the portion of males increased as the weight increased while the portion of females increased when
the weight decreased. It shows the similar pattern as the height histogram depicting the difference of
heights of males and females, and thus the analysis results were successfully visualized.

150000

100000 sex_name

I Male
Female

count

50000

120 140 160 180
height

Figure 4. Male and Female’s Height Histogram.

150000

1000004

sex_name
Male
Female

count

500001

weight

Figure 5. Male and Female’s Weight Histogram.

Next, a body mass index (BMI) column is added to the data set to check for obesity. The BMI
value of each row is the weight (kg) divided by the square of height (m) (body weight (kg)/height
(m?)). At this time, the classification of obesity by body index is defined as ‘underweight’ when BMI is
less than 18.5, ‘normal” when BMI is 18.5~22.9, and ‘overweight’ when BMI is 23~24.9. The distribution
of BMI according to gender is as follows:
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In this case, the obesity distribution can be seen as a kind of normal distribution as shown in
Figure 6. This analysis can be influenced by the difference in the observed number of obese. Therefore,
the distribution of obesity (BMI > 25) > on body weight was analyzed. Also, Table 3 shows data
categorization by age and mean and standard deviation of height.

Table 3. Data Categorization by Age and Mean and Standard Deviation of Height.

Male Female
Age Group
Weight (kg) SD Weight (kg) SD
20~24 67.3603 11.01164 52.9281 9.047276
25~29 70.83247 11.73332 52.86799 8.80432
30~34 72.7386 11.64975 54.26461 9.46236
34~39 71.89527 11.0495 54.9672 9.108493
40~44 70.66983 10.39266 55.53917 8.915136
45~49 69.09484 9.692245 55.96567 8.463123

150000

100000
bmi_cate

Underweight
Normal

count

Overweight
Obesity

£0000

weight

Figure 6. BMI Histogram of Male and Female.

As a result, the obesity distribution graph according to body weight in Figure 7 shows that the
normal weight, overweight, and obesity appear evenly between 60 and 70 Kg in body weight, however,
the proportion of obesity increased rapidly. The proportion of BMI for the total population of the
dataset is shown below. Figure 8 shows the distribution of obesity according to body weight. Table 4
shows weight of the BMI in national health information data set.

As shown in Table 5, the big data analysis of the distribution of obesity according to body weight
revealed that people with a body weight of 25-40 kg tended to be underweight while those with
a body weight of 40-70 kg tended to be normal. The overweight people were evenly distributed up to
60-80 kg while 100% of people weighing more than 90 kg were obese. The obesity distribution graph
according to weight as shown in Figure 9 visualizes such change.

The next section is machine learning to create a suitable learning model through a large number
of data of one million people and to discover useful information.
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Table 4. Weight of the BMI in National Health Information Data Set.

Under Weight Normal Overweight Obesity
5.1026 41.9603 19.3267 33.6104

Table 5. Distribution of Obesity According to Body Weight.

Weight Under Weight Normal  Overweight Obesity

25 100.00 0.00 0.00 0.00
30 98.00 2.00 0.00 0.00
35 85.81 14.19 0.00 0.00
40 65.62 33.90 0.46 0.02
45 23.75 71.29 0.70 4.27
50 13.29 75.75 8.84 2.12
55 1.94 74.70 16.99 6.37
60 0.00 42.70 24.85 32.40
65 0.00 35.74 27.26 36.99
70 0.00 21.83 31.18 46.99
75 0.00 1.17 32.08 66.75
80 0.00 0.09 15.02 84.90
85 0.00 0.00 3.75 96.25
90 0.00 0.00 0.00 100.00
95 0.00 0.00 0.00 100.00
100 0.00 0.00 0.00 100.00
105 0.00 0.00 0.00 100.00
110 0.00 0.00 0.00 100.00
115 0.00 0.00 0.00 100.00
120 0.00 0.00 0.00 100.00
125 0.00 0.00 0.00 100.00
130 0.00 0.00 0.00 100.00

density

weight

Figure 7. Obesity Distribution According to Body Weight.
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Figure 8. Obesity Distribution by Body Weight Confirmed by R Studio.

