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Abstract: Since 2016, Mirai and Persirai malware have infected hundreds of thousands of Internet
of Things (IoT) devices and created a massive IoT botnet, which caused distributed denial of
service (DDoS) attacks. IoT malware targets vulnerable IoT devices, which are vulnerable to
security risks. Techniques are needed to prevent IoT devices from being exploited by attackers.
However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost,
having performance limitations regarding processing and memory, which makes it difficult to install
security and anti-malware programs. Recently, several studies have been attempted to quickly
search for vulnerable internet-connected devices to solve this real issue. Issues yet to be studied
still exist regarding these types of internet-wide scan technologies, such as filtering by security
devices and a shortage of collected operating system (OS) information. This paper proposes an
intelligent internet-wide scan model that improves IP state scanning with advanced internet protocol
(IP) randomization, reactive protocol (port) scanning, and OS fingerprinting scanning, applying
k* algorithm in order to find vulnerable IoT devices. Additionally, we describe the experiment’s
results compared to the existing internet-wide scan technologies, such as ZMap and Shodan. As a
result, the proposed model experimentally shows improved performance. Although we improved
the ZMap, the throughput per minute (TPM) performance is similar to ZMap without degrading the
IP scan throughput and the performance of generating a single IP address is about 118% better than
ZMap. In the protocol scan performance experiments, it is about 129% better than the Censys based
ZMap, and the performance of OS fingerprinting is better than ZMap, with about 50% accuracy.

Keywords: IoT; security; machine learning; vulnerability; intelligent security

1. Introduction

Gartner, Inc. forecasts that 8.4 billion connected things will be in use, worldwide, in 2017, up 31%
from 2016, and will reach 20.4 billion by 2020. The total spending on endpoints and services will reach
nearly $2 trillion in 2017 [1]. Meanwhile, it has become a reality that vulnerable IoT devices (CCTV,
etc.) are frequently involuntarily involved in DDoS (distributed denial of service) attacks. In October
2016, the DNS service provider Dyn took down hundreds of websites—including Twitter, Netflix,
and The New York Times—for several hours, due to IoT devices being infected with Mirai malware.
As shown in Figure 1, Mirai malware primarily spreads by first infecting devices such as webcams,
DVRs, and routers. It then deduces the administrative vulnerabilities of other IoT devices by means of
brute force attack. Mirai mutations, such as Persia Lee, Ripper, and Bricker are generated daily [2,3].

The cause of IoT device infection by malware is mainly from security vulnerability management.
This means IoT devices are used as cut-down OS, with no security functions, or are simply operated
with a default ID and password. Cisco (2016) reported that more than 90% of network devices were
running with known vulnerabilities, and there were 28 vulnerabilities per device on average [4].
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In addition, according to a report by HP (2015), 80% of IoT devices have a default password that is
vulnerable to privacy leakage, 70% of them are not encrypted during communication, and 60% of them
have a weak web interface, and have not been updated for security [5].
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Figure 1. Operation of Mirai malware and DDoS (distributed denial of service) attacks by infected
IoT botnet.

Today, there have been various “security by design” approaches for design-secure IoT devices and
applications [6], and intelligent and secure monitoring of hierarchical topology smart home appliances
and environments [7,8] by applying lightweight encryption, authentication, secure communication,
and intrusion detection [9–12]. The most general approach is to install an antivirus program in an IoT
device. However, since IoT devices are not high-performance devices, like PCs, or mobile devices, it is
not easy to eliminate security vulnerabilities and manage periodic updates by installing an antivirus
program or other malware detection technology. Additionally, low-end devices are incapable of
performing heavier, conventional cryptographic algorithms, due to their constrained resources [13,14].

From the viewpoint of the security vulnerability management of IoT devices, there are various
reasons as to why it is difficult to eliminate security vulnerabilities. First, since IoT devices have been
operating for a long period of time by using open source code and old communication technologies,
they are running with old vulnerabilities. Second, since IoT devices have hard-coded software or
have no automatic update features, like PCs, when vulnerabilities in the embedded OS and firmware
are detected, it is difficult to patch them quickly. Third, since IoT device manufacturers are small
enterprises, if the company goes down, it is difficult to provide follow-up services, such as a security
update, and security vulnerabilities are left unresolved [15].

