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Abstract: Pythagorean fuzzy sets are highly appealing in dealing with uncertainty as they allow for
greater flexibility in regards to the membership and non-membership degrees by extending the set of
possible values. In this paper, we propose a multi-criteria group decision-making approach based
on the Pythagorean normal cloud. Some cloud aggregation operators are presented in this paper to
facilitate the appraisal of the underlying utilities of the alternatives under consideration. The concept
and properties of the Pythagorean normal cloud and its backward generation algorithm, aggregation
operators and distance measurement are outlined. The proposed approach resembles the TOPSIS
technique, which, indeed, considers the symmetry of the distances to the positive and negative ideal
solutions. Furthermore, an example from e-commerce is presented to demonstrate and validate the
proposed decision-making approach. Finally, the comparative analysis is implemented to check the
robustness of the results when the aggregation rules are changed.
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1. Introduction

Decision-making is an important issue in the domain of economics and society in general [1,2],
ass human input and interaction are often the decisive elements of the decision-making. Accordingly,
expressing and handling cognitive information has been a focal topic related to the decision-making
literature. What is more, it has been established that the use of exact ratings (e.g., exact numerical
values) might not allow defining the preferences of the decision-makers to a substantial degree [3–5],
which might reduce the effectiveness of the decision-making in general [6]. What is more,
a decision-maker can fathom the limitations of his/her competences or possibilities to provide
ratings in regards to certain alternatives and criteria in general. Realizing this, they might attach
the corresponding information to their ratings [7,8], thus providing an additional dimension in
the decision-making process. All in all, the information rendered by the decision-makers might
be imprecise (in the case that no exact values are provided), incomplete (in the case that certain
values are missing) and uncertain (in the case that the likelihood of observing different values
can be specified). Under these circumstances, the theory of the fuzzy sets can be regarded as a
possible means for handling the decision-making process and overcoming the limitations, which
would have existed if conventional tools (e.g., crisp sets) had been applied. In order to account
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for different structures of uncertainty, the literature has proposed different strands of the fuzzy set
theory since its initial definition by Zadeh [9,10]. In particular, the intuitionistic fuzzy set (IFS)
theory [11] and interval-valued IFS theory [12] were put forward by Atanassov et al. Indeed,
the application of such concepts allows one to account for the incompleteness and inconsistencies
existing in information provided by the decision-makers. In principle, this implies that the underlying
cognitive peculiarities of decision-makers can be accounted for. Yet, another example of the concepts
for handling imprecise information is the hesitant fuzzy set proposed by Torra [13], which allows
considering the hesitancy to provide certain ratings of the alternatives. The establishment of multiple
theoretical concepts for imprecise information provides opportunities for more realistically handling
multi-criteria decision-making problems (MCDM) in general.

However, the very existence of the multitude of the fuzzy set-based concepts does not warranty
successful implementation of these in the area of MCDM. The practical implementation of the fuzzy
sets requires certain restrictions to be satisfied. Turning to IFS, which is one of the most flexible tools
for handling imprecise information, the decision-makers need to ensure that the sum of the degrees
of membership and non-membership is not greater than unity. However, in some fuzzy MCDM
problems, the decision-makers may fail to deliver their ratings in line with the requirements on the
sum of the degrees of membership and non-membership as required by the theory of the IFS. In such
instances, the application of the IFSs becomes rather complicated (e.g., decision-maker might be asked
to reiterate the procedure of rating) and even impossible. Therefore, there have been certain attempts to
rectify this shortcoming by modifying the underlying assumptions. The Pythagorean fuzzy sets (PFSs)
proposed by Yager [14] can be identified as an option for modeling situations that cannot be defined
in terms of IFSs due to difficulties associated with the restrictions on the degrees of membership and
non-membership.

In order to ensure that the PFSs can be successfully applied in MCDM, dedicated techniques
have been proposed. The aggregation operators for the PFSs can be considered as an important
tool for the application of the PFSs in the MCDM problematique. The correspondence among
membership degrees to the Pythagorean fuzzy numbers (PFNs) and the complex numbers was
established by Yager [15]. More specifically, it was shown that the degrees of membership to PFS can be
treated as a special subclass of complex numbers. The mathematical representations of the PFSs were
further reviewed by Liang et al. [16]. They also defined the PFNs. The TOPSIS technique was then
extended with the PFNs, providing the mathematical expressions of PFSs and presenting the concept
of the PFN. Furthermore, the latter study put forward the Pythagorean fuzzy TOPSIS (technique for
order preference by similarity to an ideal solution) for handling the MCDM problems with PFNs.
The averaging functions for the PFSs were discussed by Beliakov and James [17]. In particular,
they sought to ensure that the aggregation of the membership degrees of the PFSs led to consistent
results. The goal of operationalizing the collaboration-based recommender system by using the
PFSs was addressed by Reformat and Yager [18]. Zeng [19,20] developed a Pythagorean fuzzy
multi-attribute group decision-making (MAGDM) method based on probabilistic information and the
ordered weighted averaging (OWA) approach.

Even though the fuzzy sets can describe the degree of membership to a certain concept with
regards to the attitude of the decision-maker, as well as their confidence, the spread of such ratings
might not be fully represented. Accordingly, the need for a more flexible representation of the uncertain
data triggered the development of the normal cloud (NC) concept. Li et al. [21] acknowledged the
random nature of the membership functions and unified the probability theory and fuzzy set theory,
thus devising the NC. Taking the normal distribution as a reference, one can employ the NC to model
deviations from the theoretical distribution. By doing so, one is able to describe the random phenomena
and use this information in MCDM [22]. There are three numerical characteristics that characterize the
random phenomenon in terms of an NC: Ex (expectation), En (entropy) and He (hyper entropy). Ex is
the expected value of the sample data; En is the spread of the sample values defining the uncertainty
of the sample; He is the uncertainty of the degree of membership. The NC theory has been revised
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by introducing the additional types of NCs. Numerous extensions of the NC have been developed.
For example, the integral cloud was put forward by Li et al. [23]. In addition, a multidimensional
cloud was proposed [24]. Jiang et al. [25] developed a trapezoidal cloud (TC) model. The combination
of intuitionistic fuzzy set theory and conventional NC theory was offered by Wang and Yang [26] and
yielded the intuitionistic normal cloud (INC) model.