BMI
« Underweight

= Normal

Prop

+ Overweight
* Obesity

Weight
Figure 9. Obesity Distribution Graph According to Weight.

3.2. Machine Learning

Machine learning involves the study of various methods of implementing human-like learning
abilities through a machine. It analyzes the given data and automatically extracts rules or new
knowledge that can be learned from the analyzed results and aims to get the effect that the machine
learns. Techniques related to machine learning have remained at the basic level, but they are becoming
more feasible due to the emergence of a large number of big data that can maximize the potential of
machine learning techniques.

In particular, the regression technique of machine learning differs from other machine learning
techniques since there are a number of techniques that can be applied to a task beyond one algorithm.
There are various techniques such as linear regression using one independent variable, multiple
regression using two or more independent variables, and logistic regression used to model binary
categorical results. The same basic principles apply to all regression techniques.

The “health checkup information data set” [1] includes various health checkup results in addition
to the obesity-related variables above. To investigate the effect of these variables on blood pressure,
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a regression technique that predicts the numerical data is used, and an appropriate model is created to
analyze the correlation.

The basic installation of R Studio does not include machine learning. In order to use the machine
learning algorithm implemented in R Studio, R Weka package, class package, and stats package were
installed and analyzed using the ‘install.packages’ () function.

To apply machine learning to data, the library () function is used to load the package. Initially,
a scatter matrix of “weight”, “total cholesterol”, “BMI”, “systolic blood pressure”, and “diastolic blood
pressure” variables are created to visualize the relationship between major properties.

Here, the ellipse on the scatter chart shows how strong the correlation is with the correlation
ellipse. “Weight” and “BMI” mean that the correlation is strong when they are extended to an ellipse.
If the circle shape such as “weight” and “total cholesterol” is strong, it means weaker correlation.
In the next place, “smoke” and “drink” are generated by using the ifelse () function to compare blood
pressure according to smoking status and alcohol consumption.

Meanwhile, as shown in Figures 10 and 11, the “systolic blood pressure (bp_high)” and linear
regression model associated with ten variables are fitted. In this case, b_data is new data created by
adding the variables required for a_data used in the preceding data analysis. After creating the model,
enter the object name of the model to check the regression coefficient.

The estimated regression coefficient shown in Figure 12 suggests how much bp_high (systolic
blood pressure) increases for each attribute when the other attributes remain constant. Bp_high
(systolic blood pressure) increases by 0.83 when age_group (age group code) is increased by 1 with
other values held constant. The values of height, weight, blds, and tot_chole (total cholesterol) showed
much lower values, indicating that blood pressure is very difficult to explain. bp_lwst (diastolic
blood pressure) is similar to systolic blood pressure, and women have a mean blood pressure that is
0.98 point lower than men. Likewise, BMI (Body Mass Index), drink (drinking alcohol), and smoke
(smoking) were more closely related compared with other variables. Next, the performance of the
model is evaluated by the summary () command.

50 150 250 350 20 120 160
| N I | | 11 | 11

weight r

100

fh, |1 0.05//0.79]/0.24 |

a0

i "3:‘ . tot_chole

bmi

0.30 -

15 20 25 30 35

bp_high

T T T T
40 80 30 100 15 20 25 30 35

Figure 10. Systolic Blood Pressure and Dispersion of Variables.
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Figure 11. Diastolic Blood Pressure and Dispersion of Variables.

> blood_model
call:
Im(formula = bp_high ~ age_group + height + weight + bp_lwst +
blds + tot_chole + sex_name + bmi + drink + smoke, data = b_data)

Coefficients:

{Intercept) age_group height weight bp_Twst blds
29.980212 0. 840636 -0.008331 0.015160 1.029828 0.021011
tot_chole sex_name(d bmi drink smoke
-0.002358 -0. 987055 0.319921 0.064554 0.028174

Figure 12. The Regression Coefficient of the ‘Blood_model” Model Object.

