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Abstract: Today, data availability has gone from scarce to superabundant. Technologies like IoT,
trends in social media and the capabilities of smart-phones are producing and digitizing lots of
data that was previously unavailable. This massive increase of data creates opportunities to gain
new business models, but also demands new techniques and methods of data quality in knowledge
discovery, especially when the data comes from different sources (e.g., sensors, social networks,
cameras, etc.). The data quality process of the data set proposes conclusions about the information
they contain. This is increasingly done with the aid of data cleaning approaches. Therefore,
guaranteeing a high data quality is considered as the primary goal of the data scientist. In this
paper, we propose a process for data cleaning in regression models (DC-RM). The proposed data
cleaning process is evaluated through a real datasets coming from the UCI Repository of Machine
Learning Databases. With the aim of assessing the data cleaning process, the dataset that is cleaned
by DC-RM was used to train the same regression models proposed by the authors of UCI datasets.
The results achieved by the trained models with the dataset produced by DC-RM are better than or
equal to that presented by the datasets’ authors.

Keywords: data cleaning in regression models (DC-RM); data quality issue; data cleaning task;
regression model

1. Introduction

The creation and consumption of data continue to grow by leaps and bounds. Due to advances in
Information Technologies (IT), today the data explosion in the digital universe is a new trend [1,2].
The vast amount of data comes from different sources such as social networks, messenger applications
for smart-phones, IoT, etc. The Forbes magazine reports an increase of data every second for every
person in the world to 1.7 Megabytes from 2020 [3].

Thus, knowledge discovery and data mining gain importance due the abundance of data [4].
A successful process of knowledge discovery is necessary to undertake data treatment. For example,
a preliminary step in the knowledge discovery tasks is the data preprocessing, where the main goal
is the cleaning of raw data [5]. From data mining, recognized methodologies have been proposed:
Knowledge Discovery in Databases (KDD) [6], Cross Industry Standard Process for Data Mining
(CRISP-DM) [7], Sample, Explore, Modify, Model and Assess (SEMMA) [8]. Each of these describes a
phase for data preprocessing. However, these methodologies do not explain how to address in detail
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the main issues in data cleaning, leaving out relevant analyses that may lead to problems related to
poor data quality in data mining, machine learning, and data science projects [9].

To achieve a solution, the problems mentioned above, we propose a guided process for data
cleaning in regression models (DC-RM). The procedure for building the process of data cleaning in
regression models consist of identity, understand, organize and filter the data quality issues according
to their meaning. After, for each data quality issues found in the datasets, a data cleaning task
is suggested. Finally, we validate our approach applying the data cleaning process (DC-RM) to
real datasets coming from UCI Repository of Machine Learning Databases [10], training the same
algorithms used by the datasets authors with the dataset obtained by DC-RM, and comparing the
precision achieved by these. The remainder of this paper is organized as follows: Section 2 discusses
definitions of regression models, data quality and the related works. The process for data cleaning
is explained in Section 3; Section 4 presents the results and Section 5 presents the conclusions and
future works.

2. Materials and Methods

2.1. Background

This section exposes the concepts for building the process for data cleaning in regression models
(DC-RM).

2.1.1. Regression Models

In knowledge discovery, regression models seek relations among a dependent variable (numeric)
and a set of independent variables (numeric or nominal) through a learning proccess from a curated
samples [11]. The main goal of the regression models is to obtain accurate predictions similarly to the
values of the independent variable for new samples [12]. The Regression algorithms commonly used
in the literature include multilayer perceptron [13], radial basis function network [14] and regression
trees [15].

2.1.2. Data Quality

Data is affected by several processes, most of which affect its quality to a certain degree [16].
The authors in [17] define data quality as “the degree of fulfilment of all those requirements defined for data,
which is needed for a specific purpose”. On the other hand, according to the authors of [18], the data
errors may affect the predictive accuracy of linear regression models in two ways. First, the training
data used to build the model may contain errors. Second, even if the training data are free of errors,
once a linear regression model is used for forecasting a user may input test data containing errors to
the model. This study demonstrates that the outputs of one linear regression model are sensitive to
data errors. From the two assumptions above, this research is focused on the first one, taking GIGO:
“Garbage In Garbage Out” as principle.