Recently, there have been many studies on internet-wide vulnerability scanning, such as ZMap [16]
and Shodan [17], where connected vulnerable IoT devices are scanned in real time, and stored in
a database, and their search results are shared. In this study, we propose a model designed to
collect IoT device information in order to detect vulnerabilities in IoT devices connected to the
internet, and compare its performance with existing technology. The structure of this paper involves
Section 2 explaining the concept and existing studies on passive vulnerability scanning technology.
Section 3 presents the passive vulnerability scanning engine model, which has been improved from
the open source ZMap, and explains the scanning algorithm and OS fingerprinting identification and
classification algorithm. Section 4 explains the method of measuring its performance and the results.
Section 5 presents a comparison with existing technologies, such as ZMap and Shodan, and explains
future study.



Symmetry 2018, 10, 151 3 of 16

2. Related Works

2.1. The Concept of Internet-Wide Vulnerability Scanning

IoT malware targets vulnerable IoT devices for the purposes of hacking and malware infection.
To avoid such malware infection, the technique of scanning plays a key role in eliminating
vulnerabilities of low-end IoT devices with constrained resources. Until now, vulnerability scanning
techniques [18] have developed from network scanning in the late 1990s, which scans local network
and system vulnerabilities, to internet-wide scanning, which detects vulnerable internet-connected
devices regularly.

Figure 2 and Table 1 show the concept and features of traditional network scanning and
internet-wide scanning [19]. The biggest difference of the two approaches is in the scanning
method used to collect device information and scan vulnerabilities. In this paper, the viewpoint
of distinguishing the network and internet-wide scanning is whether the technique uses a crafted
packet to collect a device’s information and find vulnerabilities. In other words, we defined that a
scanner using a crafted packet is a network scan, since it is very intrusive, while using banner grabbing
(or OS fingerprint) data is an internet-wide scan (non-intrusive internet-wide scan), since it is relatively
less intrusive.

Symmetry 2018, 10, x FOR PEER REVIEW  3 of 15 

 

2. Related Works 

2.1. The Concept of Internet-Wide Vulnerability Scanning 

IoT malware targets vulnerable IoT devices for the purposes of hacking and malware infection. 

To avoid such malware infection, the technique of scanning plays a key role in eliminating 

vulnerabilities of low-end IoT devices with constrained resources. Until now, vulnerability scanning 

techniques [18] have developed from network scanning in the late 1990s, which scans local network 

and system vulnerabilities, to internet-wide scanning, which detects vulnerable internet-connected 

devices regularly. 

Figure 2 and Table 1 show the concept and features of traditional network scanning and internet-

wide scanning [19]. The biggest difference of the two approaches is in the scanning method used to 

collect device information and scan vulnerabilities. In this paper, the viewpoint of distinguishing the 

network and internet-wide scanning is whether the technique uses a crafted packet to collect a 

device’s information and find vulnerabilities. In other words, we defined that a scanner using a 

crafted packet is a network scan, since it is very intrusive, while using banner grabbing (or OS 

fingerprint) data is an internet-wide scan (non-intrusive internet-wide scan), since it is relatively less 

intrusive. 

 

Figure 2. Differences between traditional network scanning and internet-wide scanning techniques. 

Table 1. Characteristic of network/internet-wide scan techniques. 

Techniques Traditional Network Scan Internet-Wide Scan 

Scan Range 
Devices connected to local private 

network 
Internet-wide devices 

Characteristic Very intrusive scan Less intrusive (Non-intrusive) scan 

Scan Method 
Authorized User → Credential Scan 

(PW crack, fuzzing, and crafted packets) 

Unauthorized User → Non Credential 

Scan (banners and normal messages) 

Vulnerability 

Analysis 

Known/Unknown class vulnerability 

analysis (network/service level) 

Device information DB → Known class 

vulnerability detection 

Analysis Method Dynamic/static fuzzing analysis Vulnerability DB 

Related Technology Nmap, Masscan, Nessus, etc. Shodan (ShoVAT), ZMap (Censys) 

The traditional network scan technique checks IPs for local networks to identify OS types, and 

collects the service type and version information through a port scan to detect vulnerabilities. To 

identify vulnerabilities, Nmap, Nessus, and other tools are used in network scanning. This technique 

attacks the device to find its vulnerabilities. For example, it uses crafted packets—well-known ID and 

password combinations—to check the vulnerability of the password, or directly attacks the device 

using an exploit code. However, since this technique collects internet-connected device information 

Figure 2. Differences between traditional network scanning and internet-wide scanning techniques.

Table 1. Characteristic of network/internet-wide scan techniques.