As NCs represent uncertain information, they can be applied to handle MCDM problems [26].
The distance measure, the similarity measure, the entropy and the inclusion measure for PFSs have
been discussed by Peng et al. [27,28]. The cloud generator algorithm was applied by Yang et al. [29]
in a linguistic hesitant fuzzy decision-making framework. Distance measures play an important role
in constructing the NC-based procedures for MCDM [30]. The aggregation of NCs is yet another
research avenue that deserves much attention. When proposing the linguistic MCDM technique,
such aggregation operators as the cloud weighted arithmetic averaging operator, cloud weighted
geometric averaging operator, cloud-ordered weighted arithmetic averaging operator and cloud hybrid
aggregation operator were developed by Wang et al. [31]. Given the existing different types of the
clouds, the aggregation operators have been revised accordingly. Therefore, the operators for TC and
INC have been proposed. Wang et al. [32] presented a number of arithmetic aggregation operators for
the TCs (including weighted arithmetic averaging operator, ordered weighted arithmetic averaging
operator and hybrid arithmetic operator). Turning to the PFNs, there have also been advancements in
the sense of the development of the aggregation operators and rules of comparison. The Pythagorean
fuzzy uncertain linguistic Maclaurin symmetric mean aggregation (PFULMSMA) operator and the
weighted PFULMSMA (WPFULMSMA) operator have been put forward by Liu et al. [33]. Furthermore,
Garg presented an improved accuracy function for the ranking order of interval-valued Pythagorean
fuzzy sets (IVPFSs) [34].

This paper combines the notion of the NC with the PFS and develops the Pythagorean normal
cloud (PNC). Thereafter, the group decision-making procedure based on the PNCs is proposed. the
proposed approach relies on the backward cloud generator, aggregation operators and distance
measures to deal with the proposed PNCs. These concepts are presented in the paper. In the proposed
framework, the ratings provided by the experts are treated as could drops of PNCs. The proposed
approach is based on the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) [35].
Application of the backward cloud generators allows considering the spread of the ratings provided
by the experts rather than the average values only. The use of the aggregation operators allows
constructing the aggregate indicators, which can further be used for decision-making. The paper
concludes with an illustrative example where the proposed approach is tested by considering the case
study of e-commerce.

2. Preliminaries

This section presents the focal concepts underpinning the proposed approach for cloud-based
MCDM. More specifically, we describe the IFSs and a generalization thereof, namely the PFSs.
The, we discuss the normal clouds and the generator algorithm, which allows transforming drops into
a cloud. The concepts presented in this section will be further revised by incorporating the PFSs.

2.1. Intuitionistic Fuzzy Sets and Pythagorean Fuzzy Sets

The conventional fuzzy set has been generalized by Atanassov [11]. The resulting concept was
termed intuitionistic fuzzy set. The IFS allows for a more detailed representation of vagueness and
uncertainty, which makes it a promising tool for MCDM problems. The key feature of the IFS that
makes it different from the conventional fuzzy sets is the different set of parameters describing
membership to a certain fuzzy set. Therefore, an IFS can be defined as follows:
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Definition 1. Assuming there exists a certain fixed set X = {x1, x2, · · · , xn}, one can define an instance of
IFS I in the following terms:

I = {< x, I(µI(x), νI(x)) > |x ∈ X} (1)

Values µI(x) and νI(x) are the degrees of membership and non-membership, respectively, and they define
the extent to which a certain element x belongs to set I, under condition 0 ≤ µI(x) + νI(x) ≤ 1, for all x ∈ X.
Given the presence of inequality in the condition for the degrees of membership and non-membership to an IFS,
their sum might be lower than unity, which would imply the presence of indeterminacy in the decision-making
process. Formally, the degree of indeterminacy for x with regards to X is defined as πI(x) = 1− µI(x)− νI(x).
Indeed, the MCDM requires assessments of multiple alternatives against different criteria, which is associated
with assessing the membership of the elements to sets multiple times. In order to define this process in
a more concise manner, the notion of the intuitionistic fuzzy number (IFN) has been introduced [33,34].
Specifically, a certain IFN can be defined in terms of the two-tuple containing the degrees of membership and
non-membership, i.e., pair (µI(x), νI(x)). Furthermore, one can introduce notation α = I(µα, να) for IFN α,
where µα ∈ [0, 1], να ∈ [0, 1], µα + να ≤ 1.

For any three IFNs α = I(µα, να),α1 = I(µα1 , να1) and α2 = I(µα2 , να2), some operational laws of IFNs
are introduced as follows [36]:

1. α1
⊕

α2 = I(µα1 + µα2 − µα1 µα2 , να1 να2);
2. α1

⊗
α2 = I(µα1 µα2 , να1 + να2 − να1 να2);

3. λα = I(1− (1− µα)λ, νλ
α ), λ > 0;

4. αλ = I(µλ
α , 1− (1− να)λ), λ > 0.