As shown in Figure 13, the Residuals section provides summary statistics for the error.
The maximum error of 111.895 indicates that the model has a difference of at least one predicted
value in at least one example. The value of Multiple R-Squared indicates how well the model describes
the value of the dependent variable. Like the correlation coefficient, if the value approaches 1.0,
the model fully explains the data.

0.6015 as the value of R-Squared means that this ‘blood_model’ model can account for 60% of the
dependent variable. A model with more attributes can provide higher values.

While the size of the error is part of the consideration, the regression model ‘blood_model” has
a value of 0.6015 and appears to work substantially well.

Next, this study analyzed not only the data analysis of the dataset but also the various keyword
trends that have been publicized through the media in the meantime and examined the various
problems and interest trends of national health to provide various kinds of personalized information.
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= summary (blood_model)

call:
Im(formula = bp_high ~ age_group + height + weight + bp_lwst +
blds + tot_chole + sex_name + bmi + drink + smoke, data = b_data)

rResiduals:
Min 10 Median Ely] Max
-46.504 -5.963 -0.534 5.370 111. 895

Coefficients:
Estimate 5td. Error T wvalue Pr=|t|)
(Intercept) 29.9802123 1.1385325 26.332 <2e-16 *®=%

age_group 0.8406365 0.0039987 210.228 <Ze-16 #w*
height -0.0083315 0.0069535 -1.198 0.2309
weight 0.0151597 0.0087309 1.736 0.0825 .
bp_Twst 1.0298284 0.0010013 1028.458 <2e-16 ##*
blds 0.0210110 0.0004050 51.878 <Ze-16 ##¥
tot_chole -0.0023583 0.0002544 -9.269 <2e-16 ##*
sex_name(H#& -0.9870549 0.0304033 -32.465 <Ze-16 ##¥
bmi 0.3199213 0.0231795 13.802 <2e-16 ##*
drink 0.0645540 0.0210837 3.062 0.0022 #*
smoke 0.0281745 0.0243699 1.156 0.2476
signif. codes: © ‘#*=' 0,001 ‘#=° Q.01 **' 0.05 *." 0.1 * "1

rResidual standard error: 9.163 on 999798 degrees of freedom
(191 observations deleted due to missingness)

Multiple R-squared: 0.6015, Adjusted R-squared: 0.86015

F-statistic: 1.509e+05 on 10 and 999798 DF, p-value: < 2.2e-16

Figure 13. Performance Evaluation of ‘Blood_model” Model.

3.3. Keyword Analysis Method

First, this study selected Naver News, an Internet newspaper, to analyze the field of interest in
public health. To collect Internet news related to obesity over the last 1 year, the crawling technique
was used, and the frequency of embedded words was analyzed. In addition, big data-based services
such as Naver Trend and Google Trends showing the keyword trends in real time were used. As in
the previous dataset analysis, web crawling for Internet news was done using statistical program R,
and text mining was performed to find meaningful information of embedded words.

3.3.1. Text Mining

Text mining is a technique for extracting and processing important information such as
the patterns, trends, and distributions of the text by analyzing the unstructured texts. With the
recent availability of big data, interest in large-capacity text analysis technology has increased,
and the importance of text mining technology is emphasized. Text mining basically expresses
unstructured /semi-structured data as a simplified model.

While the purpose of a data mining is to draw useful and potential patterns from the structured
data, text mining is the process of discovering new knowledge from a large unstructured textual group
composed of natural language. In other words, text mining is a process of finding interesting and
useful patterns from unstructured text finds new unknown knowledge or patterns with the resulting
logic. Since most of the information I use is in the form of unstructured textual data, the automated
analysis of textual documents in natural language is very important.

The method most commonly used in text mining is to generate a feature vector and find the
new knowledge or patterns by applying various techniques such as the statistical method to the
generated vector. These feature vectors extract keywords from the text and use them to categorize or
summarize documents.

The text mining method combines various techniques such as the automatic classification
(document clustering and text categorization), natural language processing, information extraction,
and information retrieval. The automatic classification refers to a task of grouping objects with similar
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patterns by a classification algorithm. There are two types of automatic classification depending
on the use of the preliminary classification system. The document clustering technique groups the
documents having similar contents without the preliminary classification while the text categorization
technique assigns the documents to the most suitable subject category classified in advance using the
machine learning.