Techniques Traditional Network Scan Internet-Wide Scan

Scan Range Devices connected to local private
network Internet-wide devices

Characteristic Very intrusive scan Less intrusive (Non-intrusive) scan

Scan Method Authorized User→ Credential Scan
(PW crack, fuzzing, and crafted packets)

Unauthorized User→ Non Credential
Scan (banners and normal messages)

Vulnerability Analysis Known/Unknown class vulnerability
analysis (network/service level)

Device information DB→ Known
class vulnerability detection

Analysis Method Dynamic/static fuzzing analysis Vulnerability DB

Related Technology Nmap, Masscan, Nessus, etc. Shodan (ShoVAT), ZMap (Censys)

The traditional network scan technique checks IPs for local networks to identify OS types,
and collects the service type and version information through a port scan to detect vulnerabilities.
To identify vulnerabilities, Nmap, Nessus, and other tools are used in network scanning. This technique
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attacks the device to find its vulnerabilities. For example, it uses crafted packets—well-known ID and
password combinations—to check the vulnerability of the password, or directly attacks the device
using an exploit code. However, since this technique collects internet-connected device information
remotely, it could be filtered out by security equipment, such as a firewall. This is because the network
scan techniques have the risk of shutting down the service or device to be inoperable by generating
attacking patterns or traffic to the inspected device.

Therefore, many studies focus on internet-wide scanning techniques to collect a large volume
of device data quickly from a remote location. Internet-wide scanning does not perform an attack to
collect device information, but communicates regularity messages to collect necessary information.
Furthermore, this technique covers all internet-connected devices, rather than only the inner network,
and collects service access banners and communication traffic headers.

2.2. Preliminary Research Related to Internet-Wide Scanning

John Matherly [17,20] developed the Shodan search engine in order to search for information of
internet-connected devices through a non-intrusive scan technique. Shodan collects the data of more
than 500 million devices and systems on the internet and provides the collected data each month, but it
is difficult to analyze the scan processing speed and method, since it is not disclosed as an open source,
except for the list of application programming interfaces (APIs). Its main procedure is the scanning of
information for HTTP, FTP, TELNET, and other open ports via handshaking. Device information is
identified via keywords included in banners, and various protocols are supported to collect as much
information as possible from a single device. Additionally, SSL encryption and version information
are collected to discover heart bleed, poodle, and other vulnerabilities.

Shovat [21] is a passive vulnerability analysis tool developed by Petru Maior University in
Romania with the Shodan engine. Shovat takes the output of traditional Shodan queries and performs
an in-depth analysis of service-specific data, such as service banners. It embodies specially crafted
algorithms that rely on novel in-memory data structures to automatically reconstruct common platform
enumeration (CPE) names, and to proficiently extract vulnerabilities from the national vulnerability
database (NVD) [22].

ZMap [16] is open source software, suggested by the University of Michigan, that can scan all
internet-connected IPv4 address spaces, and applies random algorithm and sharing techniques to IP
addresses for rapid searching. In addition, it is faster than Nmap, since it does not go through TCP/IP
stacks. It can reportedly scan the 10 G IPv4 address space in 4 min and 29 s.

Censys [23] is based on the open source ZMap, and collects port information for 23 protocols.
It provides banner information, protocol header information, other device information, and encrypted
communication protocol vulnerabilities, just as Shodan does, but it does not have a technique for
identifying OS information. The main procedure of Censys is to check whether the device IP is enabled,
or the port is opened using a TCP SYN scan from a ZMap module. The ZGrab module, which is a plug
application scanner, performs a handshake for banner grabbing if there is a response from a scanned
device. It collects the data of the application of the port. Censys then extracts the relevant fields from
the collected banner data, adds the metadata as a comment, and saves it in the database.

3. Proposed Model

This section describes the proposed model to improve the device collecting performance of ZMap
and Shodan, which are some of the most effective internet-wide scanning techniques.

As shown in Figure 3, this model consists of three modules—IP alive scan module,
reactive handshake scan module, and OS fingerprinting module. The IP alive scan module collects IoT
device status information. The reactive protocol scan module collects network and service information,
and the OS fingerprinting scan module collects OS information. To create a non-intrusive scan effect,
the reactive handshake module does not store the TCP connection status data (no per-connection state)
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to find the protocol (port) data of devices. In the OS fingerprinting module, we applied the passive
fingerprinting technique of using the TTL and window size values of the TCP/IP header.Symmetry 2018, 10, x FOR PEER REVIEW  5 of 15 
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Our model basically improved the open source ZMap. Compared with the ZMap, it consists
of two parts: a probe engine for fast scan to check IP activation, and the ZGrab engine to collect the
application data (protocol or port) in a banner grabbing technique. The IP alive scan module enhanced
the scheduler and IP address randomization of the ZMap’s probe module. The reactive handshake
scan module enhanced the ZGrab module, only collecting 23 examples of protocol banner information,
theoretically extending the collection range to 63,568 port information. The ZMap engine does not
provide the OS fingerprinting module—they only use banner grabbing with pattern matching—thus,
we added TCP/IP stack fingerprinting techniques to identify the OS’s type.