2.2. Related Works

Several researchers have built mechanisms to address data quality issues. Table 1 presents a
summary of the related works and the data quality issues addressed.

In Table 1, we observe a large diversity of approaches for addressing data quality issues designed
for relational data bases, data warehouses, health systems, and other domain applications (wind energy,
seismic waves, electricity consumption); however, the related works are not focused on regression tasks
of knowledge discovery. Although the following works [19,20] are oriented for big data pre-processing,
they lack a user-oriented process to address orderly many data quality issues (e.g., missing values,
outliers, duplicate instances, high dimensionality).
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Table 1. Related works.

Works Domain Data Quality Issues

[16,21–26] Databases
Integrity constraints, validation of overloaded table,
duplicate records, inconsistencies, missing values, data
freshness.

[9,27–30] Conceptual Incomplete data, out-of-date data, lack of meta-data, high
time to understand data

[31–38] Health systems
Data heterogeneity, illegible handwriting, missing values,
duplication of patient records, inconsistency, unsuitable
data format, timeliness, inaccuracy.

[39–41] Wind energy, seismic waves,
electricity consumption

Data heterogeneity, missing values, out-of-date data, noise,
outliers, inconsistency

[19,20] Big data Missing values, timeliness, contextual adequacy,
operational adequacy, temporal adequacy

3. Process for Data Cleaning in Regression Models

This section presents the process to address poor quality data in regression tasks. The methodology
“Building a Conceptual Framework: Philosophy, Definitions, and Procedure” [42] was adapted to build the
proposed process. This offers an organized procedure of theorization for building conceptual process.
The advantages of using this methodology proposed by [42] are the flexibility for make modifications,
and the easy understanding. The procedure for building the process of data cleaning in regression
models consists of the following phases:

3.1. Mapping the Selected Data Sources

The first phase identifies the data quality issues to regression tasks. Data sources as research
papers and methodologies were reviewed:

• From data mining and machine learning four relevant methodologies, we found: Knowledge
Discovery in Databases (KDD) [6], Cross Industry Standard Process for Data Mining
(CRISP-DM) [7], Sample, Explore, Modify, Model and Assess (SEMMA) [8] and The Data Science
Process [43]. These methodologies mention data quality issues such as: missing values, outliers,
duplicate instances and high dimensionality.

• In [44] we present a literature review for data quality issues in knowledge discovery tasks.
We reviewed research papers from IEEE Xplore, Science Direct, Springer Link, and Google
Scholar. Based on the literature analysis, it can be stated that three quality issues were found:
missing values, outliers, and redundancy (refers to duplicate instances). Also, the noise was
identified as a data quality issue (see Figure 1).

Data quality issues such as missing values, outliers and redundancy have received greater
attention from research community (papers found: 39, 47 and 55 respectively). Meanwhile noise
(17 papers) has been paid less attention because it is defined as general consequence of the data
measurement errors.
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Figure 1. Number of papers found for each data quality issue [44].

3.2. Understanding the Selected Data

The aim in this phase is understand the data quality issues from regression task. Next a description
of each data quality issue is presented:

• Missing values: refers when one variable or attribute does not contain any value. The missing
values occur when the source of data has a problem, e.g., sensor faults, faulty measurements,
data transfer problems or incomplete surveys [45].

• Outlier: can be an observation univariate or multivariate. An observation is denominated an
outlier when it deviates markedly from other observations, in other words, when the observation
appears to be inconsistent respect to the remainder of observations [46–48].

• High dimensionality: is referred to when dataset contains a large number of features [49]. In this
case, the regression model tends to overfit, decreasing its performance [50].

• Redundancy: represents duplicate instances in data sets which might detrimentally affect the
performance of classifiers [51].

• Noise: defined by [52] as irrelevant or meaningless data. The data noisy reduce the predictive
ability in a regression model [53].

3.3. Identifying and Filtering Components

The aim in this phase is organize and filter the data quality issues according to their meaning.
The following changes have been made:

• Redundancy were renamed as Duplicate instances to represent better the data quality issues in
regression models.

