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Abstract: The forced Korteweg-de Vries equation is considered to investigate the impact of bottom
configurations on the free surface waves in a two-dimensional channel flow. In the study of shallow
water waves, the bottom topography plays a critical role, which can determine the characteristics
of wave motions significantly. The interplay between solitary waves and the bottom topography
can exhibit more interesting dynamics of the free surface waves when the bottom configuration
is more complex. In the presence of two bumps, there are multiple trapped solitary wave solutions,
which remain stable between two bumps up to a finite time when they evolve in time. In this work,
various stationary trapped wave solutions of the forced KdV equation are explored as the bump
sizes and the distance between two bumps are varied. Moreover, the semi-implicit finite difference
method is employed to study their time evolutions in the presence of two-bump configurations.
Our numerical results show that the interplay between trapped solitary waves and two bumps is the
key determinant which influences the time evolution of those wave solutions. The trapped solitary
waves tend to remain between two bumps for a longer time period as the distance between two
bumps increases. Interestingly, there exists a nontrivial relationship between the bump size and the
time until trapped solitary waves remain stable between two bumps.

Keywords: forced Korteweg-de Vries equation; trapped solitary wave solutions; numerical stability;
two bumps or holes; finite difference method

1. Introduction

Free surface waves of a two-dimensional channel flow for an inviscid and incompressible fluid
have been studied when the rigid bottom of the channel has some obstacles [1,2]. Such free surface
waves of shallow water with obstacles can be modeled by the forced Korteweg-de Vries (fKdV)
equations [3,4]. There have been enormous applications of the Korteweg-de Vries (KdV) equation in
various research areas such as mathematics, physics, fluid mechanics and hydrodynamics. The KdV
equation with a forcing approximately describes the evolution of the free surface when a fluid flows
over an obstacle. This forced KdV equation is related to the physical problems such as shallow-water
waves over rocks, tsunami waves over obstacles, oceanic stratified flows encountering topographic
obstacles, and acoustic waves on a crystal lattice. Moreover, it can be useful for other nonlinear
differential equations including a nonlinear Schrodinger equation and a sine Gordon equation.
These applications range from magnetohydrodynamic waves, geostrophic turbulence, atmosphere
dynamics and the propagation of short laser pulses in optical fibers (see [5,6] and references therein).

The dynamics of the free surface wave motions is characterized by the Froude number F defined
as F = C/

√
gh, where C is the upstream velocity and

√
gh is the critical speed of a shallow water wave

with the finite depth of the channel h and the gravity constant g. It can be expressed as F = 1 + ελ

with the perturbation measurement λ to the critical value 1 for a positive small parameter ε, then
the forced Korteweg-de Vries (fKdV) equation can be obtained. Further, the flow can be classified

Symmetry 2018, 10, 129; doi:10.3390/sym10050129 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/5/129?type=check_update&version=1
http://www.mdpi.com/journal/symmetry
http://dx.doi.org/10.3390/sym10050129


Symmetry 2018, 10, 129 2 of 13

as supercritical if λ > 0 and subcritical if λ < 0. For supercritical flows, there is a critical value, λc,
such that solitary wave solutions exist when λ > λc and no such solutions exist when 0 < λ < λc.
Solitary wave solutions present some special features such as remaining stable without any changes
in shape or speed when they evolve in time. Moreover, this critical value of λc is dependent on the
bump configuration.

The bottom topography is a key determinant for the characteristic of wave motions. Interesting
surface wave phenomena can be observed when a bottom topography is rather complicated. For one
bump, there has been extensive analytic and numerical work [1,3,7,8]. Cusped stationary solitary wave
solutions are founded analytically and their numerical stability is shown for the Dirac delta function as
forcing [9]. It is well known that there exist two branches of stationary solitary wave solutions when
a semi-circular bump is given [10]. One is the near zero solitary wave with lower amplitude and the
other one is a higher amplitude one (sech2-shaped wave). Analytic stability of solitary wave solutions
is discussed for the time-dependent forced KdV equation when a compactly supported symmetric
bump is given [7]. It is proved that the near zero solution is stable with respect to time for a sufficiently
large λ > 0. The other solitary wave solution (sech2-shaped solution) is unstable when it evolves
in time.

