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Abstract: Multimodal biometrics combine a variety of biological features to have a significant impact on
identification performance, which is a newly developed trend in biometrics identification technology.
This study proposes a novel multimodal biometrics recognition model based on the stacked extreme
learning machines (ELMs) and canonical correlation analysis (CCA) methods. The model, which has
a symmetric structure, is found to have high potential for multimodal biometrics. The model
works as follows. First, it learns the hidden-layer representation of biological images using extreme
learning machines layer by layer. Second, the canonical correlation analysis method is applied
to map the representation to a feature space, which is used to reconstruct the multimodal image
feature representation. Third, the reconstructed features are used as the input of a classifier for
supervised training and output. To verify the validity and efficiency of the method, we adopt it
for new hybrid datasets obtained from typical face image datasets and finger-vein image datasets.
Our experimental results demonstrate that our model performs better than traditional methods.

Keywords: multimodal biometrics; extreme learning machine; canonical correlation analysis;
deep network

1. Introduction

The field of biometrics has gained attention globally because of its broad application prospects,
and huge social and economic benefits. However, it could affect the performance of a single-mode
biometric identification system that has biometrically detected “noise” (such as a fingerprint with
a scar or a changed voice due to a cold). A solution known as the fusion strategy of multimodal
biometrics or multi-biometrics has been found, and it represents a contemporary trend [1].

Deep learning is a promising study of machine learning, and it has recently gained more attention.
Many studies show that a deep network with a multiple hidden-layer neural network architecture
has the advantage of mining effective information fully for data, and it can also successfully achieve
unsupervised learning of single-mode data (text, images, voice, etc.) [2], which inspires the multimodal
deep learning.

An important prerequisite for multimodal deep learning is the extraction of a hybrid mode.
Many works have been made for modal fusion. For example, Liu et al. [3] proposed multimodal
stacked auto-encoders for a video classification task, which models image, audio, and text for joint
features of the signal. Ngiam et al. [4] regarded the sparse restricted Boltzmann machines as a basic unit
of the model and introduced the idea of the auto-encoder to learn the joint characteristics of video and
audio input and further applied it to the audio-visual language classification for isolation of letters and
numbers. Srivastava et al. [5] learned multimodal data expression via the Deep Belief Network model,
which mapped multi-data to a joint hidden expression layer and defined a joint density model on
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the multimodal input space to fill in the missing data. All the mentioned multimodal deep-learning
models can obtain satisfactory performance but are inevitably influenced by the negative impact of the
back propagation algorithm on generalization performance and learning speed [6].

Meanwhile, extreme learning machines (ELMs) [7], with their fast learning speed and efficient
computational efficiency, have attracted more attention than the traditional deep-learning methods.
ELMs prevents the disadvantages of the BP algorithm and obtains robust feature representation.
Therefore, we present the novel concept of stacked ELMs, which simply uses an ELM as the
learning unit. It inherits both advantages of auto-encoder’s computational efficiency and ELM’s
fast learning speed.

The second challenge in the multimodal biometric system lies in effective feature fusion.
Data fusion consists of three levels—pixel-level, feature-level, and decision-level. Paul et al. [8]
introduced a decision fusion for multimodal biometric systems using Social Network Analysis (SNA),
which was utilized to reinforce the confidence level of the classifier to reduce error rate. Haghighat et al. [9]
presented the Discriminant Correlation Analysis (DCA), a feature-level fusion technique that
incorporates class associations during the correlation analysis of the feature sets. A fusion method
may boost recognition rates but also cause greater consumption of calculation. More studies about
simple but effective fusion method have been conducted.

The Canonical Correlation Analysis (CCA) method can calculate the relationship between two sets
of variables. The principle of CCA is described as follows: It selects a representative comprehensive
index (a linear combination of the variables) from two groups of random variables; the correlation of
the index can represent the relationship between the original two sets of variables; and that relationship
can be reasonably simplified in the process of the correlation analysis of the two groups. We hold that
applying the CCA method on a multimodal biometric image to construct the multimodal image’s
shared feature space and to reconstruct multimodal image characteristics is an effective means of
finding out cross-modal characteristics. So, we take the CCA method into consideration and treat it as
our feature-level fusion strategy.

The rest of this paper is arranged as follows: Section 1 introduces the basic theory of related
research methods. Section 2 describes our proposed novel method with its algorithm description.
Section 3 verifies the algorithm performance via several experiments and the subsequent analysis of
the experimental results. Section 4 summarizes the proposed approach and introduces new ideas for
future research.