• Noise is considered a general issue according it definition: “irrelevant or meaningless data”.
Thus Missing values, Outliers, High dimensionality and Duplicate instances are considered as a kind
of Noise.
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3.4. Integrating Components

In this phase, first, we define the data cleaning tasks. Subsequently, we propose a cleaning task as
a solution for each noise issue (see Table 2).

Table 2. Data cleaning tasks in regression models.

Noise Issue Data Cleaning Task

Missing values Imputation
Outliers Outlier detection

High dimensionality Dimensionality reduction
Duplicate instances Remove duplicate instances

• Imputation: replaces missing data with substituted values. In the literature we found four relevant
approaches to imputing missing values:

– Deletion: excludes instances if any value is missing [54].
– Hot deck: missing items are replaced by using values from the same dataset [55].
– Imputation based on missing attribute: assigns a representative value to a missing one based on

measures of central tendency (e.g., mean, median, mode, trimmed mean) [56].
– Imputation based on non-missing attributes: missing attributes are treated as dependent

variables, and a regression or classification model is performed to impute missing values [57].

• Outlier detection: identifies candidate outliers through approaches based on Clustering
(e.g., DBSCAN: Density-based spatial clustering of applications with noise) or Distance (e.g.,
LOF: Local Outlier Factor) [58–60].

• Dimensionality reduction: reduces the number of attributes finding useful features to represent the
dataset [61]. A subset of features is selected for the learning process of the regression model [49].
The best subset of relevant features is the one with least number of dimensions that most contribute
to learning accuracy [62]. Dimensionality reduction can take on four approaches:

– Filter: selects features based on discriminating criteria that are relatively independent of the
regression (e.g., correlation coefficients) [62].

– Wrapper: based on the performance of regression models (e.g., error measures) are maintained
or discarded features in each iteration [63].

– Embedded: the features are selected when the regression model is trained. The embedded
methods try to reduce the computation time of the wrapper methods [64].

– Projection: looks for a projection of the original space to space with orthogonal dimensions
(e.g., principal component analysis) [65].

• Remove duplicate instances: identifies and removes duplicate instances [66].

Several data cleaning tasks were identified for regression models. The integration of the data
cleaning tasks is depicted in Figure 2:
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Figure 2. Process for data cleaning in regression models (DC-RM).

Below, we explain the step-step execution of data cleaning flow for the regression models.

1. Verify if dataset contains missing values: usually missing data are represented by special characters
such as ?, *, blank spaces, specials words as NaN, null, etc. The first step is convert the missing
values to format of the data cleaning algorithm.

2. Apply imputation algorithms: once the format of missing values is prepared, an imputation
algorithm is used. The added values must be verified because the imputation algorithm often
creates outliers.

3. Apply outliers detection algorithm: the outlier detection algorithm searches candidate outliers in the
raw dataset or erroneous values generated by Imputation techniques.

4. Apply algorithms to remove duplicate instances: these algorithms search for duplicate instances in
both the raw dataset or those generated by imputation algorithms.

5. Apply algorithm for dimensionality reduction: this kind of algorithms reduce the high dimensional in
data sets by selecting a subset of most relevant features [67]. Different authors [68,69] assert that
the feature selection methods have several advantages, such as: (i) improving the performance
of the classifiers; (ii) better visualization and data understanding; and (iii) reducing time and
computational cost

Once the phase of components integration is finished, we develop a software prototype of the
guided process for data cleaning in regression models. Figure 3 presents the layer view of DC-RM.

DC-RM is composed by four layers:

• Graphical User Interface (GUI) enables an user of DC-RM interact with the algorithms of data
cleaning through graphical elements, such as text, windows, icons, buttons, text fields, etc.
We developed two main forms in NetBeans IDE 8.2. The first form presents statistic information
related with the dataset (number of attributes and instances,percentage of missing values and
duplicate instances) and its attributes (mean, median, skewness, kurtosis, etc.) as show Figure 4.
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The second form (it appears when the button “Start cleaning” of the first form is pressed) presents
the algorithms for each data cleaning task and the DC-RM process. In Figure 5 is depicted the
second form when the chi–squared algorithm is applied in the dimensionality reduction phase.