Recently, more researchers pay attention to the cases where bottom configurations are more
complicated [11,12]. For subcritical flows, the generalized hydraulic falls have been obtained when
two bumps are given [13]. These solutions are characterized by a train of waves ’trapped’ between
two bumps satisfying the radiation conditions at the infinity. The steady surface flows over a step
and a rectangular obstacle have been investigated for supercritical, subcritical waves and hydraulic
falls [14]. Various stationary solutions are explored when the bottom configurations are complex
including one positive bump, one negative hole, or combinations of both [15]. Stationary solutions of
the forced KdV with obstacles with a negative hole have been illustrated as the amplitude and the
width of a negative hole are varied [16].

Analytic and numeric stationary solutions of the forced KdV equations are studied when
one bump or two bumps are given as forcing, which are in the form of sech2- or sech4-functions [17].
They also explored the stability of solitary waves and table-top solutions when they evolve in time.
Multiple stationary supercritical solutions of the fKdV equation are discussed when two-semi-circular
bumps are given [18]. Their results show that there exists only one supercritical positive solitary
wave, which is stable when it evolves in time. Solitary wave solutions and their time evolutions are
investigated when the rigid bottom has one negative hole [19,20]. Interestingly, there are five stationary
solutions when a negative hole is given and only the near zero wave remains stable when they evolve
in time [19].

In our previous study, stationary trapped solitary wave solutions have been studied for the forced
Korteweg-de Vries equation when two bumps or two holes are given as the bottom configuration [21].
Some of multiple stationary solitary waves have been found and then their numerical stability has
been investigated in the presence of two bumps [22]. Interestingly, multiple trapped supercritical wave
solutions remain stable between two bumps for a very long time when they evolve in time. It is
worth noting that the interplay between trapped solitary waves and two bumps plays a key role in
determining their time evolutions. In this work, we extend the previous work by exploring the impact
of different two-bump scenarios on the trapped solitary waves and their numerical stability. First,
various stationary trapped solitary wave solutions of the forced KdV equation have been obtained in
the presence of two bumps or two holes. As the bump size or the distance between two bumps are
varied, stationary solitary waves are obtained. Next, we employ the semi-implicit finite difference
method which has been developed for the homogeneous KdV equation [23]. This numerical method
has been used to obtain the time evolution of the trapped stationary solitary waves. Our numerical
results show that multiple trapped solitary wave solutions stay stable between two bumps for a very
long time under various two-bump configurations. This indicates that the interplay between trapped
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solitary waves and two bumps highlights the importance in determining the dynamics of trapped
solitary waves.

2. The Forced KdV Equation

2.1. Model Equation with Two-Bump Configurations

The forced KdV equation is written as follows

ηt(x, t) + 2ληx(x, t)− 3
2
(η2)x(x, t)− 1

3
ηxxx(x, t) = fx(x), −∞ < x < ∞

η(x, 0) = η0(x) (1)

η(x, t) = ηx(x, t) = ηxx(x, t) = 0 at x±∞,

where η(x, t) is the free surface elevation measured from an undisturbed water level, and λ is
the measurement of the perturbation of the upstream uniform flow velocity from its critical value.
The external forcing f (x) is given by the topography of the rigid bottom. Our main interests in this
work are numerical stability when stationary wave solutions evolve in time. Hence, the problem (1)
defined in (−∞, ∞) can be restricted to a finite interval [−b, b] for a positive constant b, where this
interval is large enough to use a finite difference scheme. First, at these finite boundaries, we employ
the artificial boundary condition, which has been proposed in [21]. Then, the time-independent
nonlinear boundary value problem is efficiently solved using the Newton method with the artificial
boundary condition which is described as

2λη(x)− 3
2 η2(x)− 1

3 ηxx(x) = f (x), −b ≤ x ≤ b
ηx(x) = ∓

√
6λη(x) at x = ±b

(2)

As shown in [21], the method provides a good alternative to find various stationary solutions
under arbitrary two-bump configurations. Once the stationary wave solutions have been found,
we take these stationary solutions as initial conditions in (1). Next, the finite difference method
described in the next subsection is performed to solve the time-dependent forced KdV equation in
a finite interval x ∈ [−b, b] for t > 0.