The experts’ preferences might not be defined in terms of IFSs in case the experts cannot ensure
that the constraint on the membership and non-membership degrees is maintained (i.e., their sum
is not less than unity). Indeed, this might happen whenever the experts are not familiar with the
IFS theory. In order to reduce the likelihood of such situations and improve the possibilities for the
application of the fuzzy sets in the MCDM, a generalization of the IFS has been offered by Yager [14,15].
The resulting concept was termed PFS. The PFS can be defined as follows:

Definition 2. Let us consider a fixed set X = {x1, x2, · · · , xn}, then a PFS P is defined in the following terms:

P = {< x, P(µP(x), νP(x)) > |x ∈ X} (2)

Similarly to the case of IFS, values µP(x) and νP(x) are the degrees of membership and non-membership,
which define the extent to which a certain element x belongs to set P. However, the constraints on these two
values are altered in the case of the PFS so that 0 ≤ µ2

P(x) + ν2
P(x) ≤ 1, for all x ∈ X. These changes

imply that the calculation of the degree of indeterminacy is changed, as well: for any PFS P and x ∈ X,

the degree of indeterminacy is calculated as πP(x) =
√

1− µ2
P(x)− ν2

P(x). For the ease of notation, let the pair
(µP(x), νP(x)) be called the Pythagorean fuzzy number (PFN) [14]. Further on, a shorthand notation can be
used to refer to a certain PFN, namely β = P(µβ, νβ), where the usual conditions hold µβ ∈ [0, 1], νβ ∈ [0, 1],
and µ2

β + ν2
β ≤ 1.

According to Definitions 1 and 2, one can note that the key delineation between PFN and IFN is the
way degrees of membership and non-membership are restricted. More specifically, the case of IFN involves
0 ≤ µI(x) + νI(x) ≤ 1, whereas the corresponding constraint in the case of PFN is 0 ≤ µ2

P(x) + ν2
P(x) ≤ 1.

The relationships among IFNs and PFNs can be established by considering simple mathematical facts. Note that
for any given set of values (a, b), (a, b ∈ [0, 1]), if a + b ≤ 1, then a2 + b2 ≤ 1; thus, if a certain number is an
IFN, then it is definitely a PFN, yet the opposite does not hold.

Given three PFNs β = I(µβ, νβ),β1 = I(µβ1 , νβ1) and β2 = I(µβ2 , νβ2), Zhang et al. [37] presented the
main operations for them, shown as:

1. β1
⊕

β2 = P(
√

µβ1 + µβ2 − µβ1 µβ2 , νβ1 νβ2);
2. β1

⊗
β2 = P(µβ1 µβ2 ,

√
νβ1 + νβ2 − νβ1 νβ2);
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3. λβ = P(1− (1− µβ)
λ, νλ

β ), λ > 0;

4. βλ = I(µλ
β , 1− (1− νβ)

λ), λ > 0.

Definition 3. Given any two PFNs, β j = P(µβ j , νβ j), j = 1, 2, there can be a natural quasi-ordering on the
PFNs established in the following manner: β1 ≥ β2 if and only if µβ1 ≥ µβ2 and νβ1 ≤ νβ2 .

In order to facilitate the comparison of PFNs, Zhang and Xu [38] defined the following principles:

Definition 4. For a PFN β = P(µβ, νβ), s(β) = µ2
β − ν2

β is referred to as the score function of β.
The score function can then be exploited when comparing these PFNs. For two PFNs β1 = P(µβ1 , νβ1) and
β2 = P(µβ2 , νβ2), if s(β1) > s(β2), then β1 ≥ β2; if s(β1) = s(β2), then β1 = β2.

Definition 5. Let β1 = P(µβ1 , νβ1) and β2 = P(µβ2 , νβ2) be two PFNs, then:

dPFD(β1, β2) =
1
2
(|µ2

β1
− µ2

β2
|+ |ν2

β1
− ν2

β2
|+ |π2

β1
− π2

β2
|) (3)

is referred to as the Pythagorean fuzzy distance (PFD) between β1 and β2.

2.2. NC and the Backward Cloud Generator

The observed sample data can be used to recover the underlying data generation process (DGP).
In the case of multi-criteria decision-making, this procedure can be used to describe uncertain
phenomena. In this sub-section, we discuss the procedure for establishing an NC, which represents
the underlying DGP.

Definition 6. Let us assume there exists a universe of discourse denoted by U. Furthermore, let there be a
qualitative concept in U that is denoted as T. Then, let x ∈ U be a random realization of concept T, such that x
follows x ∼ N(Ex, (En∗)2), where En∗ ∼ N(En, He2). Given the conditions on the distribution of x, one can
model the degree of certainty that x belongs to the concept T in the following way:

y = exp(− (x− Ex)2

2(En∗)2 ) (4)

Thus, an NC defines the distribution of x in the universe U. In particular, a certain value of x is attached
with a corresponding degree of certainty y, thus forming a cloud drop. The backward cloud generator of an
NC allows aggregating separate drops into a cloud that defines the concept under analysis in a general manner.
The backward generator proceeds as follows:

Step 1. Calculate the sample average X̄ = 1
n ∑n

i=1 xi along with first-order sample absolute central moment
1
n ∑n

i=1 |xi − X̄|, and sample variance S2 = 1
n−1 ∑n

i=1(xi − X̄)2;

Step 2. Obtain the estimates of Ex, He, En: Êx = X̄, Ên =
√

π
2

1
n ∑n

i=1 |xi − Êx|, Ĥe =
√

S2 − 1
3 Ên2;

Output: The estimate (Êx, Ên, Ĥe) of (Ex, En, He).

3. Pythagorean Normal Cloud

The NC only defines the uncertainty surrounding the membership to a concept. However,
the assessments might be associated with different degrees of confidence. This situation is present in
IFSs and PFSs. Therefore, we update the concept of the NC with the PFSs in order to derive a more
comprehensive means of the representations of uncertain information.