• Java code establish a connection with R through Rserver, subsequently it invokes the data
cleaning algorithms of the R packages, and finally, it sends the results of data cleaning algorithms
to Graphical User Interface.

• Rserve acts as a socket server (TCP/IP or local sockets) which responds to requests from Java
code. It listens for any incoming connections and processes incoming requests [70]. In other
words, Rserve allows to embed R code within Java code.

• R is a system for statistical computation and graphics. It provides a programming language as
dialect of S which was designed in the 1980s and has been in widespread use in the statistical
community since [71]. R methods are based on packages, they are collections of functions and
data sets developed by the community. We used R version 3.4.2 with missForest package [72]
for imputation task, Rlof [73] and fpc [74] packages for outliers detection task, and Fselector [75]
package for dimensionality reduction tasks. In case of remove duplicate instances, we used R
function duplicated().

Figure 3. Layer view of DC-RM.

Figure 4. Form of the statistical information of the dataset.
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Figure 5. Form of the DC-RM process.

3.5. Validation

We evaluate the process for data cleaning in regression models (DC-RM) through real datasets
coming from UCI Repository of Machine Learning Databases [10]. Section 4.2 explains in detail the
validation of the proposed process for dataset: prediction of comments in Facebook post (cFp) [76].

4. Experimental Results

The DC-RM process was applied to real datasets of the UCI Repository of Machine Learning
Databases [10]. Subsequently, the cleaned datasets by DC-RM are used to train the same algorithms
proposed by authors of UCI datasets. Finally, we compare the Mean Absolute Errors (MAE) of the
models trained with the datasets produced by the authors versus the models trained with the datasets
processed by DC-RM.

The Mean Absolute Error (MAE) is defined by the next Equation:

MAE =
∑n

i=1 Yi − Ŷi

n

where Yi is the actual measurement (comments in Facebook posts), Ŷi is the predicted value and n is
the number of measurements.

We expose as case study the dataset for prediction of comments in Facebook posts (cFp) [76]. Thus,
in Section 4.1 we presented the description of cFp dataset; in Section 4.2, we described the processing
of the cFp dataset using DC-RM; Section 4.3 exposes the MAE achieved by the regression models
(the trained by original cFp dataset versus the trained by DC-RM), finally Section 4.4 shows additional
results of DC-RM with other datasets of UCI Repository [10].

4.1. Dataset Description

The dataset proposed in [76] is oriented towards the comments prediction in a Facebook post.
The dataset is composed by a data test with 10.120 instances and five training sets as shown Table 3.

The dataset contains 53 attributes: 4 page features (page likes, page category, etc.), 30 essential
features (comment count in last 24 and 48 h, etc.), 14 Weekday features (binary variables related with
the date of Facebook post), and 5 other basic features (length of document, post share count, etc.).
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Table 3. Instances of dataset for prediction of comments in Facebook posts.

Data Training Instances

Variant 1 40.949
Variant 2 81.312
Variant 3 121.098
Variant 4 160.424
Variant 5 199.030

4.2. Evaluation Process

4.2.1. Imputation

After executing the first step in the execution flow, we conclude that the original dataset does not
contain missing values. With the goal of testing the imputation step, we remove values randomly from
the original dataset using R statistical software [71]. As a result of this operation, the dataset presents
missing values in three attributes. Therefore, we test two imputation approaches.

• Global imputation based on non-missing attributes: the main idea is fill the missing values by
regression models. Missing attributes are treated as dependent variables, and a regression is
performed to impute missing values [57]. The random forest algorithm [77] was used to fill the
missing values. This method builds a model for each variable. Then it uses the model to predict
missing values in the variable with help of observed values.

• Global imputation based on missing attribute: assigns the most frequent value of the attribute
to a missing values. Commonly, a measure of central tendency is used for filling the holes [57].
In this case, the mean imputation was used [78].

Table 4 presents the Mean Absolute Error of the imputation methods.
Random Forest reaches low MAEs in the imputations (MAE lowest: 0 in attribute 22 Variant 3,

and MAE highest: 1.214 in attribute 31 of Variant 3 ). In contrast with Mean Imputation, the attributes
6, 15, 13, 29 shown in Table 4 have a MAE greater than 54.445. This happens because the imputation
values were added on the center of the sample, diminishing the importance of values on the tails. Thus
Random Forest was the algorithm used for impute the missing values. Figure 6 presents the imputed
(red line) and original values (black line) for attribute 6 (comments average in last 24 h of the data
training—variant 1).