Moreover, the bottom topography f (x) is modeled by the following functions for two bumps

h(x; a, P1, P2) =


P1cos4(π

2 (x + a)) if |x + a| ≤ 1,
P2cos4(π

2 (x− a)) if |x− a| ≤ 1,
0 elsewhere.

Note that h(x; a, P1, P2) consists of two bumps (centered at a and −a) with the distance between
the boundaries of two bumps, d = 2(a− 1).

2.2. Semi-Implicit Finite Difference Method

The problem (1) defined in (−∞, ∞) can be restricted to a finite interval Ω = [−b, b] for a positive
constant b. This Initial Boundary Value Problem has a third order derivative with respect to x and,
due to the presence of a forcing, the direction of wave propagation is unknown. Therefore, it is
not a trivial task to impose the correct boundary conditions at finite boundaries. This leads us to
solve the alternative form of the forced KdV equation. This results in the following Initial Boundary
Value problem

utx(x, t) + 2λuxx(x, t)− 3
2
(u2)xx(x, t)− 1

3
uxxxx(x, t) = fxx(x),

u(x, 0) = u0(x) (3)

ux(x, t) = uxx(x, t) = 0 at x = ±b,
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The problem involves the fourth derivative for the spatial variable, therefore four boundary
conditions are required. This is done by imposing the zero Neumann boundary conditions at
each boundary. Now, we employ the finite difference scheme to find the numerical solutions
of equation above. Let us denote x0 = −b, x1 = −b + ∆x, · · · , xi = −b + i∆x, · · · , xN = b,
t0 = 0, t1 = ∆t, · · · , tn = n∆t, · · · , tNt = T, u(xi, tn) = un

i and fxx(xi) = f̄i where ∆x = 2b/N
and ∆t = T/Nt with positive integers N and Nt, respectively. First, the Crank-Nicolson scheme with
standard difference schemes is applied to (3) and the resulting finite difference equations are written as

D0(un+1
i − un

i )

2∆x∆t
+ 2λ∆h

(un+1
i + un

i )

2(∆x)2 − 3
2

∆h
(Fn+1

i + Fn
i )

2(∆x)2 − 1
3

∆2
h
(un+1

i + un
i )

2(∆x)4 = f̄i, (4)

u0
i = u(xi, 0)

D−(u0) = 0 and D+D−(u−1) = 0

D+(uN) = 0 and D+D−(uN+1) = 0,

for i = 0, 1, · · · , N, n = 0, 1, · · · , Nt. The standard finite difference is used for forward D+un
i = un

i+1 −
un

i , backward D−un
i = un

i − un
i−1, central D0un

i = un
i+1 − un

i−1, ∆h = D+D−un
i = un

i+1 − 2un
i + un

i−1,
and ∆2

h = ∆h∆hun
i = un

i+2 − 4un
i+1 + 6un

i − 4un
i−1 + un

i−2.
Note that the nonlinear term F = u2 is linearized by taking a Taylor expansion for the nonlinear

convection term Fn+1
i as

Fn+1
i = Fn

i + ∆t
(

∂F
∂t

)n

i
+ O(∆t2), (5)

where ∂F
∂t = ∂F

∂u ∆u = 2un
i (u

n+1
i − un

i ). Therefore, the nonlinear convection term can be linearized in
the following form

Fn+1
i + Fn

i = 2un
i un+1

i . (6)