2. Materials and Methods

2.1. Related Work

This section presents the basic theory of the relevant research methods used in our paper—the
ELM and CCA methods.

2.1.1. The ELM Method

The ELM method was proposed by Huang Guangbin of Nanyang Technological University [10].
This method is used to solve the single hidden-layer neural network algorithm. Traditional neural
network learning algorithms (such as the BP algorithm) need to obtain a large amount of network
training parameters and easy-to-produce local optimal solutions. In contrast, an ELM has a duty
to only set the number of hidden-layer nodes of networks and not to adjust the network weights
of the input and hidden bias. Thus, the ELM method takes advantages of fast learning speeds
and good generalization capability. A feed-forward neural network with L hidden-layer nodes is
described below:

fL(x) =
L

∑
i=1

βiG(Wi
∗Xj + bi) = h(x)β, j = 1, · · · , N (1)



Symmetry 2018, 10, 96 3 of 13

where G(·) is the activation function, Xj denotes the jth sample, Wi is input weight, βi is output weight,
bi is bias, and h(x) is the output of the hidden layer.

Algorithm 1 summarizes the ELM algorithm.

Algorithm 1. The extreme learning machine (ELM) algorithm.

Input: training set δ = {(xiti)|(xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N)}, activation function g(x) and hidden-layer
node number n
Output: the output weight β

Step 1: Randomly assign input weight wi and bias bi
Step 2: Calculate the hidden-layer output matrix H.
Step 3: Calculate the output weight β. β = H† ∗ T, where T = [t1, · · · , tN ]T

In the algorithm mentioned above, the method used to calculate H† (the Moore–Penrose matrix
of the hidden-layer output matrix H) is orthographic projection: that is, when HT H is nonsingular,
H† = (HT H)

−1HT ; when HHT is singular, H† = HT(HHT)
−1. According to the principle of ridge

regression, during the calculation of H†, a smaller positive number 1
λ is introduced on the diagonal of

HHT or HT H as a regularization item, which improves the generalization performance of the extreme
learning machine. Therefore, in the regularization-based ELM:

When the number of training samples is greater than the number of hidden-layer nodes, the
output weight matrix β̂ can be calculated by following equation:

β̂ = (
1
λ
+ HHT)

−1
HTT, N > nh (2)

Otherwise, when the number of training samples is less than the number of hidden-layer nodes,
the output weight matrix β̂ calculation formula is:

β̂ = (
1
λ
+ HHT)

−1
HTT, N > nh (3)

Compared with traditional gradient-based algorithms, the ELM algorithm has two significant benefits.
Firstly, it learns faster than most of the traditional learning algorithms. Secondly, all of the network
parameters in the ELM algorithm do not need to adjust except for the number of hidden-layer node.
Furthermore, the ELM algorithm can always search for the optimal solution directly with no
fitting problem. These features make the ELM method more flexible and appealing than the traditional
gradient-based algorithms. Recent studies show broad application prospects for the ELM algorithm.
For example, Xie et al. [11] applied the ELM method to projective feature learning for 3D shapes.
Akusok et al. [12] applied a tool box of ELM algorithms for big-data application.

2.1.2. The CCA Method

The CCA method was suggested by Harold Hotelling [13]. It is a multivariate statistical
analysis method, which uses the correlation between the comprehensive variable pairs to reflect
the overall correlation between two groups of indicators. Its basic principle is described as follows: in
order to obtain the relevant relationship between the two groups of indicators on the whole, it extracts
two representative aggregate variables, U1 and V1 (which is a linear combination of the variables in
the two-variable set), from the two groups of variables. It then uses the relationship between the two
variables (U1 and V1) to reflect the overall correlation between the two groups of indicators [14].

The CCA method is the most commonly used algorithm for data mining [15], which has wide
application in the multi-view study of features fusion [16]. Yang et al. [17] presents a CCA network
(CCANet) to address image classification. This represents images by two-view features. Multi-view
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study usually treats homogeneous data as its input. However, in this study, we attempt to put the
CCA method into heterogeneous data.

Algorithm 2 shows the CCA Algorithm:

Algorithm 2. The canonical correlation analysis (CCA) algorithm.