After the scanning finished, the collected data was stored in the DB for the device’s information,
and accumulated about 950 Gbytes per scan. Therefore, we used an Amazon cloud server to efficiently
handle network traffic, instead of a single server to handle large amounts of device scan data. We also
used Hadoop’s HDFS and NoSQL (MogoDB) to multiplex the DB servers and distribute the data
across multiple servers using “sharding” technology. In more detail, this method used the shard
key to partition the collected data based on ranges of the key in order to store very large data sets.
Each range of the shard key values is assigned to a specific chunk on the cluster. The collected data
is stored in the JSON file format per IP address. The collected data are split over the shards using a
defined range-based shard key, in order to store very large data sets. Here, the shard key is defined as
protocol_id.

3.1. IP Alive Scan Module

The “IP alive scan module” performs functions to check whether the device is in active status
by generating TCP SYN or ICMP packets. It consists of a random IP address generator and an IP
scan scheduler. To improve the hit rate of response packets, the white list/black list is applied to the
scheduler. An IP alive scan scheduler generates an address list to scan about 4.3 billion IPv4 addresses.

The technology of generating IP addresses is very important in internet-wide scan technology.
When scan traffic is generated sequentially, the scan function is not available, due to the detection by
security devices, such as firewalls, IDS, and IPS. Therefore, it is necessary to have a technology that
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randomly generates lists of IP addresses for scanning. Therefore, we used an algorithm that converts
IP addresses to decimal numbers, and then circulates them to generate a randomized IP address list.
Randomized IP addresses make them look random in the network domain.

As shown in Algorithm 1, This algorithm selects an initial decimal number from 232 numbers,
which is the size of the IPv4 address domain. A prime number between 216 and 232 is selected to
generate an IP address that has the difference of B class or more. The prime number is subtracted
from the initial number to generate a decimal number. The value 232 is added to the initial
number to generate a number between 1 and 232 if the initial number is smaller than the prime
number. The generated decimal number is converted to an IP address and used as the scan address.
This algorithm can reduce duplication of IP addresses in B class level. Its purpose is to bypass scan
traffic detection by a security system when the highest level bandwidth of the agency allocated of the
IP is B class, and it is assumed that the security system is positioned upstream of the network.

Algorithm 1: The Randomization of IP Address Generation

function Random IP Generation();
begin

a← random.randrange(1, 4294967295);
count← 0;
ipinit← a;
socket.inet_ntoa(struct.pack(‘!L’, ipinit));
while (count < 65535) do

if a < 16583719 do
a← 4294967295 + a

end if
a← a − 16583719;
ipinit← a;
b← str(socket.inet_ntoa(struct.pack(‘!L’, ipinit)));
count = count + 1;

end while
end

As another technique to avoid filtering by security devices, we modified the scan scheduler to use
WHOIS lookup information as a whitelist of IP address ranges for each domain assigned by ICANN
(Internet Corporation for Assigned Names and Numbers). The scan scheduler generates IP lists based
on the IP range of each domain, selects one of the IP lists, and scans the IP lists once in a specific time
window. At this time, the representative IP of each domain is retrieved by searching the Whois lookup
table, and the sub IP addresses of the corresponding domain are extracted. Then, the extracted IP list
is shuffled using a randomized algorithm to prevent sequential scanning.

3.2. Reactive Handshake Protocol Scan Module

The “reactive protocol handshake scan” module collects the service (port) information running
on its open ports through the IP list of alive states. This module scans information about major ports
such as FTP, Telnet, SSH, and HTTP, that are used for communication in the device. Information
collected from the major ports generates information by going through the process of extracting
scan information, including the system connection banner, encrypted communication information,
packet header, and HTTP header/body information.

Also, this technique is similar to the ZGrab module of the ZMap. The collection scope of this
module identifies a total of 65,568 ports, of which 168 reserved ports and 65,400 unreserved dynamic
ports were added to the fifteen basic protocol scan functions provided by ZGrab. Unreserved dynamic
ports can be defined by the user or the input of extracted traffic data, such as PCAP. In addition,
since most IoT devices connected to the wireless AP have a private IP, the m-search message of the
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UPnP protocol (1900 port), and response information from NAS servers (9000 port) are used to collect
the information of IoT devices connected to the wireless AP.