Substituting (6) into (4) leads to the following system

an
i un+1

i−2 + bn
i un+1

i−1 + en
i un+1

i + cn
i un+1

i+1 + an
i un+1

i+2 = dn
i , (7)

where

an
i = r, bn

i = 2pλ− 3pun
i−1 − 4r− 1, cn

i = 2pλ− 3pηn
i+1 − 4r + 1 en

i = −4pλ + 6pun
i + 6r

and

dn
i = −run

i−2 + (−1− 2pλ + 4r)ηn
i−1 + (4pλ− 6r)un

i + (1− 2pλ + 4r)un
i+1 − r, u2

i+2 + 24x4t f̄i,

where p = 4t/4x, r = −4t/3(4x)3. This system is solved at each time step. The computational
domain is taken to be b= 50 with ∆x = 0.1 and ∆t = 0.05. Our scheme is based on the linearized
implicit scheme as proposed in [23,24]. This scheme is unconditionally linearly stable with a local
truncation error, O(∆x2, ∆t2). Therefore, there is no restriction on ∆x and ∆t (more details on this
numerical scheme are found in [23,24]).

3. Numerical Simulations

In this section, we present numerical simulations under various two-bump configurations
including two bumps (positive forcing) or two holes (negative forcing). Our main focus is on trapped
solitary waves between two bumps or two holes and their stability as they evolve in time. In particular,
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the bottom configuration is confined as two identical or symmetric positive bumps or negative holes.
First, stationary trapped solitary waves are found as varying the distance between two bumps and the
bump size. Then, we investigate the impact of various bump scenarios on their numerical stability.

3.1. Trapped Solitary Waves between Two Positive Bumps

As well known, the time independent KdV equation without any forcing (i.e. f (x) = 0) has two
exact solutions such as η1(x) ≡ 0 and η2(x) = 2λsech2[(6λ)1/2(x− x0)/2] with a phase shift x0. Also,
in the presence of a single positive symmetric forcing which satisfies a compact support condition,
there are two symmetric solitary wave solutions: one is near η1(x) and the other one is near η2(x) for
all λ > λc with a critical value λc > 0 [7]. Under two-bump configurations, with the similar argument,
there exist at least two stationary solitary wave solutions, since the bump h(x; a, P1, P2) is positive and
symmetric with a compact support. Recall that h(x; a, P1, P2) is defined as each bump is centered at −a
and a and the bump height at each center is P1 = P2.

Figure 1 displays eight stationary wave solutions using the two-bump configuration h(x; 2, 1, 1)
and λ = 1.5. The left panel shows two symmetric solitary wave solutions including the lower
amplitude wave (blue dashed), which is the near zero solution denoted by ηs(x). Two non-symmetric
wave solutions (with lower and higher amplitude, respectively) are shown in the middle panel.
The right panel represents four stationary wave solutions which consist of two symmetric solutions
and two non-symmetric ones. The blue dashed wave illustrated in the right panel of Figure 1 depicts
the solitary wave solution which is trapped between two bumps similar to η2(x) (sech2-type wave is
placed in the middle of two bumps). Let this be referred to as a trapped solitary wave solution and denoted
by ηT(x). In this study, we focus on the dynamics of these trapped solitary waves, ηT(x) (a higher
amplitude wave in the middle of two bumps) under various bump configurations.
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Figure 1. Stationary wave solutions and a two-bump configuration are shown with λ = 1.5 and
h(x; 2, 1, 1). The left panel shows the stable solitary wave ηs(x) (the blue dashed wave) while the
middle panel shows two non-symmetric waves. The right panel displays the trapped solitary wave
solution ηT(x), the blue dashed wave between two bumps.