Input: δ = {xi, yi|(xi ∈ Rm, yi ∈ Rn, i = 1, . . . , K)

Output: ρ—the correlation coefficient of output: X, Y;

Step 1: calculate the variance of X and Y: Sxx, Syy and covariance of X and Y, and Y and X: Sxy Syx;
Step 2: calculate the matrix M = 2

√
Sxx ∗ Sxy ∗ 2

√
Syy;

Step 3: make singular value decomposition for matrix M, obtain the largest singular value ρ and its
corresponding left and right singular vectors U and V;
Step 4: calculate the linear coefficient vectors of X and Y: a = 2

√
Sxx ∗U, b = 2

√
Syy ∗V;

2.2. Proposed Method

This section describes our proposed method, which includes the related theory, structural frame,
and algorithm steps:

2.2.1. The Stacked ELM Model

The most important thing in most supervised learning tasks is the effectively learning of
the abundant characteristics of data, which represent whether the model has good generalization
performance. Limited by the single hidden-layer feed forward neural network architecture,
the traditional ELM model is unable to capture a high level of abstraction of accurate information
although there are a lot of hidden nodes. Meanwhile, compared with the multilayer neural network,
deep architecture can help elucidate the hierarchy of characteristics to construct a high-level
presentation of data from low-level characteristics. However, affected on the influence of the
BP algorithm, the deep neural network trains slowly and has lower efficiency. To make full use
of the advantages of the ELMs and the deep neural network, this study proposes improving learning
features by means of unsupervised learning via stacked ELMs and transferring the step-by-step
low-level features to form complete feature representation. The model essentially is a multilayer
feed-forward network and its parameters are achieved by a cascade of extreme learning machines.

The stacked ELM model can also be disassembled into multiple ELM models, where each hidden
layer can be regarded as an independent ELM for feature extraction. Furthermore, to complete
the reconstruction of the input, the ELM treats input as the ideal target output (i.e., T = X).
Figure 1 describes the feature learning process for the stacked ELM model in detail where the input
image is treated as the target output in the first ELM (T = X) to calculate the output weight matrix
β1 (in red box). Then, the output of the first hidden layer H1 = β1 × X is treated as the second
input and target output of the ELM (T = H1) to calculate the output weight matrix β2 (in green box).
Finally, we obtained a high-level feature representation β3 × H2. Hence, the system becomes a linear
model and the output weight matrix of each ELM βk can be computed according to the number of
hidden-layer nodes. By using the recursive learning approach, we get the unsupervised high-level
feature representation for original input data—the h hidden-layer output, which is Hh.



Symmetry 2018, 10, 96 5 of 13

Figure 1. The stacked ELM model.

2.2.2. The S-E-C Model for Multi-Biometrics Recognition

The multimodal deep-learning model can be divided into two categories according to the input
data types [18]: homogeneous input data and heterogeneous input data. The homogeneous data
conforms to the similar statistical law. Differ from homogeneous data, the heterogeneous input
data has a great gap in statistics law, such as in the form of text and image data. When the input
of each modality is homogeneous data, we usually cascade the modal data into a vector as input
of the deep-learning method, such as Stacked Auto-Encoder (SAE) or Deep Belief Network (DBN),
while the Restricted Boltzmann Machines (RBM) or Auto-Encoder (AE) serves as the multimodal
input characters. The approach establishes the common model according to the distribution of distinct
input data but ignores the particularity of each modality. As a result, it is usually hard to get the
optimal joint expression. Meanwhile, for the heterogeneous input data, Ngiam presented a method
that trains each modality for the first layer feature expression. This method assumed that the lower
hidden-layer realizes a single-mode state expression, while the high-level expression is multimodal.
Figure 2 shows the structural frame of the proposed model named the S-E-C model.

The multimodal training system is divided into three separate stages: unsupervised feature
representation of each modality, features fusion between the modality, and supervised classification.
The multimodal input data are face images and finger-vein images, which belong to heterogeneous data.
For feature extraction, we obtain the high-level hidden-layer representation of two modals via stacked
ELM (H3 Representation), and for fusion strategy, we selected the CCA method. The application of the
CCA method to our model has following advantages: First, the CCA method is similar to the principal
component analysis method, which can reduce the feature dimension without losing information and
further reduce computing consumption. Second, the CCA method can analyze the correlation between
the two groups of variables, which aids in the reconstruction of cross-modal characteristics.
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Figure 2. Structural frame of the S-E-C model.