Table 4. Mean absolute error for imputation methods.

Dataset Attribute Index Random Forest Mean Imputation

Variant 1
6 0.011 97.749
26 0.001 1.752
44 0.017 0.237

Variant 2
15 0.009 287.652
31 1.214 18.624
8 5.86 × 10−4 35.803

Variant 3
22 0 26.665
48 0.004 0.203
3 0.003 6.546

Variant 4
13 3.6 × 10−5 126.782
49 0.010 0.233
17 2.47 × 10−13 4.896

Variant 5
12 3.09 × 10−13 7.172
29 0.135 54.445
52 0.006 0.223
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Figure 6. Data training—variant 1: imputed values for attribute 6.

In Figure 6, we observed the imputed values are around 2.225–2.305, while the original values
are 2.273. Thus the imputation obtained by random forest reaches a mean absolute error 0.01.
Other imputation for the attribute 31: comments in last 24 h of the data training—variant 2 is shown
in Figure 7.

In this case the imputation method obtain a mean absolute error 1.21.

Figure 7. Data training—variant 2: imputed values for attribute 31.

4.2.2. Outliers Detection

After obtaining the imputed values, according to the execution flow presented in Figure 2, we
applied the outliers detection task with the aim to find abnormal behavioral in the instances or erroneous
imputations. In this case, we propose the use of outliers detection based on distance (Local Outlier
Factor) and clustering (Density-Based Spatial Clustering of Applications with Noise) approaches.

• Local Outlier Factor (LOF): is an algorithm for identifying distance-based local outliers [58].
With LOF, the local density of a certain point is compared with its neighbors. If the former is
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significantly lower than the latter (with an LOF value greater than 1), the point can be in a sparser
region than its neighbors, which suggests it be an outlier [79].

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN): searches clusters with
regions of high and low density [80]. DBSCAN chooses an arbitrary unassigned object p from
the dataset. If p is a core object, DBSCAN finds all the connected objects and these objects are
assigned to a new cluster. If p is not a core object, then p is considered outlier object and DBSCAN
moves onto the next unassigned object. Once every object is assigned, the algorithm stops [81].

Table 5 shows the candidate outliers detected by LOF and DBSCAN.
The clusters of outliers created by DBSCAN reach among 97 and 219 instances (Table 5); however,

97.35% of the instances considered outliers are false positives. In case of Local Outlier Factor,
the instances with LOF scores greater than 4.134 were analyzed (among 2 and 13 instances depending
of dataset as shown Table 5), obtaining that 100% of the candidate outliers are true positives.

From the foregoing LOF was the algorithm used for outliers detection. To verify the candidate
outliers obtained by LOF, the first two principal components for each training sets were plotted.
Figure 8 presents principal components PC1 and PC2 for data training—variant 5; 99.99% of the
information contained in the data training are retained by the first two components. The outliers are
labeled with “+” in red.

Figure 8. Outliers for data training—variant 5.
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Table 5. Outliers detected by LOF and DBSCAN.

Data Training LOF DBSCAN

Variant 1 7 134
Variant 2 2 113
Variant 3 6 97
Variant 4 11 179
Variant 5 13 219

The candidate outliers detected by Local Outlier Factor (Table 5) were removed which can be
erroneous observations generated in the imputation task.

4.2.3. Remove Duplicate Instances

We use the Standard Duplicate Elimination algorithm to detect duplicate instances [66]. They are
removed by performing an external merge-sort and then scanning the sorted dataset. Similarly,
we cluster and remove identical instances in a sequential scan of the sorted dataset [82]. Table 6 shows
the number of duplicate instances for each data training set (remove 312 duplicate instances).

Table 6. Duplicate instances for each data training set.