It is well known that the near zero wave solution ηs(x) is stable with respect to time when
either single positive symmetric bump or two positive bumps is given. The solitary wave solutions
with two higher amplitudes (the solid curves in the left panel of Figure 1) are moving out fast since
they are placed right over the bumps and this makes them unstable in a very short time. However,
the trapped solitary wave which is placed between two bumps (ηT(x) in the right panel of Figure 1)
remains stable for a very long time as observed [22]. Here, the time evolution of the trapped solitary
wave, ηT(x) is revisited in Figures 2 and 3. The unperturbed trapped solitary wave solution (ηT(x))
remains stable between two bumps until t = 250 in Figure 2. Figure 3 displays the time evolutions of
perturbed trapped solitary wave solutions with +5% and −5% perturbation, respectively. Under ±5%
perturbations, trapped solitary waves start moving out of two bumps around t = 70. It is worth
noting that the trapped solitary wave ηT(x) consists of the unforced solitary wave η2(x) and the near
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zero solitary waves ηs(x) with two bumps. Hence, we can conjecture that the trapped solitary wave
ηT(x) remains stable up to a certain time due to the stable interplay between η2(x) and ηs(x).
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Figure 2. The time evolution of the trapped solitary wave solution is illustrated without any
perturbation using h(x, 2; 1, 1) and λ = 1.5. The trapped solitary wave remains stable up to a long time
up to t = 250.
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Figure 3. The time evolution of the trapped solitary wave solution is shown using h(x, 2; 1, 1) and
λ = 1.5 with +5% perturbation (left) and −5% perturbation (right), respectively. They start moving
between two bumps and evolve out of two bumps around t = 70.

3.2. The Impact of the Bump Distance on the Stability of ηT(x)

We investigate the impact of the distance between two bumps on the trapped solitary waves.
Figure 4 illustrates three stationary trapped solitary wave solutions using three different bump
distances between two bumps. All of their shapes are similar to η2(x) around x = 0 with the near zero
wave just over each bump. The distance between two bumps are varied as 2, 4 and 6 using h(x, 2; 1, 1),
h(x, 3; 1, 1) and h(x, 4; 1, 1), respectively. Their time evolutions are illustrated in Figures 5 and 6.

First, the time evolution of the unperturbed trapped solitary wave solution is displayed using
h(x, 3; 1, 1) (the distance between two bumps is 4) in Figure 5. It is interesting to observe that the
trapped solitary wave solution is stable up to a very long time (simulated until t = 500). This can
be compared with the unperturbed result with h(x, 2; 1, 1) stable up to t = 250 in Figure 2. Next,
the trapped solitary wave using h(x, 3; 1, 1) are perturbed with +5% and −5% in Figure 6. They move
back and forth between two bumps, however, they still remain between two bumps for a very long
time (the results shown until t = 100).
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Figure 4. Stationary trapped solitary wave solutions and two-bump configurations are displayed using
three bump distances h(x, 2; 1, 1), h(x, 3; 1, 1) and h(x, 4; 1, 1), respectively.
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Figure 5. The time evolution of the trapped solitary wave solution is displayed with h(x, 3; 1, 1) and
λ = 1.5. The unperturbed trapped solitary wave remains stable between two bumps for a very long
time (simulated up to t = 500).
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Figure 6. The time evolution of the trapped solitary wave solution is shown for h(x, 3; 1, 1) and λ = 1.5
with +5% perturbation (left) and −5% perturbation (right), respectively. The perturbed trapped
solitary waves bounce between two bumps for a long time (shown up to t = 100).
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3.3. The Impact of the Bump Size on the Stability of ηT(x)

The impact of the size of two bumps on the time evolutions for trapped solitary waves has been
explored. Let us consider our baseline bump size to be 1 (the bump size is defined as the maximum
height of the bump at the center, which is P1 = P2). Now, the bump size is varied from 0.5 to 2.
As shown in Figure 7, each stationary trapped solitary wave has the shape of η2(x) around x = 0
and the near zero wave over each bump. Also, the distance between two bumps is varied as well;
the left panel shows the result with the bump distance 2 and the right panel with the bump distance 4.
The amplitude of near zero wave gets higher as the bump size becomes larger in both panels.