3.3.2. Word Cloud

As a technique of visualizing the key words mentioned in the study, Word cloud enables
understanding intuitively the keywords and concepts of documents. For example, there is a technique
that allows a word to be expressed at a glance as much as it is mentioned. It is mainly used to derive
the characteristics of data when analyzing big data that deals with a huge amount of information.
Big data analysis tool R Studio provides a variety of packages for crawling, text mining, and word
cloud such as "KoNLP’, ‘wordcloud’, XML, ‘stringr’, ‘httr’, ‘rvest’, and ‘dplyr’. Data was collected
through crawling after installing the necessary packages. Figure 15 shows an example of word cloud
text image generated by big data analysis. The users can freely change the fonts, shapes, and sizes,
and there is no copyright issue.

3.3.3. Web Crawling

Web crawling is a computer program work that explores the World Wide Web in an organized,
automated manner. It is used to collect certain types of information on web pages by crawling the Web
using R Studio’s library (httr), library (rvest), and library (dplyr) packages. After searching the news,
the URL of the news web page is collected, including the URL of the news article in the web page.
Then, words in the news articles are crawled to extract the text and to save. It is analyzed as shown in
Figure 14.

Obesity news search .
News Article TEXT

) Craw!| Obesity News Crawling news articles .
Obesity news | g | Web Page / Collect | s  in the page ./Getting | gy | Crawl /News 1o | News article
search Web Page URL news article URLs Article TEXT EXT save (txt)
(page:1~page:n) Extract

Figure 14. Crawling Progress Step.

4. Big Data Analysis Result for Personalized Health Activities

First, the study hosted periodic searches on Naver News Big Data in Korea to see the people’s
interest in obesity by season. From 1 January 2013 to 1 March 2016, the search results were 655 pages
with 6545 articles, and 500 of them were crawled. Likewise, the study categorized periods for other
seasons and search for news and crawled. The number of web pages and the number of articles
according to each period are shown in the table below. Files crawled during the period 1 January-1
March are referred to as ‘winter.txt’; files crawled from 2 March to 1 June are referred to as ‘spring.txt’,
and files crawled from 2 June to 1 September are ‘summer.txt’. Finally, files crawled from 2 September
to 1 December are referred to as ‘fall.txt’. Table 6 shows number of web pages and articles in obesity
search by Naver News.

Table 6. Number of Web Pages and Articles in Obesity Search by Naver News.

Period (2016)  No. of Page No. of Article  No. of Crawled Article

1.1~3.1 655 6545 500
3.2~6.1 915 9145 450
6.2~9.1 772 7716 535

9.2~12.1 887 8863 525
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In the case of collected text files, words with “obesity” may include unnecessary words such as
special characters and numbers as well as words with meaningful relationships. Therefore, the study
used the gsup () function, which has a filtering function to remove characters and symbols deemed
to be unnecessary during keyword extraction. The gsub () function has the function of changing the
specified character or symbol to whatever character or space.

As shown in Figures 15-17, the filtered ‘winter.txt’ is shown in word cloud, and the frequency of
each word is determined. Meanwhile, the five most frequently used words are selected and displayed
as a graph and visualized during this period. The significance of each word is found and interpreted
as follows:
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Figure 15. Obesity Search Word Cloud in Winter.
Console «/data =
> view da4)
> head(sort(wordcount,decreasing = T),100) ir
aa3
ClOIHE Diet A2 Health
693 570
& Danger HIZt Obesity
291 261 _
&1} Effect Klgt Prevention
248 235
£2 Bellows JHXl Eggplant
204 179
AL Fat E3%2 Syndrome
154 153
93 Research ZA Symptom
152 139
(HAF Metabolism 24 Food
135 135
A Use 22t Publication
130 129
Z|D Best £& Exercise
128 125
Al&2t Eation habit Ct Plethora
123 118
M2t Thinking A2 Winter
118 115
LIEE Salt Msll New Year
15 115
22| Management g2| Cook
113 111 )
AIE Season 2HAL Attention
110 110 £
20 Life AlHl Real
110 110 -

Figure 16. Word Frequency Graph of ‘winter.txt’".
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Figure 17. Word Frequency Graph ‘winter.txt’.