In the previous step of our model, the same method is used for unsupervised feature
representation of each modal to obtain a unified expression for further conduction, which presented a
symmetric structure in the model.

A detailed description of the S-E-C model is shown as follows:
Given a training set that contains m samples (x(i)1 , x(i)2 , l(i)) (i = 1, · · · , m), here, xi

1 ∈ Rnc is the

face feature vector for ith sample, x(i)2 ∈ Rnd is the finger-vein feature vector for ith sample, l(i) ∈ R2

is the corresponding label vector for ith sample (x(i)1 , x(i)2 ), and nc, nd denote the dimension of face
feature vector and finger-vein feature vector, respectively. The feature vectors of all the m samples
constitute a new feature matrix X1, X2, and the corresponding label matrix is L. Algorithm 3 shows the
whole training algorithm.



Symmetry 2018, 10, 96 7 of 13

Algorithm 3. The S-E-C algorithm description.

Input: face feature matrix X1 = [x(1)1 , x(2)1 , · · · , x(m)
1 ]

T
, finger-vein face vector X2 = [x(1)2 , x(2)2 , · · · , x(m)

2 ]
T

and

label matrix L2 = [l(1)1 , l(2)1 , · · · , l(m)
1 ]

T
.

Output: weight matrix Wi,j(i ∈ [1, k], j ∈ [1, 2]),

Initialize: choose the depth of the model for each modality k and hidden-layer node nk.
for j = 1 to 2 do

H0,j = Xj
for i = 1 to k do

(1) Randomly generating hidden-layer input weighting matrix Wi,j and Bias matrix Bi,j;
(2) Calculating hidden-layer output: Hi,j = g(Wi,j Hi−1,j + Bi,j);
(3) Computing β̂i,j using Equations (3) or (4) under the condition

H = Hi,j, T = Hi−1,j;

(4) calculating Wi,j, Wi,j = (̂βi,j)
T ;

(5) update the hidden-layer output: Hi,j = g(Wi,j Hi−1,j + Bi,j);
end for

end for
Canonical correlation analysis:

(1) Calculate the variance of HT
k,1 and HT

k,2: Sxx = cov(Hk,1, Hk,1), Syy = cov(Hk,2, Hk,2) and
Sxy = cov(Hk,1, Hk,2)

(2) Calculate the matrix M: M =
√

Sxx ∗ Sxy ∗
√

Syy;
(3) Make singular value decomposition for matrix M, obtain the largest singular value ρ and its

corresponding left and right singular vectors U and V: [U, D, V] = SVD(M);
(4) Calculate the linear coefficient vectors of HT

k,1, HT
k,2: Zx =

√
Sxx ∗U, Zy =

√
Syy ∗V;

(5) Construct feature representation: Hk+1 = Zx + Zy.
Supervised training and testing:

Applying simple ELM to a new dataset [L, Hk+1]

Computing β̂k+1 using Equation (3) or (4) under the condition H = Hk+1, T = L:

Figure 2 shows that the face and finger-vein image are treated as the input layer of the S-E-C
model and is expressed as follows:

H0,j = Xj(j = 1, 2) (4)

To learn the high-level representation of modal characteristics, we apply a two-layer stacked ELM
to face image features X1 and finger-vein image features X2 for feature learning prior to the modal
information fusion. The output of the hidden layer can be respectively described as follows:

Hi,j = g(Wi,jHi−1,j + Bi,j), for i = 1, 2, 3; j = 1, 2, (5)

where g(·) is the hidden-layer activation function, with sigmoid function H∗ (* subscript on behalf of
the hidden layer and the modality) is the hidden-layer output matrix, which denotes the nonlinear
feature extracted from both the face image feature X1 and the finger-vein image feature X2. For example,
Hi,j expresses the feature representation of jth modality and ith hidden layer. Similarly, B∗ represents
the bias matrix of the corresponding modality and hidden layer.

When getting high-level features within the modal, that is H3,1, H3,2, we try to obtain the joint
feature expression by using the CCA method, which is expressed as follows:

H4 = f (H3,1, H3,2) (6)

where f (·) denotes the CCA fusion method.



Symmetry 2018, 10, 96 8 of 13

Lastly, we will receive two-modal joint characteristic representation H4, and then place it into
an ordinary ELM classifier, which studies the relationship between the characteristics and the label,
and then try to test new samples:

L = g(W5H4) (7)

3. Results

3.1. Database

3.1.1. The Olivetti Research Laboratory (ORL) Face Dataset

The ORL face dataset was founded by the University of Cambridge, which is composed of
40 people. Figure 3 shows that each person holds 10 photos, having a total of 400 pieces.