3.3. OS Fingerpriting Scan Module

The “OS fingerprinting scan module” is used to identify the OS and firmware information of
internet-wide IoT devices. Our approach uses remote TCP/IP stack fingerprinting using TCP/IP
headers and HTTP banner grabbing techniques. This module can be identified by comparing the
OS matching rule with information from ten fields related to the TCP/IP packet as TCP Headers
(don’t_fragment, Window Size, MSS, Window Scale, Timestamps, NOP, sackOK) and IP Headers (IPID,
Total Length, TTL). We applied the k* classier algorithm to improve the accuracy of OS fingerprinting.

The k* algorithm [24,25] is a simple instance-based classifier similar to the K-nearest neighbor
(K-NN) classifier. A new data instance x is allocated to a class that occurs the most frequently in the
k-nearest data point yj, where j = 1,2 ... k [26]. Additionally, the entropy distance algorithm is used to
search for the most similar instance in the data set. When the entropy distance is used as the metric,
actual attributes and omissions can be processed along with other benefits [27]. The k* algorithm is
shown below.

k∗(yi, x) = −lnP∗(yi, x) (1)

4. Experimental Results

4.1. Summary of Experiment Methods

In these experiments, two approaches were applied for testing the performance of the proposed
model. First, we experimented with the scan throughput of the IP alive scan module in a test
environment with no real traffic. Second, the rest of experiment was conducted by installing our model
in Amazon cloud server. We collected 226 million pieces of real information of internet-connected
devices from September to November 2017, and then measured performances which are the
information collection rate and the OS identification rate. The experiment results were compared with
various existing techniques, i.e., ZMap-based and Nmap-based Masscan (mass IP port scanner [28])
and Shodan.

4.2. IP Alive Scan Performance in the Test Environment

4.2.1. Throughput per Minute of IP Alive Scan

This technology focusing on public IPv4 addresses and collecting information about
internet-connected devices requires high-speed traffic processing. The performance metric is TPM
(throughput per minute) which generates 3.68 billion IP alive packets in the 1 Gigabit Ethernet
environment, excluding private and reserved IPv4 addresses without system failure or errors.

TPM = PPS(Generated Packets per Second) ∗ 60 (2)

For the performance of the IP alive scan module, we used the BigTao tester, IP/ethernet testing
equipment that can generate L2/L3 layer packets and measure the throughput, frame loss rate,
and latency. The testing network environment is constructed by connecting the BigTao tester and DUT
(device under test), as shown in Figure 4. We installed the proposed model (IP alive scan module),
ZMap (version 2.1.1), and Masscan (1.0.4) in the DUT system. The DUT is configured to allow packet
forwarding, and the network transmission and receipt interfaces of the DUT system are connected to
the traffic receipt and transmission interfaces of the test system, respectively. These experiments also
measure the performance of TPM according to the IEEE RFC 3511 procedure [29] in the environment
that generates the background traffic. The BigTao tester is configured to receive the IP alive scan
packets generated by the DUT, and the detailed procedure is as follows.
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(1) BigTao tester generates 500 Mbps traffic to the DUT.
(2) DUT generates 3.67 billion scan packets (TCP SYN/ICMP) for each of the three technologies.
(3) BigTao tester checks the total number of frames collected during a period of 10 min.
(4) TPM is calculated based on the total number of frames.
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Figure 4. Experimental environment for measuring the throughput of scanning.

As shown in Figure 5 and Table 2, the experiment results indicate that the average scan speed was
85.94 million TPM in the no background traffic. This means that it took 50 min 9 s to scan the entire
IPv4 range (4.3 billion IPs), and 44 min 8 s to scan the IPv4 range (3.68 billion IPs), excluding reserved
IPs. With 500 Mbps background traffic, the scan speed showed almost no change. Therefore, in an
environment where Rx and Tx are separated and when the hit-rate is 50%, scanning is possible without
any change in speed.
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Table 2. Comparison result with existing techniques (unit: TPMs).

Classification
Lab Environment (Back Traffic)

Real Internet Traffic
0 M 500 M

Our Model 85,938,500 84,783,480 72,750,000
ZMap 85,692,480 84,804,660 Unable to measure

Masscan 55,917,140 42,537,660 Unable to measure
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This result shows that our model produces almost similar result as ZMap. This means that there
was no performance degradation of IP alive scan, even after an enhancement (IP address randomization,
etc.) of the ZMap. Our model and ZMap show better performance compared with Masscan
(55.92 million TPM). Additionally, it was 72.75 billion TPM in the real internet environment. However,
we did not perform a comparison experiment with existing techniques in this real internet environment.