Definition 7. For a given universe of discourse, U, one can characterize a PNC C in U in terms of
Ex, En and He. Furthermore, Ex can be represented by a Pythagorean fuzzy number (PFN) < Ex, µβ, νβ >.
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Then, the PNC C is defined as: C(< Ex, µβ, νβ>, En, He)

Definition 8. Let there be a set of PNCs Ci(< Exi, µβi , νβi >, Eni, Hei), i = 1, 2, · · · , n with associated
weighting vector w = (w1, w2, · · · , wn) of (C1, C2, · · · , Cn), such that wi ∈ [0, 1], (i = 1, 2, · · · , n) and
∑n

i=1 wi = 1. The PNCWAA operator is:

PNCWAAw(C1, C2, · · · , Cn) = (<
n

∑
i=1

wiExi,
∑n

i=1 µβi wiExi

∑n
i=1 wiExi

,
∑n

i=1 νβi wiExi

∑n
i=1 wiExi

>,

√
n

∑
i=1

wiEn2
i ,

√
n

∑
i=1

wi He2
i ) (5)

In the earlier literature, Wang et al. discussed the main operations for NC [32], whereas other
studies further developed those for INC [26]; besides, arithmetic operations for handling the TCs were
outlined [25]. Based on the earlier literature, we present the following operational laws for the PNCs:

Definition 9. Let C1(< Ex1, µβ1 , νβ1 >, En1, He1) and C2(< Ex2, µβ2 , νβ2 >, En2, He2) be two PNCs.
Then, the following operational rules apply for C1 and C2:

1. C1 + C2 = (< Ex1 + Ex2,
µβ1

Ex1+µβ2
Ex2

Ex1+Ex2
,

νβ1
Ex1+νβ2

Ex2
Ex1+Ex2

>,
√

En2
1 + En2

2,
√

He2
1 + He2

2);

2. C1 × C2 = (< Ex1Ex2,
µβ1

Ex1+µβ2
Ex2

Ex1Ex2
,

νβ1
Ex1+νβ2

Ex2
Ex1Ex2

>,
√
(Ex2En1)2 + (Ex1En2)2,√

(Ex2He1)2 + (Ex1He2)2);
3. λC1 = (< λEx1, µβ1 , νβ1 >,

√
λEn1,

√
λHe1);

4. Cλ
1 = (< Exλ

1 , µβ1 , νβ1 >,
√

λExλ−1
1 En1,

√
λExλ−1

1 He1);

Theorem 1. Let there be any three PNCs C1(< Ex1, µβ1 , νβ1 >, En1, He1), C2(< Ex2, µβ2 , νβ2 >, En2, He2)

and C3(< Ex3, µβ3 , νβ3 >, En3, He3). For these PNCs, the following observations hold:
1. C1 + C2 = C2 + C1;
2. (C1 + C2) + C3 = C1 + (C2 + C3);
3. λ(C1 + C2) = λC1 + λC2;
4. λ1C1 + λ2C1) = (λ1 + λ2)C1;
5. C1 × C2 = C2 × C1.

Proof. According to Definition 9, we can obtain
C1 + C2

= (< Ex1 + Ex2,
µβ1

Ex1+µβ2
Ex2

Ex1+Ex2
,

νβ1
Ex1+νβ2

Ex2
Ex1+Ex2

>,
√

En2
1 + En2

2,
√

He2
1 + He2

2)

= (< Ex2 + Ex1,
µβ2

Ex2+µβ1
Ex1

Ex2+Ex1
,

νβ2
Ex2+νβ1

Ex1
Ex2+Ex1

>,
√

En2
2 + En2

1,
√

He2
2 + He2

1)

= C2 + C1;

According to Definition 9, we can also obtain
(C1 + C2) + C3

= (< (Ex1 + Ex2) + Ex3, (µ1Ex1+µ2Ex2)+µ3Ex3
(Ex1+Ex2)+Ex3

, (ν1Ex1+ν2Ex2)+ν3Ex3
(Ex1+Ex2)+Ex3

>,
√
(En2

1 + En2
2) + En2

3,√
(He2

1 + He2
2) + He2

3)

= (< Ex1 + (Ex2 + Ex3),
µ1Ex1+(µ2Ex2+µ3Ex3)

Ex1+(Ex2+Ex3)
, ν1Ex1+(ν2Ex2+ν3Ex3)

Ex1+(Ex2+Ex3)
>,

√
En2

1 + (En2
2 + En2

3),√
He2

1 + (He2
2 + He2

3))

= C1 + (C2 + C3);

According to Definition 9, we can obtain
λC1 + λC2

= (< λEx1 + λEx2, µ1λEx1+µ2λEx2
λEx1+λEx2

, ν1λEx1+ν2λEx2
λEx1+λEx2

>,
√

λEn2
1 + λEn2

2,
√

λHe2
1 + λHe2

2)

= (< λ(Ex1 + Ex2),
µ1Ex1+µ2Ex2

Ex1+Ex2
, µ1Ex1+µ2Ex2

Ex1+Ex2
>,
√

λ
√

En2
1 + En2

2,
√

λ
√

He2
1 + He2

2)
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= λ(C1 + C2);

The proof for the fourth result of Theorem 1 is similar to that for the third result.
According to Definition 9, we can also note

C1 × C2

= (< Ex1Ex2,
µβ1

Ex1+µβ2
Ex2

Ex1Ex2
,

νβ1
Ex1+νβ2

Ex2
Ex1Ex2

>,
√
(Ex2En1)2 + (Ex1En2)2,

√
(Ex2He1)2 + (Ex1He2)2)

= (< Ex2Ex1,
µβ2

Ex2+µβ1
Ex1

Ex2Ex1
,

νβ2
Ex2+νβ1

Ex1
Ex2Ex1

>,
√
(Ex1En2)2 + (Ex2En1)2,

√
(Ex1He2)2 + (Ex2He1)2)

= C2 × C1

3.1. Backward Cloud Generator and Aggregation Operators for PNCs

The extensive form of the data describing a certain concept (i.e., cloud drops) can be aggregated
into an intensive form describing the same concept (i.e., cloud) by means of the backward cloud
generator [39]. In general, the sample data are used in the backward cloud generator algorithm of a
PNC to recover the estimates (< Êx, µ̂β, ν̂β >, Ên, Ĥe), which describe a PFN. In the context of group
decision-making, the backward cloud generator can be used to aggregate the ratings provided by
different experts into a single cloud (e.g., PNC), which considers not only the tendency, but also the
spread of the assessments. Li et al. [21] proposed a backward cloud generator algorithm, which can
be applied to generate the NCs. The backward cloud generator algorithm can be implemented by
following these steps:

Step 1. Calculate the sample mean X̄ =< Ēx, µ̄β, ν̄β >, where Ēx = 1
n ∑n

i=1 Exi, µ̄β =
∑n

i=1 µβExi

∑n
i=1 Exi

, ν̄β =
∑n

i=1 νβExi

∑n
i=1 Exi

, The first-order sample absolute central moment can be expressed as
1
n ∑n

i=1 |xi − X̄|, and sample variance can be expressed as S2 = 1
n−1 ∑n

i=1(xi − X̄)2;
Step 2. Estimate the value of Ex, µβ, νβ Êx = Ēx, µ̂β = µ̄β, ν̂β = ν̄β;

Step 3. Estimate the value of He, En, Ên =
√

π
2

1
n ∑n

i=1 |xi − Êx|, Ĥe =
√

S2 − 1
3 Ên2;

Output: The estimated value (< Êx, µ̂β, ν̂β >, Ên, Ĥe) of (< Ex, µβ, νβ >, En, He).

The clouds need to be aggregated in order to facilitate the decision-making process. To this
end, the aggregation operators can be used. The cloud weighted arithmetic averaging operator and
cloud weighted geometric averaging operator were brought forward by Wang et al. [30]. Further
on, Wang and Yang [26] extended the weighted arithmetic averaging operator and presented an
instance of aggregation operators for the intuitionistic normal clouds. In order to derive the utility
of the alternatives considered in the MCDM problem when the PNCs are applied, one also needs
the appropriate aggregation operators. Below, we present some aggregation operators for the PNCs,
as well as discuss the properties thereof.

Definition 10. Let Ci(< Exi, µβi , νβi >, Eni, Hei), (i = 1, 2, · · · , n) be a set of PNCs. The PNC weighted
arithmetic averaging operator (PNCWAA) is defined as:

PNCWAA(C1, C2, · · · , Cn) =
n

∑
i=1

wiCi (6)

where wi is the weight associated with Ci, i = 1, 2, · · · , n,, such that wi ∈ [0, 1], i = 1, 2, · · · , n
and ∑n

i=1 wi = 1. If wi =
1
n , the PNCWAA boils down to the PNC arithmetic average (PNCAA) operator,

defined as:

PNCWAA(C1, C2, · · · , Cn) =
1
n

n

∑
i=1

Ci (7)
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Theorem 2. Let Ci(< Exi, µβi , νβi >, Eni, Hei), (i = 1, 2, · · · , n) be a set of PNCs. Then, the result of the
aggregation based on the PNCWAA operator is also a PNC, and:

PNCWAA(C1, C2, · · · , Cn) = (<
n

∑
i=1

wiExi,
∑n

i=1 wiµβi Exi

∑n
i=1 wiExi

,
∑n

i=1 wiνβi Exi

∑n
i=1 wiExi

>,

√
n

∑
i=1

wi(Eni)2,

√
n

∑
i=1

wi(Hei)2) (8)

Proof. According to Theorem 1 and Definitions 9 and 10, we can obtain
PNCWAA(C1, C2, · · · , Cn)

= ∑n
i=1 wiCi

= ∑n
i=1(< wiExi, µβi , νβi >,

√
wiEni,

√
wi Hei)

= (< ∑n
i=1 wiExi,

∑n
i=1 wiµβi

Exi

∑n
i=1 wiExi

,
∑n

i=1 wiνβi
Exi

∑n
i=1 wiExi

>,
√

∑n
i=1 wi(Eni)2,

√
∑n

i=1 wi(Hei)2)

Definition 11. Let Ci(< Exi, µβi , νβi >, Eni, Hei), (i = 1, 2, · · · , n) be a set of PNCs. The PNC weighted
geometric averaging operator (PNCWGA) is defined as:

PNCWGA(C1, C2, · · · , Cn) =
n

∏
i=1

Cwi
i (9)

where wi is the weight attached to Ci, i = 1, 2, · · · , n,, such that wi ∈ [0, 1], i = 1, 2, · · · , n and ∑n
i=1 wi = 1.

If wi =
1
n , the PNCWGA is reduced to an PNC geometric average (PNCGA) operator, defined as:

PNCGA(C1, C2, · · · , Cn) = n

√
n

∏
i=1

Ci (10)

Theorem 3. Let Ci(< Exi, µβi , νβi >, Eni, Hei), (i = 1, 2, · · · , n) be a set of PNCs. Then, the result of the
aggregation based on the PNCWGA operator is also a PNC, and:

PNCWGA(C1, C2, · · · , Cn)

= (<
n

∏
i=1

Exwi
i ,

∑n
i=1 µβi Exwi

i

∏n
i=1 Exwi

i
,

∑n
i=1 νβi Exwi

i

∏n
i=1 Exwi

i
>,

n

∏
i=1

Exwi
i

√
n

∑
i=1

wi(
Eni
Exi

)2,
n

∏
i=1

Exwi
i

√
n

∑
i=1

wi(
Hei
Exi

)2)
(11)

Proof. According to Theorem 1 and Definitions 9 and 11, we can obtain
PNCWGA(C1, C2, · · · , Cn)

= ∏n
i=1 Cwi

i
= ∏n

i=1(< Exwi
i , µβi , νβi >,

√
wiExwi−1

i Eni,
√

wiExwi−1
i Hei)

= (< ∏n
i=1 Exwi

i ,
∑n

i=1 µβi
Ex

wi
i

∏n
i=1 Ex

wi
i

,
∑n

i=1 νβi
Ex

wi
i

∏n
i=1 Ex

wi
i

>, ∏n
i=1 Exwi

i

√
∑n

i=1 wi(
Eni
Exi

)2, ∏n
i=1 Exwi

i

√
∑n

i=1 wi(
Hei
Exi

)2)

3.2. Distance Measures for PNCs

The distance measures are an important concept in MCDM. Indeed, they can be used to compare
the alternatives considered against a reference point. In this subsection, the distance measures for
PNCs alongside the properties of these measures are discussed. There have been distance measures for
the integrated clouds developed by Wang and Liu [33]. Wang et al. [40] further considered the distance
measures for interval integrated clouds. Following the principles outlined in the aforementioned
papers, the distance measures for PNCs can be established as follows.