The time evolutions of the perturbed trapped solitary wave solution using h(x, 2; 0.5, 0.5) with
+5% and −5% are displayed in Figure 8. Note that the perturbed trapped solitary wave solution stays
much longer between two bumps when comparing with the results in Figure 4. That implies that the
trapped solitary wave with the bump size 0.5 is more stable than the ones with the bump size 1. Now,
using the larger bump size, Figure 9 illustrates that the perturbed trapped solitary wave solutions
with the bump size 2 moves out of two bumps quickly than the results in Figure 4. This indicates that
there is a critical bump size for trapped solitary waves to remain stable for a longer time. Therefore,
we investigate the relationship between the bump size and the time until trapped solitary waves
remain stable.
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Figure 7. Stationary trapped solitary wave solutions are displayed using three different bump sizes,
P1 = P2 = 0.5, P1 = P2 = 1 and P1 = P2 = 2 when the distance between two bumps is 2 (left) and
4 (right), respectively.
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Figure 8. The time evolution of the trapped solitary wave solution using h(x, 2; 0.5, 0.5) and λ = 1.5
with +5% perturbation (left) and −5% perturbation (right), respectively. They start moving between
two bumps and evolve out of two bumps around t = 340 and t = 300, respectively.
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Figure 9. The time evolution of the trapped solitary wave solution using h(x, 2; 2, 2) and λ = 1.5
with +5% perturbation (left) and −5% perturbation (right), respectively. They start moving between
two bumps and evolve out of two bumps around t = 50 and t = 40, respectively.

The left panel of Figure 10 displays the time when the trapped solitary wave solutions move out
of two bumps as the bump size is varied. The time is measured when trapped solitary waves under
+5% (solid) or −5% (dotted) perturbation start moving out of two bumps. The time decreases when
the bump size increases from 0.5 to 2 so that it takes the minimum around the bump size 2, then the
time increases again significantly as the bump size increases. Next, we investigate the relationship
between the bump distance and the time until trapped solitary waves remain stable. The right panel of
Figure 10 illustrates the time when the trapped solitary wave solutions move out of two bumps as the
bump distance is varied. Again, the time is measured when trapped solitary waves under +5% (solid)
or −5% (dotted) perturbation start moving out of two bumps. As seen in the right panel, the time
increases as the distance between two bumps increases linearly.
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Figure 10. The impact of the bottom configurations is shown on the time when perturbed trapped
solitary waves start evolving out of between two bumps (the left panel for the bump size and the right
panel for the bump distance).

3.4. Trapped Solitary Waves between Two Negative Holes

In this subsection, we present the dynamics of trapped solitary waves when two negative holes
are given as the bottom configuration. As studied in [19], there are five stationary wave solutions
including the near zero wave (a negative solitary wave) and the near η2(x) wave in the presence of
one negative bump or hole. Unlike the solitary wave of a positive bump, the near zero solitary wave
exists for all λ > 0 when a negative bump is given. Moreover, the near zero wave is stable and the
near η2(x) wave is unstable when they evolve in time [19]. In the presence of two symmetric negative
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holes, the number of stationary solitary wave solutions increase (the larger the distance between two
holes, the more various trapped solitary waves [21]).

First, stationary trapped solitary wave solutions between two holes are obtained as the distance
between two holes is varied. In Figure 11, three stationary trapped solitary wave solutions are
displayed under three different bump distance using h(x, 2;−1,−1), h(x, 3;−1,−1) and h(x, 4;−1,−1),
respectively. Each trapped solitary wave has the shape of η2(x) around x = 0 and the near zero negative
wave over each hole. Next, Figure 12 illustrates stationary trapped solitary waves as the hole depth is
varied, −0.5, −1 and −2. Further, the left panel of Figure 12 shows the trapped solitary waves using
the hole distance 2 and the right panel shows the trapped solitary waves using the hole distance 4.
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Figure 11. Stationary trapped solitary wave solutions are shown using three two-hole configurations with
three different distances, h(x, 2;−1,−1), h(x, 3;−1,−1) and h(x, 4;−1,−1), respectively.
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Figure 12. Stationary trapped solitary wave solutions are displayed using three different hole sizes,
P1 = P2 = −0.5, P1 = P2 = −1 and P1 = P2 = −2 when the distance between two holes is 2 (left) and
4 (right), respectively.