4.2.2. Randomization of IP Address Generation

In this experiment, the performance metric is a randomization of IP address generation, in order
to measure how many single IP addresses without duplicate IPs in the B/C IP classes were generated.

Randomization of IP address generation (%) = No.of Single IPs/B class (3)

As shown in Table 3 and Figure 6, this result indicates that 33,597 single IP addresses were
generated (67.8%) for B class IPv4 addresses, and 65,530 single IP addresses were generated (99.99%)
for C class IPv4 addresses. This means, in theory, that it took 14 min and 44 s to generate 3.67 billion
IPv4 addresses and, therefore, 4,858,560 IP addresses could be generated per second. In addition,
the randomization of the proposed model was 68%, which is an improvement of 118% compared to
ZMap (58%) and 126% compared to Masscan (54%).

Table 3. Compared with existing techniques related to single IP generation rate.

Classification Single IP 2-Duplicate IP 3-Duplicate IP 4-Duplicate IP 5 or More-Duplicate
IP

Our Model 67.8% 32.2% 0.0% 0.0% 0.0%
ZMap 57.7% 29.5% 9.7% 2.5% 0.6%

Masscan 53.7% 27.5% 11.3% 4.7% 2.9%
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4.3. Average Protocol (Port) Information Collection Rate (%)

The reactive scan module identifies the protocol service information from the opened ports of
the activated IPs collected by the IP alive scan. In this experiment, the performance metric is the
average protocol (port) information collection rate (PICR) and compared it with ZMap and Censys,
which is shown in Figure 7. In this experiment, we used 195.68 million pieces of IP data (excluding the
duplicates) collected through the IP alive scan between September and November 2017. On the other
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hand, the performance measurement of existing techniques uses the total sum of searched IPs per each
port using the API supported by the Shodan and Censys services, respectively.

Average PICR (%) =
∑n

i=1
Ki

Si |Ci
∗ 100

n
(4)
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Equation (4) shows the calculation of the average PICR. In this equation, Ki = the number of
collected IPs in each port of the proposed model, Si = the number of IPs collected per each port
searched with Shodan API, Ci = the number of IPs collected per each port searched with Censys API,
and i = the reserved port count (1, . . . , n).

To compare the three technologies under the same condition, we used a total of 34 ports, which is
the maximum number allowed by the search API of Shodan. Although the ZMap-based Censys
technology can analyze up to 23 ports, we could search the data of only 15 ports under the same port
condition provided by the search API of Shodan.

As shown in Table 4, The test results showed that the proposed model collected a total of
223,559,189 IPs (including duplicates) from 34 ports, while Shodan collected 212,428,355 IPs from
34 ports, and Censys collected 173,496,395 IPs from 13 ports. The average PICR of the proposed module
was 105.24% and 128.86% compared to Shodan and Censys, respectively.

Table 4. Comparison of average PICR with existing techniques. The symbol “-” means that the service
protocol information is not provided by Censys API.

Service Protocol
Number of Collected IP Average PICR

Our Model (Ai) Shodan (Si) Censys (Ci) Ai/Si Ai/Ci

Echo 68,565 243,449 Not Supported 28.16% -
Systat 3906 3322 Not Supported 117.58% -

Daytime 84,151 45,628 Not Supported 184.43% -
Netstat 3283 2677 Not Supported 122.64% -

Quote of the day 33,683 28,729 Not Supported 117.24% -
FTP 16,071,122 6,011,068 10,478,740 267.36% 153.37%
SSH 20,017,760 13,845,201 9,783,239 144.58% 204.61%

Telnet 8,789,068 5,759,225 3,910,163 152.61% 224.77%
SMTP 13,473,119 6,034,975 7,363,710 223.25% 182.97%
Finger 19,654 18,464 Not Supported 106.44% -
HTTP 62,062,880 72,580,341 56,194,847 85.51% 110.44%

HTTP (81) 1,528,978 2,863,257 Not Supported 53.40% -
HTTP (82) 509,387 967,095 Not Supported 52.67% -
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Table 4. Cont.