Definition 12. Let there be any two PNCs C1(< Ex1, µβ1 , νβ1 >, En1, He1) and C2(< Ex2, µβ2 , νβ2 >,
En2, He2). The distance measure for the PNCs can be defined as:

d(C1, C2) = |(1− τ1)ρ1Ex1 − (1− τ2)ρ2Ex2| (12)
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where τ1 =

√
En2

1+He2
1√

En2
1+He2

1

√
En2

2+He2
2
, τ2 =

√
En2

2+He2
2√

En2
1+He2

1

√
En2

2+He2
2
, ρ1 = min{µβ1 ,

√
1− ν2

β1
},

ρ2 = min{µβ2 ,
√

1− ν2
β2
}. In addition, when En1 = En2 = 0, He1 = He2 = 0, then τ1 = τ2 = 0;

the distance measure between two PNCs can be expressed as d(C1, C2) = |ρ1Ex1 − ρ2Ex2|. Furthermore,
when En1 = En2 = 0, He1 = He2 = 0 and ρ1 = ρ2 = 1, the distance between the two PNCs is the distance
between two real numbers, and d(C1, C2) = |Ex1 − Ex2|.

Property 1. Let C1, C2 and C3 be three PNCs, Ω = {1, 2, 3}. Then, the distance measure given in Definition 12
satisfies the following properties:

1. d(Ci, Cj) ≥ 0, i, j ∈ Ω;
2. d(Ci, Cj) = d(Cj, Ci), i, j ∈ Ω;
3. d(Ci, Cj) = 0, iff Ci = Cj, i, j ∈ Ω;
4. d(Ci, Ck) ≤ d(Ci, Cj) + d(Cj, Ck), i, j, k ∈ Ω.

4. PNC-Based MCGDM Method

An MCGDM approach for handling the problems with Pythagorean information is outlined in
this section. The proposed approach is based on the TOPSIS [35]. We chose the TOPSIS approach
due to the effectiveness and low computational burden associated with the computations underlying
this approach. However, the MCDM framework based on the PNCs could be revised by applying
such techniques as VIKOR (VIsekriterijumsko KOmpromisno Rangiranje) or Grey relational analysis,
for instance.

Say we consider s alternatives A = {a1, a2, · · · , as}, t decision-makers M = {m1, m2, · · · , mt}
and n criteria c = {c1, c2, · · · , cn}. The criteria may have different importance as defined by the
weight vector w = (w1, w2, · · · , wn), where wj > 0, (j = 1, 2, · · · , n) and ∑n

j=1 wj = 1. The ratings are
provided by each decision-maker mr for each alternative ai against criterion cj in terms of the PFN
xijr =< µβijr , νβijr >.

The group MCDM proceeds by applying the backward cloud generator for the PNCs.
The resulting data are then processed by applying the aggregation operators (PNCWAA or PNCWGA).
The detailed procedure can be described in the following manner:

Step 1. The ratings provided by the experts are aggregated for each alternative and each criterion.
The backward cloud generator algorithm described in Section 3.1 is applied to populate the PNC,
which represents the aggregate rating eij = (< Exij, µβij , νβij >, Enij, Heij) for alternative ai against cj.

Step 2. The ratings for each alternative are aggregated across the criteria. The resulting overall
utility ri of the alternative ai can be obtained by using the PNCWAA (or PNCWGA):

ri = (< Exi, µβi , νβi >, Eni, Hei)

= PNCWAA(ei1, ei2, · · · , ein)

= (<
n

∑
j=1

wjExij,
∑n

j=1 wjµβij Exij

∑n
j=1 wjExij

,
∑n

j=1 wjνβij Exij

∑n
j=1 wjExij

>,

√√√√ n

∑
j=1

wj(Enij)2,

√√√√ n

∑
j=1

wj(Heij)2)

(13)

Step 3. Calculate the coordinates of the positive and negative ideal solutions. The following
equation defines the way the coordinates of the positive ideal solution can be obtained:

y+ = (< Ex+, µ+
β , ν+β >, En+, He+) = (< max

1≤i≤n
Exi, max

1≤i≤n
µβi , min

1≤i≤n
νβi >, min

1≤i≤n
Eni, min

1≤i≤n
Hei) (14)

The coordinates of the negative ideal solution can be obtained by considering the
following equation:

y− = (< Ex−, µ−β , ν−β >, En−, He−) = (< min
1≤i≤n

Exi, min
1≤i≤n

µβi , max
1≤i≤n

νβi >, max
1≤i≤n

Eni, max
1≤i≤n

Hei) (15)
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Step 4. Each alternative is positioned in between the positive and negative ideal solutions.
The distances to the ideal solutions are obtained by considering the distance measure given by
Equation (12). For the i-th alternative, its distance to the positive ideal solution defined by Equation (14)
is obtained as:

d+i = d(ri, y+)

= |(1−

√
En2

i + He2
i√

En2
i + He2

i

√
(En+)2 + (He+)2

)ρiExi − (1−
√
(En+)2 + (He+)2√

En2
i + He2

i

√
(En+)2 + (He+)2

)ρ+Ex+|
(16)

where ρi = min{µβi ,
√

1− ν2
βi
}, ρ+ = min{µβ+ ,

√
1− ν2

β+
}.