Figure 3. The Olivetti Research Laboratory (ORL) face dataset.

3.1.2. The Face Recognition Technology (FERET) Face Dataset

The FERET Face database stems from a facial recognition technology engineering called FERET.
This was launched by the United States Department of Defense. It is composed of 200 people where
each person has 7 face images for a total of 1400 copies. This is considered the most authoritative face
database as shown in Figure 4.

Figure 4. Face Recognition Technology (FERET) face dataset.

3.1.3. The MMCBNU-6000 Finger-Vein Dataset

The MMCBNU-6000 finger-vein database was performed by Chonbuk National University,
which includes 100 people, gathering everyone’s index, middle, and ring finger of both hands.
Each finger has 10 images with a total of 6000 images, as shown in Figure 5.

Figure 5. MMCBNU-6000 finger-vein dataset.

This study selects face images and finger-vein images from the three datasets described above to
constitute two hybrid databases, thereby establishing a total of two datasets:

(a) ORL+MMCBNU: total of 400 groups with each group taking 10 face images and 60 finger-vein images;
(b) FERET+MMCBNU: total of 1000 groups with each group taking 7 face images and

60 finger-vein images.
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3.2. Experimental Environment

The experimental environment is described as follows: Windows 10 operating system with 64-bit,
built on ×64 processors which type is Intel Core i7-4770, along with an 8 GB computer memory.
The simulation environment used is MATLAB_2016 Ra.

3.3. Experiment Results and Analysis

3.3.1. Ability to Represent Hidden-Layer Features of Stacked ELM

The experiment mainly verifies the ability for data classification using the multilayered neural
network to represent image characteristics. Three different datasets were chosen for the experiment
(80% of data for training and the rest for testing, with 5-fold cross-validation). We compared three
shallow classifiers Back Propagation (BP), Support Vector Machine (SVM), ELM and a classical
deep-learning method Convolutional Neural Network (CNN) with our proposed method. The shallow
classifier treats image pixel features as input and has parameters as typical values. Furthermore,
the CNN model is named lenet-5, which makes twice the convolution and pooling operation on
input images, plus a full connection operation to get output. Moreover, we compare the proposed
method with other deep-learning methods mentioned in the literature, such as Stacked Auto-Encoder
(SAE) [3] and Deep Belief Nets (DBN) [5].

Table 1 shows that the performance of the three shallow methods is almost similar (nearly
90%). Meanwhile, ELM performs better in terms of time (a few times). The deep-learning methods,
such as CNN, SAE, and DBN, perform better than the shallow methods (higher than 2%).
It proves that deep learning enables learning of higher-level abstract concepts and understanding
of semantic information. However, the deep-learning methods bring shortcomings in terms of time
because its training time is several times longer than that of the shallow methods. The stacked ELM, as
one of the deep-learning methods, also performs better than shallow methods. Moreover, compared
with other deep-learning methods, stacked ELM inherits the advantage of ELMs (faster learning speed
and no need for fine tuning) and performs better in terms of time. It requires less time than other
deep-learning methods, which reveals the powerful learning ability of deep architecture.

Table 1. Experimental performance for different method on three datasets.

Experiment Methods
ORL FERET MMCBNU

Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy

BP 8.2459 88.45% 9.9887 89.96% 12.7864 91.73%
SVM 6.7680 90.32% 8.7869 91.92% 10.3670 93.02%
ELM 1.3786 89.38% 2.0679 90.87% 2.8568 92.62%

CNN (lenet5) 28.8769 92.48% 34.8979 93.06% 45.3478 94.84%
SAE 36.7842 93.64% 42.2985 94.46% 69.3587 95.24%
DBN 30.3478 90.82% 38.8876 92.34% 60.5874 94.48%

Stacked ELM (H3) 10.2714 93.62% 14.3224 94.58% 17.6368 95.58%

3.3.2. Comparison of the Classification Effect of the CCA Fusion Method

This experiment explores the effectiveness of the CCA fusion method. We conducted three
groups of experiments. The first experiment takes three different datasets (80% for training, 20% for
testing, and also 5-fold cross-validation) to measure performance, which serves as the benchmark
for the other two experiments. The second experiment applies the simple cascade fusion strategy to
mixed datasets. The third experiment conducted on the same dataset as experiment 2, applied the
CCA fusion method to two different biological characteristics, added an ELM classifier, and also tested
recognition performance.