Data Training Duplicate Instances

Variant 1 8
Variant 2 21
Variant 3 59
Variant 4 88
Variant 5 136

4.2.4. Dimensionality Reduction

Considering that the datasets are large with respect to low computational resources, we
recommend using two methods of filter approach based on the absolute correlation. This methods
are considered faster and they have low computational cost [83]. The absolute values of pair-wise
correlations are considered. If two attributes have a high correlation, the filter algorithm looks at the
mean absolute correlation of each attribute and removes the variable with the largest mean absolute
correlation [84]. Chi-squared and Information Gain were the methods used:

• Chi-Squared: is defined as sum of the squares of the differences of the independent and dependent
variable divided by the dependent variable for every value [85]:

X2 =
n

∑
i=1

(Ii − Di)
2

Di

where I is the independent variable, D is the dependent variable and i is the ith value of the dataset.
• Information Gain: measures the expected reduction in entropy (uncertainty associated with a

random feature) [86,87]. Given Sx the set of training examples, xi the vector of ith variables in this
set, |Sxi=v |/|Sx| the fraction of examples of the ith variable having value v [88]:

IG(Sx, xi) = H(Sx)−
|Sxi=v |/|Sx |

∑
v=values(xi)

H(Sxi=v)

with entropy:
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H(S) = −p + (S)log2 p + (S)− p− (S)log2 p− (S)

p± (S) is the probability of a training example in the set S to be close to the value of the class.

Figure 9 shows the absolute correlation for each attribute reached by Chi-squared and Information
gain. The filter methods obtained a similar absolute correlation for the attributes of all datasets.
The attributes with an absolute correlation of 0.2 or lower were removed (index of attributes removed:
4, 9, 14, 19, 35, 37–52).

Figure 9. Absolute correlation obtained by Chi-squared and Information gain for datasets: Variant 1, 2, 3, 4 and 5.

4.3. Results

With the aim of assessing the data cleaning process, we use the dataset cleaned by DC-RM for
training the same regression models proposed by the authors of cFp dataset [76]. Then, we compare the
results of MAE obtained by the two approaches. The authors of [76] used four regression algorithms
of the Weka toolkit:

• Multi Layer Perceptron (MLP): this neural network was designed with two hidden layers; the first
hidden layer contains 20 neurons while the second hidden layer 4 neurons. The learning rate is
adjusted to 0.1 and momentum to 0.01.

• Radial Basis Function Network (RBF): the number of clusters was modified to 90.
• In the models REP and M5P Tree were used the default parameters.

The regression models were evaluated with a data test set of 10.120 instances. Table 7 shows the
mean absolute errors (MAE) of the models generated by dataset cleaned with DC-RM and the models
proposed by the authors of cFp dataset [76]; the underlined values represent the best MAE overall
achieved by the models using DC-RM and the authors proposal [76].

REP Tree was the model with the lowest MAE for DC-RM, as the authors proposed [76]. In contrast,
the M5P tree of [76] (training with Variant 5) was the model with the highest MAE.
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Overall, the training sets Variant 2, 3, 4, 5 cleaning by DC-RM achieve the best MAE in its models.
In case of Variant 1, the authors’ proposal [76] reaches a best measure with a difference of MAE overall
0.92 respect to DC-RM.

Table 7. Mean absolute error obtained by: DC-RM and [76].

Approach Model Var 1 Var 2 Var 3 Var 4 Var 5

DC-RM

MLP 34.55 31.31 35.19 38.59 55.17
RBF 31.09 31.85 30.12 29.81 29.69
REP 29.28 30.22 28.41 27.89 29.33
M5P 35.53 30.32 32.68 50.77 32.59

Overall 32.61 30.92 31.60 36.76 34.19

[76]

MLP 38.24 40.72 36.40 51.49 44.93
RBF 31.38 30.08 30.22 32.67 31.37
REP 27 28.67 27.92 27.47 27.72
M5P 30.15 36.90 32.33 35.69 116.98

Overall 31.69 34.09 31.71 41.33 55.25

4.4. Comparative Study

In order to demonstrate the performance of guided process for data cleaning in regression
models, DC-RM also was validated with datasets coming from UCI Repository of Machine Learning
Databases [10]. The models used were Support Vector Regression (SVR), Linear Regression (LR),
Random Forest (RF), M5P Decision Tree, and Multi Layer Perceptron (MLP). Table 8 shows the MAE
of models produced by the authors of UCI datasets compared with the same models trained with the
datasets processed by DC-RM. The values underlined in Table 8 correspond to the MAE’s lowest.