Step 5. Similarly, Equation (14) is exploited to measure the distance between the i-th alternative
and the negative ideal solution defined by Equation (15):

d−i = d(ri, y−)

= |(1−

√
En2

i + He2
i√

En2
i + He2

i

√
(En−)2 + (He−)2

)ρiExi − (1−
√
(En−)2 + (He−)2√

En2
i + He2

i

√
(En−)2 + (He−)2

)ρ−Ex−|
(17)

where ρi = min{µβi ,
√

1− ν2
βi
}, ρ− = min{µβ− ,

√
1− ν2

β−}.
Step 6. Rank the alternatives. The alternatives can be ordered on the basis of the

normalized distance:

d∗i =
d+i

d+i + d−i (18)

where smaller values of d∗i are associated with better alternatives ai. Therefore, the asymmetry between
the two ideal solutions and an alternative is used to rank the alternatives.

5. Results

We follow the application presented by [41] to show the possibilities for the application of the
proposed approach for decision-making in e-commerce. More specifically, the case of an Internet
shop is considered. The data from a business-to-consumer (B2C) website based in China, Tmall.com,
are used to implement the proposed approach and rank the goods sold online against several criteria.

The website allows the customers to express their opinions (ratings) regarding the products they
have already bought. These ratings can be used for new costumers when making decisions to buy.
As several aspects of the goods purchased can be evaluated, the MCDM problem emerges. Indeed, the
opinions of the existing customers might be aggregated for different articles (alternatives) and criteria,
thus defining a decision matrix.

Let us consider the case of four cameras (x1, x2, x3, x4), which are compared against each other in
order to identify the most appealing one. Therefore, we set s = 4. The cameras are compared in terms
of the three criteria (n = 3). The criteria considered are: the quality of the logistics service provider
(c1), the level of service provided by the vendor (c2) and the quality of each item (c3). The ratings are
expressed on a five-point scale. The criteria are assumed to have different importance as manifested
by the associated weight vector w = (0.3, 0.2, 0.5). The ratings provided by the previous consumers
(experts) are aggregated into the PNCs (we omit the detailed description of this step for the sake of
brevity).

5.1. Empirical Application

The MCDM procedure based on the resulting PNCs proceeds as follows:
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Step 1. Aggregate the evaluations of each alternative under a certain criterion provided by all of
the decision-makers by applying the backward generator. The criteria values of cameras x1, x2, x3 and
x4 under the three criteria can be expressed as the following PNCs:

e11 = (< 2.65, 0.81, 0.28 >, 0.94, 1.33), e12 = (< 2.56, 0.81, 0.18 >, 0.89, 1.26),
e13 = (< 2.62, 0.81, 0.29 >, 0.89, 1.28), e21 = (< 3.57, 0.75, 0.33 >, 0.42, 0.67),
e22 = (< 2.67, 0.73, 0.25 >, 0.90, 1.29), e23 = (< 2.73, 0.79, 0.21 >, 0.91, 1.30),
e31 = (< 2.60, 0.75, 0.29 >, 0.92, 1.30), e32 = (< 3.56, 0.81, 0.25 >, 0.39, 0.65),
e33 = (< 2.69, 0.85, 0.20 >, 0.92, 1.29), e41 = (< 2.98, 0.80, 0.32 >, 0.74, 0.95),
e42 = (< 2.65, 0.90, 0.14 >, 0.92, 1.32), e43 = (< 3.57, 0.82, 0.16 >, 0.42, 0.68).

Step 2. Obtain the overall utility scores for each camera. Based on Equation (13), the PNC utility
scores of each camera can be expressed as:

r1 = (< 2.6170, 0.8100, 0.2654 >, 0.9053, 1.2913), r2 = (< 2.9700, 0.7648, 0.2605 >, 0.7931, 1.1456),
r3 = (< 2.8370, 0.8125, 0.2373 >, 0.8412, 1.2931), r4 = (< 3.2090, 0.8276, 0.2013 >, 0.6494, 0.9222).

Step 3. Identify the coordinates describing the positive and negative ideal solutions. Following
Equation (14), the positive ideal solution can be expressed as:

y+ = (< 3.2090, 0.8276, 0.2013 >, 0.6494, 0.9222).

According to (15), the negative ideal solution can be expressed as:

y− = (< 3.6170, 0.7648, 0.2654 >, 0.9053, 1.2913).

Step 4. Measure the distance between the vector defining a certain camera and the positive ideal
solution. Following Equation (16), we obtain the following distances:

d+1 = 0.7314, d+2 = 0.4921, d+3 = 0.5751, d+4 = 0.0000.

Step 5. Measure the distance between the vector defining a certain camera and the negative ideal
solution. Following Equation (17), we obtain the following distances:

d−1 = 0.0433, d−2 = 0.2661, d−3 = 0.2130, d−4 = 0.7448.

Step 6. Rank the cameras. According to (18), the normalized distance can be used to rank
the alternatives:

d∗1 = 0.9441, d∗2 = 0.6491, d∗3 = 0.7298, d∗4 = 0.0000.

Clearly, d∗1 > d∗3 > d∗2 > d∗4 ; thus, the cameras can be ranked as x4 � x2 � x3 � x1. Then, the best
camera is x4.

The robustness of the MCDM approach needs to be checked by means of the sensitivity analysis.
Specifically, we look at the changes in the criterion weights and the resulting changes in the ranking of
the alternatives. First, we define the design of variations in the weighting vector. The vector for positive
weights of criteria is w = (w1, w2, · · ·wk) such that the weights are normalized, that is ∑k

j=1 wj = 1.
Then, if the weight of one criterion changes, the weight of other criteria must change accordingly in
order to ensure they add up to unity. The resulting vector is then denoted as w′ = (w′1, w′2, · · ·w′k).
Let us change the weight of criterion cq, wq, by a margin of4q. Then, the weights of the other criteria

change by4j, j = 1, 2, · · · , k,. Indeed, the following identity holds: 4j =
4qwj
wq−1 , j = 1, 2, · · · , k, j 6= q.

Observing that w and w′ are related as w′q = wq +4q and w′j =
1−w′q
1−wq

wj, j = 1, 2, · · · q− 1, q + 1, · · · , k,
we can get −wq < 4q < 1− wq. Since 0 < w′q < 1, it is obvious that4q ∈ (−wq, 1− wq).