The most commonly used words related to obesity in winter were “diet”, “health”, “risk”,
“obesity”, and “effect”. The analysis shows that obese people during this period are most interested in
diet and health, and that they are also paying attention to the dangers of obesity. It was followed by
the analysis of the crawled text file for another season.

As shown in Figures 18 and 19, the most frequently used words related to “obesity” in spring were
“health”, “diet”, “method”, “effect”, and “hosting” in order of frequency. There was no significant
difference compared to the winter period, but people had more interest in health and diet methods and
effects than the risk of obesity. In particular, the frequency of the word “hosting” increased, indicating
that various events related to obesity were hosted. In fact, during this period, various events such as
the “Healthy Living Practice Contest” hosted by the Korea Health Association, “Diet Recipe Contest”
hosted by the obesity professional treatment center, and a “Health Lecture” held at the Northern
Health Center were hosted.
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Figure 18. Obesity Search Word Cloud in Spring.
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Figure 19. Word Frequency Graph of ‘spring.txt’.

As shown in Figures 20 and 21, the most commonly used words in summer were “health”, “risk”,
“night snack”, “obesity”, and “summer”. During this period, interest in food and body shape is higher
than in other seasons. It can be seen that they had more interest in diet habits for body fat management
such as “summer”, “intake”, “food”, and “abdominal muscle”. In particular, due to the characteristics
of the summer season, this result is attributable to the fact that the body shape was most noticeable and
more prominent than in other seasons. In the next place, the study analyzed ‘fall.txt’, which crawled

obesity news during the fall period.
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JF%IO - EéP }g Et KT % $_ EH§ N2t oy Hurray 04 Object 04 Summer 44 Intake
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E‘]sz p(-_] 0:“ g’ - (‘):, j‘%] 2 Bercice 44 Pee N Business 44| Consumption
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Figure 20. Obesity Search Word Cloud in Summer.
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Figure 21. Word Frequency Graph of ‘summer.txt’.
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As shown in Figures 22 and 23, the three most frequently used words of “obesity news” in the
fall period were “health”, “diet”, and “risk”, which did not show much difference compared to other
seasons. Note, however, that the frequency of the two words “weight loss” and “fairy”, which have
a low relationship with obesity, increased greatly. It is analyzed that “Kim Bok-joo, weightlifting fairy”,
a drama aired during fall~winter 2016, has had great effect. It indicates that, in the crawling and word
cloud processes, more caution is required regarding the filtering process that excludes unnecessary
information. In addition to considering the exclusion of simple special characters, English alphabet,
etc., it is also necessary to pay attention to the general public’s social interest.

In the next place, the study tried to visualize the change in the interest of the Korean people in
obesity using the “biggest data-based service”, Google Trends, and check the relevant search terms to
study the customized countermeasures according to obesity.

Meanwhile, as shown in Figure 24, when we observe the graph of “obesity” change of interest of
Google Trends over the last year, the interest was high in January and May compared to other periods
but showed a sharp increase in December.

The influence of the drama as confirmed in the previous crawling process is analyzed to be large.
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Figure 23. Word Frequency Graph of ‘fall.txt’.

Obesity

Search word + Compare

Korea » Last 12months ~ All category ~ Web search ~

Change of Interest Defending Q
on Time

Figure 24. The Change of Korea’s Interest in Obesity over the Last Year in Google Trends.

As shown in Figure 25, Gwangju, Daejeon, and Jeollanam-do recorded 100, 95, and 93, respectively,
indicating that they were most interested in obesity. Jeju Island recorded 45, which is the lowest.
In this case, since the value of interest indicates the percentage of the total search words instead of the
absolute search number, the residents of Jeju Island show that the interest in obesity is about half of
that of Gwangju and Daejeon.