Table 2 shows the fusion features (both cascade strategy and CCA method) compared with
single modal features. This can improve performance and prove the effectiveness of the fusion
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method because it takes into consideration more features and obtains a better performance, in theory.
Compared with the traditional cascaded fusion features, the CCA method fusion features provide
more effectual performance (about 1%), which proves the efficiency of CCA fusion. Moreover, the CCA
method reduces the dimension while extracting features, which renders it more accommodating to
image recognition performance.

Table 2. Multi-biometrics fusion performance.

Biometrics Performance (Accuracy %)

ORL 89.38%
FERET 89.87%

MMCBNU-6000 92.62%
ORL+MMCBNU (cascade) 93.51%

FERET+MMCBNU (cascade) 93.67%
ORL+MMCBNU (CCA) 94.46%

FERET+MMCBNU (CCA) 94.97%

3.3.3. Experiment Performance for Different Methods on Different Hidden-Layer Nodes

This experiment compared the recognition accuracy for different methods on different
hidden-layer nodes. The number of hidden-layer nodes is a parameter in using ELM as a classifier.
The experiment compares three methods. The first method is a simple ELM which has a single-mode
biometric image characteristics input (group 1 is face image, and group 2 is finger-vein image).
The second method is also ELM but with multimodal shallow fusion image characteristics (group 3).
The third method uses deep neural network (CNN) to extract biological image characteristics with an
added ELM classifier. The last method is the proposed one in this study.

Figure 6 shows that as the change of the different hidden-layer nodes, the two kinds of multimodal
fusion method can achieve better performance. Compared with other single-mode models, the multiple
modal model, which uses two kinds of modal information, obtains a more robust result. Our proposed
method and the shallow combination method both integrate multimodal information, but our approach
is superior to the other, for in the shallow layer fusion method, the different statistical features are
simply mixed, which is only a fusion in the form, and therefore ignores the particularity of information
about specific modality.

Figure 6. Recognition accuracy of different methods on different hidden-layer nodes.
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3.3.4. Effect of Parameters for Recognition Accuracy

For the S-E-C model, the most important parameters are regularized least squares calculation
parameters λ and the number of hidden-layer nodes nh. Therefore, as shown in Figures 7 and 8,
two experiments are conducted to analyze the effect of parameter change on model performance.
Figure 7 describes the changing trend of recognition accuracy along with the change of parameter nh,
while keeping the fixed parameter λ. Similarly, Figure 8 describes the changing trend of recognition
accuracy along with the change of parameter λ, while keeping the fixed parameter nh.

Figure 7. Testing accuracy of the S-E-C model in terms of nh.

Figure 8. Testing accuracy of the S-E-C model in terms of λ.

The diagram shows that the S-E-C model follows a similar convergence to the ELM method,
and its performance keeps mostly stable in an extensive range of the value-space for parameters λ.
Therefore, we can choose the parameters that hold higher test precision as the optimal parameters of
the S-E-C model.

4. Discussion

Multimodal biometric fusion is an effective method to improve biometrics performance.
This paper presents a new kind of multimodal biometrics recognition network model named
the S-E-C model, based on stacked ELM and CCA methods. For the model, high-level special
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expression of the multimodal biometric image is learned firstly and then carries on the multimodal
biometric fusion. Finally, a simple ELM classifier act on the fuse representation to realize multi-modal
biological recognition.

In this study, the S-E-C model can make full use of stacked ELMs to extract high-level information.
As a kind of artificial neural network, the deep extreme learning machine can obtain the advantages of
the ELM and deep-learning methods. This method approximates complex functions and therefore,
does not require iteration fine-tuning. Furthermore, this study described the method as stronger,
more flexible, and with a higher computational efficiency than other deep-learning methods. Finally,
we verify the effectiveness of the general performance of the S-E-C model. The experimental
results demonstrate that our method has a significant advantage when compared with several other
contemporary algorithms.

This study used the CCA method in multimodal biometric fusion, which obtained different
modal correlation of biological characteristics. In the future, we plan to take the ideas of regression
into consideration, and try to build another modal biological characteristic by using multimodal biometrics,
and finally realize the image retrieval of multimodal biological characteristics.
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