Figures 13 and 14 illustrate the time evolutions of unperturbed trapped solitary wave solutions.
As seen in both figures, the trapped solitary waves move out of two holes much faster than the cases
of two symmetric positive bumps. In Figure 13, the trapped solitary wave stays between two holes
up to t = 100 with h(x, 3;−1,−1) (right) while it stays only up to t = 20 with h(x, 2;−1,−1) (left).
This is consistent with the results for two positive bumps; the larger the distance between two holes,
the longer the trapped solitary wave solution remains stable between two holes. Similarly, as we
vary the depth of two holes, the time evolutions of trapped solitary waves are changing as well in
a complex way. As the depth of two holes is reduced half h(x, 3;−0.5,−0.5), the trapped solitary wave
remains between two holes for a longer time (see the left panel of Figure 14). The depth of two holes is
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increased double h(x, 3;−2,−2), the trapped solitary wave remains between two holes for a shorter
time (see the right panel of Figure 14). Again, this is consistent with the results for two positive bumps.
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Figure 13. The time evolution of trapped solitary wave solution is displayed with λ = 1.5 and
h(x, 2;−1,−1) (left) and h(x, 3;−1,−1) (right), respectively. The unperturbed trapped solitary wave
remains stable between two holes for a very short time t = 20 (see the left panel). It remains for
a longer time when the distance increases (stable up to t = 100 in the right panel).
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Figure 14. The time evolution of trapped solitary wave solution with λ = 1.5 and h(x, 3;−0.5,−0.5)
(left) and h(x, 3;−2,−2) (right), respectively. The unperturbed trapped solitary wave remains stable
between two holes up to t = 120 (see the left panel). It remains for a shorter time when the depth of
holes increases to −2 (stable up to t = 60 in the right panel).

4. Conclusions

In this work, the focus has been on the trapped solitary wave solutions of the forced KdV and their
numerical stability in the presence of two bumps. We use the Newton method incorporating artificial
boundary conditions to find various trapped solitary waves in the presence of two positive bumps and
two negative holes. This method provides a good alternative to find various stationary wave solutions
under arbitrary two-bump configurations when they are close enough (the distance between two
bumps are not large) [21]. The semi-implicit finite difference method has been employed to investigate
the numerical stability of these trapped solitary waves. Our previous results indicate that the number
of stationary wave solutions increases as the bump distance increases and there exist multiple trapped
solitary waves under different two-bump configurations [22]. In this study, we have extended the
results under more various two bump configurations. Specifically, the impact of the bump distance
and the bump size on numerical stability of trapped solitary waves have been investigated.
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For both two positive bumps and two negative holes, the near zero solution is stable when
it evolves in time. Moreover, it is worth to observe that a trapped wave solution remains stable for
a very longer time between two positive bumps. As the distance between two bumps increases,
trapped solitary waves stay longer in a straightforward fashion. On the other hand, the relationship
for the bump size and the time trapped solitary waves to remain between the bumps is not trivial.
There is a critical bump size for the trapped solitary to be stable for a longer time. Furthermore,
for two negative holes, the trapped solitary waves do not remain for a long time as two positive bumps
are given. Their time evolutions are characterized by the interplay between trapped solitary waves
and two-bump configurations.

However, for non-symmetric bumps (two bumps or two holes with different sizes), trapped
solitary waves become non-symmetric as well and they move out of two bumps in a much shorter
time. Non-symmetry becomes even more significant in stationary solitary waves for the combined
bottom configuration of a bump and a hole. They lose stability too fast to measure the length of time
where solitary waves are stable. This highlights the importance of symmetry in the bumps and solitary
waves for their stability. We find that the interplay between trapped solitary waves and two bumps
becomes stronger so that they remain stable up to a certain time when two positive bumps are given.
Hence, we can conjecture that two positive bumps provide a trap for some trapped wave solutions to
be stable for a certain finite time.
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