Interesting by

region 2]

1 Gwangju
2 Daejeon

3 Jeollanam-do

4 Chungcheongnam-do

&
aQ,
(o)
5
4

5 Chungcheongbuk-do

Figure 25. Obesity Interest by Region of Google Trends.
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As shown in Figure 26, interest was high in order of “lower body obesity

vou

7

21 of 30

abdominal obesity”,

“obesity clinic”, “childhood obesity”, and “high degree obesity”. Obese people are less concerned
about the causes of obesity and are more likely to have obesity and abdominal obesity.

Related
search word o

1

2

3

4

5

Lower body obesity

Abdominal obesity

Obesity clinic

Child obesity

Altitude obesity

Popularity «

Figure 26. Search Term Ranking Related to Obesity in Google Trends.

Next, this study analyzed crawl and word cloud for lower body obesity and abdominal obesity
and customized measures. In Naver News, 126 pages and 1276 articles were formed as a result of
the search for lower body obesity treatment, and 200 of them were crawled to generate a ‘lower.txt’
file. The search results for abdominal obesity treatment constituted 311 pages and 3120 articles,

and 250 articles were crawled and stored as ‘ob.txt’.

As shown in Figures 27-29, words mostly related to lower body obesity treatment in Naver News
were diet, correction, and pelvis. For people with lower body obesity, exercise such as pelvic correction
is helpful. In addition, considering the high frequency of the word “herbal”, oriental medicine such
as herbal diet is considered effective. Besides, it seems that attention should be paid to words or
complications that cause only lower incomes such as “swelling” and “pain”. Liposuction using

injections is also mentioned as one of the treatment methods.
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Figure 28. Frequency Graph of Word ‘lower.txt’.
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Figure 29. The Number of Frequency of ‘lower.txt” Word Cloud.

As shown in Figures 30-32, words most related to abdominal obesity treatment were health,
diet, treatment, obesity, fat, and syndrome. The incidence of syndrome is higher than lower body
obesity treatment, and it can be seen that various syndromes can be caused by abdominal obesity.
As with lower body obesity treatment, abdominal obesity treatment is also considered to be highly
effective in herbal diet, and caution is required because it can cause adult diseases such as diabetes and
hypertension. Finally, this study searched the keyword “obesity” in the US search site About.com and
conducted a web crawl. About.com is a US online information site founded in 1997, and it continues to
operate to date. It has a lot of information in various fields such as food information and recipe, health,
economy, and travel information since it has a long history of operation.

The search period for the news to crawl was 1 year from 1 January 2016 to 31 December 2016.
Similar to previous data analysis, crawled words were extracted, filtered, and saved as ‘obesity.txt’
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and visualized using word cloud. As shown in Figures 33 and 34, the ten most commonly used words
in the search results for “obesity” in About.com are “Weight”, “Obesity”, “Loss”, “Fat”, “Overweight”,
“Health”, “Kids”, “Body”, “Childhood”, and “Children”. Unlike Korea, in the US, the words “Kids”,
“Childhood”, “Children”, and so on were used for words related to obesity. Since the US has a higher
rate of childhood obesity than other countries, it focuses more on childhood life and diet habits related
to obesity.

The analysis showed a wide range of seasonal factors according to spring, summer, fall, and winter.
Its significance is that it completed visualization of the process of extracting the keywords appropriate
for treatment of abdominal obesity and lower body obesity. In other words, this study collected
big data by applying the machine learning and crawling methods to unstructured national health
information data and search data of Naver News and Google and then visualized them using text
mining and word cloud.
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Console c:/data/

[ reached getoption("max.print"”) -- omitted 5135 entries ]
> head(sort(wordcount,decreasing = T),100)
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Figure 32. The Number of Frequency of ‘ob.txt” Word Cloud.
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5. Android App and iOS App and their Implementation to Present the Significant Analysis
Results

Figure 35 shows the user interface (UI) that visualizes the big data compatible with Android and
Apple iOS. The users can see the data on the app screen. Many graphs and pictures can be seen via
menu, and the significant data values are visualized through machine learning. The toolbar is divided
into four areas including the menu, message, share, and help; the sub-directories are displayed when
a user taps the menu.