Service Protocol
Number of Collected IP Average PICR

Our Model (Ai) Shodan (Si) Censys (Ci) Ai/Si Ai/Ci

HTTP (83) 270,148 388,326 Not Supported 69.57% -
HTTP (84) 131,533 179,313 Not Supported 73.35% -
Siemens S7 2,846,517 2655 4986 107,213.45% 57,090.19%

POP3 8,578,700 4,639,066 5,224,945 184.92% 164.19%
IMAP 8,763,105 4,143,730 4,643,772 211.48% 188.71%

HTTPS 47,471,574 54,942,697 49,711,654 86.40% 95.49%
Modbus 2,817,111 13,903 26,128 20,262.61% 10,781.96%

IMAP + SSL 7,781,633 3,674,578 4,399,639 211.77% 211.77%
POP3 + SSL 7,338,645 3,585,813 4,402,802 204.66% 204.66%

SIP 112 16,749,194 Not Supported 0.00% -
Oracle HTTP 6018 28,527 Not Supported 21.10% -
Zimbra HTTP 10,554 48,255 Not Supported 21.87% -
HTTP (7657) 6259 22,284 Not Supported 28.09% -
HTTP (8080) 6,738,602 11,328,440 17,334,893 59.48% 38.87%

Riak Web 101,923 161,546 Not Supported 63.09% -
HTTP (8181) 605,813 849,940 Not Supported 71.28% -

HTTPS (8443) 1,204,599 2,641,811 Not Supported 45.60% -
MS-HTTPAPI 130,974 244,955 Not Supported 53.47% -

DNP3 3,274,665 335,747 357 975.34% 917,273.11%
MongoDB 8693 31,077 Not Supported 27.97% -

BACnet 2,806,455 13,067 16,520 21,477.42% 16,988.23%

Summary 223,559,189 212,428,355 173,496,395 105.24% 128.86%

4.4. Accuracy of OS Fingerprinting Identificatiion

In this experiment, the performance metric is the accuracy of OS fingerprinting identification,
whether the OS was identified correctly. As explained in Section 4.1, we used real data (TCP/IP packets
and http banner grabbing) collected from the real internet environment for performance measurement.

As shown in Figure 8, the datasets for training consist of {Xi, Yi} pairs, as follow in Equation (5).
Here, Let N be the number of training input data, d be the number of features, and L be the label of
OS information.

Training Datasets = {Xi, Yi}, i = 1, . . . , N, Xi = {f 1, f 2, . . . , fd}, Yi ∈ {L1, L2, . . . ,Lm} (5)

(1) Each Xi is a d dimensional feature vector extracted from TCP/IP headers, such as Window Size,
MSS, Timestamps, NOP, sackOK, IPID, Total Length, TTL, etc.

(2) Each Yi is the corresponding label information which uses OS information extracted from HTTP
banner grabbing on the same IP.

(3) N is the total number of training input data, m is the number of OS types.

For the training datasets, we trained input data consisted of 21,000 TCP/IP raw packets and
HTTP information (3000 samples each for seven OSs). In the test stage, the actual class (correct answer)
to measure the accuracy of the OS identification used 7000 pieces of banner information (1000 samples
each for seven OSs) for verification. We utilized a set of algorithms in the WEKA tool and trained
4 classifiers: k* classifier, BF Tree, Random Tree, C4.5 for OS fingerprinting.
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Figure 8. Experiment procedure of performance OS fingerprinting identification rate.

Figure 9 shows the OS identification accuracy results of the four classifiers. The accuracy (here
means TPR) of the classifiers is in the order of k*, c4.5, BFTree, and Random Tree, ranging from 0.477 to
0.491. Table 5 shows accuracy of each OS. Based on the k* classifier, the average accuracy was 0.491,
and the accuracy by OS was in order of FreeBSD (0.961), Gento (0.652), and Ubuntu (0.532), and Fedora
had the lowest accuracy.
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Table 5. Results of OS identification test (TPR: True Positive Rate, FPR: False Positive Rate).

Classifier
BFTree k* C4.5 RandomTree

TPR FPR TPR FPR TPR FPR TPR FPR

Debian 0.216 0.1 0.245 0.091 0.248 0.11 0.226 0.118
Fedora 0.165 0.072 0.213 0.06 0.174 0.063 0.248 0.08

FreeBSD 0.965 0.006 0.961 0.009 0.965 0.006 0.961 0.006
Windows 0.49 0.015 0.452 0.017 0.516 0.02 0.513 0.027
Ubuntu 0.516 0.136 0.532 0.136 0.487 0.126 0.419 0.133
Gentoo 0.661 0.217 0.652 0.198 0.574 0.186 0.552 0.167
Redhat 0.356 0.06 0.385 0.082 0.45 0.087 0.417 0.079