In order to proceed with the sensitivity analysis, we manipulate w3 and set
43 = −0.499, − 0.3, − 0.1, 0.2, 0.4, 0.499. The resulting weighting vectors and the corresponding
orders of ranking are then summarized in Table 1. The key message is that the rating is stable in terms
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of the best- and worst-performing alternatives for43 ∈ [−0.1, 0.4]. Figure 1 presents the differences in
the normalized distances d∗ due to changes in the weighting vector induced by different values of43.

Table 1. Sensitivity of the ranking to the weights of criteria.

Case No. 43 w′ The Final Ranking

1 −0.499 (0.5994, 0.3996, 0.0010) x2 � x3 � x4 � x1
2 −0.3 (0.4800, 0.3200, 0.2000) x2 � x4 � x3 � x1
3 −0.1 (0.3600, 0.2400, 0.4000) x4 � x2 � x3 � x1
4 0.2 (0.2400, 0.1600, 0.6000) x4 � x2 � x3 � x1
5 0.4 (0.1200, 0.0800, 0.8000) x4 � x3 � x2 � x1
6 0.499 (0.0006, 0.0004, 0.9990) x4 � x3 � x1 � x2

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Camera

d*

Ranking index 

 

 
case 1
case 2
case 3
case 4
case 5
case 6

Figure 1. Changes in the normalized distances d∗i due to changes in the weighting vector.
Note: the cases represent those given in Table 2.

5.2. Comparative Analysis

The proposed PFNs approach is also compared to those based on the INC and neutrosophic
normal cloud (NNC) approach developed by Wang and Yang [26] and Zhang et al. [41], respectively.
Since the approach [26] was based on IFNs, the expert assessments used in the MCDM need to
be transformed from the PFNs into IFNs. This step involves alterations in the membership and
non-membership degrees: as the sum of these values and the degree of indeterminacy needs to be
equal to unity, we normalize these values for each PFN. The resulting IFNs and the three-sigma
principle are then applied when constructing the INCs for each alternative and criterion. The clouds
are aggregated by considering the scores (ratings) and membership degrees of each drop within
a corresponding cloud. The cloud drops are then generated from the aggregate clouds by Monte
Carlo simulations. Then, the items are ranked by considering the average INC drop values for
each alternative.

Aiming to increase the robustness of the analysis, we implement the Monte Carlo simulations so
as to achieve 10,000 cloud drops. As we can see above, the proposed approach and the frameworks
outlined by [26,41] all identify x1 as the worst item. Anyways, the results regarding the most preferable
item diverge. Specifically, the framework by [41] suggests x2 as the best item, while the proposed
approach and the method in [26] both identify x4 as the best item. The results based on the methodology
developed by Zhang et al. [41] are, therefore, the most divergent from the other two.

We further employ the uncertain pure linguistic information cloud (UPLC) model based on [42].
Utilizing UPLC to convert the uncertain linguistic values into an integrated cloud renders the following
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ranking of all alternatives: x4 � x2 � x3 � x1; and the best camera is x4. Then, the generalized interval
aggregation operator [43] is applied to aggregate the uncertain linguistic variables in the initial decision
matrices to derive the individual utilities for the alternatives in the first stage and the uncertain pure
linguistic hybrid harmonic averaging (UPLHAA) operator to aggregate the individual utilities in the
second stage. The resulting ranking order of the alternatives is x4 � x3 � x1 � x2, and the best camera
is x4.

Therefore, we apply different aggregation principles, which differ in terms of the order of
aggregations (across decision-makers, across criteria) and the underlying aggregation operators.
The results of the comparative analysis are summarized in Table 2. The proposed method appears to
be valid in identifying the best- and worst-performing alternatives.

Table 2. The ranking orders rendered by different methods. UPLC, pure linguistic information cloud;
UPLHAA, pure linguistic hybrid harmonic averaging.

Method The Final Ranking The Best Camera The Worst Camera

The method in [26] x4 � x3 � x2 � x1 x4 x1
The method in [41] x2 � x4 � x3 � x1 x2 x1

UPLC [42] x4 � x2 � x3 � x1 x4 x1
UPLHAA [43] x4 � x3 � x1 � x2 x4 x2

The proposed method x4 � x2 � x3 � x1 x4 x1

6. Conclusions

The concept of the Pythagorean normal cloud was proposed in this study. It allows expressing
the expected value of the normal cloud as a Pythagorean fuzzy number (note that the Pythagorean
fuzzy numbers offer more possibilities for constructing fuzzy ratings if opposed to the conventional
fuzzy numbers). The proposed approach, therefore, allows for a greater flexibility in accounting for
the confidence of the decision-makers and the distribution of their ratings.

The group MCDM procedure based on the Pythagorean normal clouds was developed.
The backward cloud generator was applied to aggregate the expert assessments into the Pythagorean
normal clouds. The concept of the PNC was then incorporated into aggregation operators. As a result,
the Pythagorean normal cloud weighted arithmetic averaging operator and the Pythagorean normal
cloud weighted geometric averaging operator were developed. Application of these operators allowed
calculating the Pythagorean fuzzy utility of the alternatives considered. Based on the symmetry among
the alternatives and the ideal solutions, the alternatives were ranked according to the values of the
normalized distances.

An empirical application to e-commerce was presented in order to demonstrate the operationality
of the proposed approach. The existing customers expressed opinions on the goods purchased,
as well as their confidence in the form of the Pythagorean fuzzy numbers. These were further
aggregated into Pythagorean normal clouds and processed in line with the suggested approach.
The comparative analysis was carried out in order to demonstrate the validity of the proposed
approach. Future research could aim to improve the weighting schemes used in the aggregation
approach. For instance, the deviation of experts from the sample mean (i.e., their competence) could
be taken into account when constructing the clouds.
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