The previous section described the parameters related to the age, season, region, and obesity.
The sub-menu shows four buttons for these parameters. The user can select the menu and tap the
button to display the graph of the data that are intelligently computed.

29dNl 1200
< Data

Menu Age

Message Season

Share Region

Help Related to Obesity
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bp_high

T
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i
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Figure 35. User Interface to Visualize Big Data Compatible with Android App and Apple iOS App.

Figure 36 shows the interest in obesity according to the visualized region of the big data for
seasonal health search. It used the bar graph that looks like stairs to help the users understand it at
a glance. The data progresses from left to right.

Also, the Ul is organized to show the randomly arranged words, show the graph that represents
them, and identify the most frequently used word. The analysis result indicates that the word “health”
was used most frequently among the words displayed in the graph of four seasons. The number
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signifies the number of times the word “health” was used. Figure 37 visualizes the interest in obesity
according to the region. The regions can be ranked for users’ convenience. The big data analysis
presents the meaningful result like a puzzle that shows a big picture when all pieces are put together.

Obesity Search Most
Word Cloud in Used word

tach season

2237

Health

Figure 36. Interest in Obesity According to Visualized Region of Big Data for Seasonal Health Search.

nd 3
Obesity Interest 274 Dae-jeon
by Region o5

454 Ch h ~d
RS 57 Chungcheongbuk-do
88
88

1** Gwang-ju

100

Figure 37. Interest in Obesity According to Region.

6. Conclusions and Future Work

In this paper, I analyzed the unstructured health data of one million Korean citizens using the
datasets provided by the National Health Insurance Service using the machine learning and applied
the text mining to the big data services such as Google Trends, Naver News, and About.com to analyzing
the keyword big data for personalized health activities. It visualized the big data using text mining
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and word cloud. This study collected and analyzed the data concerning the interests related to obesity,
change of interest on obesity, and treatment articles. The analysis showed a wide range of seasonal
factors according to spring, summer, fall, and winter. Its significance is that it completed visualization
of the process of extracting the keywords appropriate for treatment of abdominal obesity and lower
body obesity.

As a result of analyzing the health examination information data set using the big data analysis
tool R Studio, the distribution of obesity degree such as height and weight according to gender can
be determined, including the obesity degree distribution according to body weight. Care should be
taken when the weight exceeds 85 kg since the overweight and obese populations are high in that level.
In addition to the various attributes used in this study, the health examination information data set
contains more variables, so it is possible to analyze data from more diverse perspectives.

In the next place, data schematization such as crawling and word cloud can facilitate the
analysis by clearly and concisely dividing the information. Nonetheless, careful attention is required
because it can cause unintended and distorted results in the user’s data classification or at the
schematization stage.

Meanwhile, seasonal obesity did not show a significant difference; the dramatic change in the
interest rate of obesity in Google Trends in December is analyzed to have been influenced by the
recent drama. The degree of interest in obesity by region was also significantly different. In particular,
interest in obesity between Jeju residents and Gwangju and Daejeon residents had more than double
the difference. Thus, future analysis on this issue would also have a significant effect on obesity.
Abdominal obesity and lower body obesity were categorized as Naver News crawling, with lower
body obesity showing that exercise such as pelvic correction was helpful and abdominal obesity
showing a higher risk of obesity-related syndrome and adult disease. Herbal diet had an effect on both
abdominal obesity and lower body obesity but higher frequency in the lower body obesity treatment.

The study included data collection and analysis of obesity-related areas of interest, changes in
obesity interest, and treatment articles. It was a process of extracting keywords for the treatment
of abdominal obesity and lower body obesity. Since each subject has different interests, interest
level, and physical constitution, however, there is a need to select a variety of keywords suitable
for the individual and perform big data analysis in order to prepare a countermeasure for more
personalized treatment methods and health activities. Likewise, if big data is collected, processed,
and analyzed using various techniques, it is expected to be able to prevent and treat various diseases
including obesity.
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