Once the UCI datasets are cleaned by DC-RM, 81.81% of the models reach a lower Mean Absolute
Error than models proposed by the dataset’s authors. For the remaining 8.19% of the models, the
authors proposal of the datasets: “Turbine decay” and “Energy uses of appliances” achieve lowest MAE.
However, the MAE’s difference of the models generated by the authors with respect to models built with
datasets processed by DC-RM is slight. In the case of “Turbine decay” dataset, the MAE’s difference of
SVR models is 0.002 and 0.06 for the “Energy uses of appliances” dataset, using the RF models.

Compared with effort in data preparation and previous domain knowledge by dataset authors,
DC-RM offers a general data cleaning solution for any application domain. DC-RM reaches or
overcomes the results proposed by the dataset’s authors.

Table 8. Mean absolute errors of the models processed by DC-RM and datasets authors of UCI repository.

Dataset Ref. Approach Model MAE

Compressor decay [89] DC-RM SVR 0.005
Authors SVR 0.17

Turbine decay [89] DC-RM SVR 0.003
Authors SVR 0.001

Rental Bikes Hourly [90] DC-RM LR 1 × 10−5

Authors LR 0.017

Rental Bikes Daily [90] DC-RM LR 5 × 10−5

Authors LR 0.031

Energy use of appliances [91] DC-RM RF 12.03
Authors RF 11.97
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Table 8. Cont.

Dataset Ref. Approach Model MAE

Posts in Facebook pages [92] DC-RM SVR 25.26
Authors SVR 26.9

Feedback Blogs Prediction [93] DC-RM M5P 5.70
Authors M5P 6.06

I-Room temperature [94] DC-RM MLP 0.47
Authors MLP 1.13

II-Room temperature [94] DC-RM MLP 0.34
Authors MLP 0.88

I-Dinning room temperature [94] DC-RM MLP 0.43
Authors MLP 0.89

II-Dinning room temperature [94] DC-RM MLP 0.32
Authors MLP 0.78

5. Conclusions and Future Works

In this work, a process to address the data quality issues in regression models is proposed.
From DC-RM, we conclude:

• DC-RM provides support to methodologies from data mining and machine learning. For instance,
in Knowledge Discovery in Databases, DC-RM can support the Preprocessing and Data Cleaning,
Data Reduction, and Projecton phases. In Cross Industry Standard Process for Data Mining,
DC-RM gives support to Verify Data Quality and Clean Data steps. (especially: Sample, Explore,
Modify, Model and Assess in Modify phase); and, in Data Science Process into the Clean Data
phase. Finally, we would like to emphasize that none of the methodologies discussed above
explain in detail how to address the data quality issues in regression models.

• The DC-RM approach reduces the time and effort invested by the user in pre-processing phase,
since it detects the data quality issues and advises about the suitable approach and the execution
order for data cleaning tasks.

• Once DC-RM has been used in the UCI datasets, the models reach or overcome the results
compared by the models built for the dataset’s authors [76,89–94]. DC-RM offers a general data
cleaning solution for any application domain.

• The dimensionality reduction is an important task that must be applied in large feature space.
Considering the high data dimensionality of the dataset proposed by [76], the filter methods were
used in DC-RM (due their fast and low computational cost). However, several authors declare
that other methods with high computational cost such as wrapper and embedded methods can
obtain better results [49,64,95–97].

As future works, we propose:

• Building other processes for data cleaning in knowledge discovery tasks as classification
and clustering.

• Including ontologies of specific domains to support some data quality issues; e.g, selection of
relevant attributes based on expert knowledge. In the cancer domain, the ontology developed
by [98] can be used for selecting the relevant attributes and avoid the use of algorithms with high
computational complexity in dimensionality reduction tasks.

• Creating a case based reasoning (CBR) system for supporting the data cleaning process. The CBR
will automatically recommend the suitable data cleaning algorithm (e.g., in outliers detection,
the CBR suggests the local outlier factor algorithm to the user).
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