Avg. 0.481 0.086 0.491 0.085 0.488 0.085 0.477 0.087

Figure 10 shows the results of comparing with TPR, FPR, precision, RoC, etc., in order to evaluate
the accuracy of OS identification of the K star classifier. As a result, the precision was 0.519, TPR was
0.491, and FPR was 0.085. The RoC value that measures the utility of the model is 0.803, which is a
good performance.
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According to previous research results [30,31], the average accuracy of exact matching without
using machine learning is 15.87~31.25%, and the average accuracy of approximate matching is
2.87~3.1%. On the other hand, when applying machine learning, the accuracy was improved to
almost 50~60%. This results are better than the pattern matching results, but they are different from
previous studies using machine learning. This is because it is difficult to make a relative comparison
and analysis, because the performance results depend on the experimental method, the characteristics
of the learning dataset (number of collected training data, the collection method, bias of the training
data, range of OS identification, etc.).

5. Conclusions

When vulnerable IoT devices are infected to become zombies, this can cause DDoS attacks.
Therefore, it is important to scan vulnerable internet-connected IoT devices and take appropriate
measures. There are many approaches to this, but this study proposed an internet-wide scan engine
that can detect vulnerable IoT devices.

In this paper, we presented an improved internet-wide scanning model with various approaches,
including the advanced algorithm of IP address generation, the extension of the range of protocols
collection, and more accurate OS fingerprinting modules with machine learning. We conducted various
experiments to measure the effectiveness of the proposed model and summarize the results, as shown
in Table 6.
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Table 6. Summary of comparison with our model and existing internet-wide scanning techniques.
The term “unable to measure” could not be tested because it did not open the source.

Features Our Model ZMap/Censys Masscan Shodan
(NMap Based)

IP
Alive Scan

Alive Scan Technique TCP SYN
ICMP

TCP SYN
ICMP

TCP SYN
ICMP

TCP SYN
ICMP

Throughput of Scanning 85,940,000
TPM

85,690,000
TPM

55,920,000
TPM

Unable to
measure

Single IP Address
Generation Algorithm

(Randomization)

Prime number-based
Algorithm

B class: 67.8%
C class: 99.9%

Permutation
Algorithm

B class: 57.7%
C class: 99.6%

Permutation
Algorithm

B class: 53.7%
C class: 83.1%

Unable to
measure

IPv4 Address
Generation Speed 14 min 44 s 18 min 3 s 19 min 9 s Unable to

measure

Protocol (port)
Scan

Scan Technique
3 types

(Banner GrabProtocol
ErrorSeed File)

1 type
(Banner Grab)

1 type
(Banner Grab)

1 type
(Banner Grab)

Range of port collection 65,535
(168 protocols)

65,535
(23 protocols)

65,535
(17 protocols)

65,535
(168 protocols)

Average PICR

223.57 million
(34 ports)

(105% > Shodan,
129% > Censys)

173.5 million
(15 ports)

Unable to
measure

212.42 million
(34 ports)

Scanning Time (Based on
130 million data sets

each time)

Avg. 90 min
(45 min for a single

HTTP port)
Avg. 100 min Avg. 102 min Unable to

measure

OS
Fingerprinting

Scan

Fingerprinting
Technique

TCP·IP Stack
Fingerprinting/Banner

Grab
Banner Grab Unable to

measure Banner Grab

The number of
Identifiable

OS/Firmware

138 types
(77 OSes,

61 Firmware)
PC OS Unable to

measure
Unable to
measure

Accuracy 51%
(k* algorithm)

Pattern
Matching

Unable to
measure

Pattern
Matching

As a result, this work is a contribution towards improving the capabilities of the current
internet-wide scanning, by comparing with three performance metrics. First, the performance of
IP alive scan was similar to ZMap in scanning throughput (TPM). However, the performance of
generating a single IP address to prevent being filtered by security devices was about 118% (based on
B Class) better than ZMap. Second, the protocol scanning collection performance showed that Censys
based on ZMap can collect the information of 173.5 million IPs (based on 15 protocols), while the
proposed model can collect the information of 223.57 million IPs, which was about 129% better than
the Censys based ZMap. Third, the OS identification performance of ZMap is about 10~20% using
exact matching technique, but the proposed model showed better performance than ZMap with about
50% identification accuracy. We carefully analyzed that these results experimentally showed that it
seems effective, with results with improved performance compared to existing techniques.

On the other hand, this paper is for the improvement of internet-wide scanning technology,
but there is a limitation in that the accuracy of device information identification is not high. In the
future, additional research will be conducted to improve the accuracy of OS identification by applying
deep learning for collecting device information at high speed.
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