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Abstract: We study the cosmic evolution of the Bianchi type I universe by using new holographic
dark energy model in the context of the Brans-Dicke theory for both non-interacting and interacting
cases between dark energy and dark matter. We evaluate the equation of state for dark energy ωD
and draw the ωD − ω̇D plane, where the dot denotes the time derivative. It is found that a stage in
which the cosmic expansion is accelerating can be realized in both cases. In addition, we investigate
the stability of the model by analyzing the sound speed. As a result, it is demonstrated that for both
cases, the behavior of the sound speed becomes unstable. Furthermore, with the Om-diagnostic tool,
it is shown that the quintessence region of the universe can exist.
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1. Introduction

In 1961, Brans and Dicke [1] proposed an alternative to General Relativity theory, by absorbing
Mach’s principle (which states that inertial forces experienced by a body in non-uniform motion are
determined by the distribution of matter in the universe) into gravity, named as Brans-Dicke (BD)
theory. In this theory, the dynamic of gravity is represented by a scalar field, while the metric tensor
solely incorporates the spacetime structure. As a consequence, gravity couples with a time-dependent
scalar field, ψ(t), corresponding to the inverse of Newton’s gravitational constant, G(t), through
a coupling parameter ω.

On the other hand, the holographic dark energy (HDE) approach appears to play a fundamental
role in cosmic evolution (for recent reviews on the issue of dark energy and the theories of modified
gravity, see, for instance, [2–8]). The holographic principle states that the number of degrees of
freedom in a bounded system should be finite and associated to its boundary area. According to
this principle, there is a theoretical relation between infrared and ultraviolet cutoffs. This model was
originally proposed by Li [9] who used the basic concept of holographic principle in the background
of Quantum Gravity. He concluded that, in a system having an ultraviolet cutoff and size L , the total
energy should not be more than that of a black hole with the same size, leading to L3ρD ≤ LM2

p

(where Mp = (8πGe f f )
−1
2 and ρD represent the reduced Planck mass and the energy density of HDE,

respectively). He also investigated three choices of L which are assumed to give an infrared cutoff.
First, he assumed L = H−1 introducing the most natural choice for the infrared cutoff in the formalism
of HDE, but this choice could not illustrate the accelerated expansion of the universe in General
Relativity [10] and BD gravity [11]. As a Second cutoff, the particle horizon radius was selected,
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which also failed to explain the current cosmic behavior. A future event horizon was the third choice,
which eventually managed to yield the desired results. However, in this case, extra care is needed,
since future singularities may lead to an undesirable phenomenology of the Universe (see, e.g., [12,13]).

More recently, Granda and Oliveros [14] considered a HDE model in which the energy density
depends on the Hubble parameter and its derivative, being referred to as the new holographic dark
energy (NHDE) model. Oliveros and Acero [15] studied this NHDE approach in the vicinity of the
FRW metric with a non-linear interaction between DE and DM, and discussed the portrait of the
equation of state (EoS) parameter ωD, on the ωD − ω̇D plane, as well as its behavior with the aid
of the Om-diagnostic tool. Fayaz et al. [16] investigated HDE model in a Bianchi Type I with (BI)
universe within the context of the generalized teleparallel theory and found phantom/quintessence
regions of the universe. Sadri and Vakili [17] studied the NHDE approach in BD theory using a FRW
universe model with logarithmic scalar field, and analyzed the EoS/deceleration parameter, statefinder
and Om-diagnostic tool for both non-interacting/interacting case. Jahromi et al. [18] studied the
generalized entropy formalism and used a NHDE model to illustrate the evolution of the universe
through its cosmological parameters.

The effects of anisotropy in the universe can be studied in the framework of an anisotropic BI
model. Reddy et al. [19] analyzed homogeneous and axially symmetric BI models in BD theory and
found that the deceleration parameter is negative, leading to an accelerated expansion of the universe.
Setare [20] studied the HDE model with non-flat FRW metric in BD cosmology and found that the
EoS parameter demonstrates a phantom-like region and crosses the phantom divide line. Kumar and
Singh [21] used exact solutions describing BI cosmological models to study the cosmic evolution in
a scalar-tensor theory. Setare and Vanegas [22] investigated an interacting HDE model and discussed
cosmological implications. Sharif and Kausar [23,24] examined the dynamical behavior of a Bianchi
universe with anisotropic fluid in f (R) gravity. Sharif and Waheed [25] studied the evolution of a BI
model in BD theory, using isotropic, anisotropic, as well as magnetized anisotropic fluid, and found
that the latter may attain isotropy to the universe. Milan and Singh [26] discussed an HDE model
with infrared cutoff as a future event horizon, as well as a logarithmic form of BD scalar field for the
FRW universe in BD theory. Felegary et al. [27] studied the dynamics of an interacting HDE model in
BD cosmology as regards the future event horizon cutoff, as well as its Hubble-horizon counterpart,
and discussed the coincidence problem.

In this paper, we consider the NHDE approach for a BI universe and study the associated
cosmic evolution in the background of BD theory. It should be noted that the present HDE model
under consideration is corresponding to a kind of particular case of the investigations in [28] and
its generalized considerations [29]. The outline of the paper is as follows. In Section 2, we study
the NHDE model for non-interacting as well as in the interacting case and investigate the associated
cosmological parameters. We also analyze the stability of the NHDE model through the corresponding
sound speed. Section 3 deals with the Om-diagnostic tool, to study the cosmic evolution. Finally,
we summarize our results in Section 4.

2. NHDE Model and BD Theory

The action for the BD theory is [1]

S =
∫

d4x
√
−g
(

ω

ψ
gij∂iψ∂jψ− ψR + Lm

)
, (1)

where R and Lm represent the Ricci scalar and matter Lagrangian density, respectively. The field
equations for BD theory are
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Gij =
1
ψ
(T(m)

ij + T(ψ)
ij ), (2)
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ψ
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)
, (1)
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respectively. The field equations for BD theory are

Gij =
1

ψ
(T

(m)
ij + T

(ψ)
ij ), (2)

□ψ =
T (m)

2ω + 3
, (3)

where

T
(m)
ij = (ρ+ p)uiuj − pgij,

T
(ψ)
ij = ψ,i;j − gij□ψ +

ω

ψ
(ψ,i ψ,j −1

2
gijψ

,αψ,α ), T (m) = gijT
(m)
ij .

Here, Gij indicates the Einstein tensor, □ is the d’Alembertian operator while

T
(m)
ij and T

(ψ)
ij are the energy-momentum tensors for matter distribution and

scalar field, respectively. Equations (2) and (3) represent the field equations
for BD theory and equation of evolution for the scalar field, respectively.
We consider homogeneous and anisotropic locally rotationally symmetric BI
universe model as

ds2 = dt2 − A2(t)dx2 −B2(t)(dy2 + dz2), (4)

where A and B indicate the scale factors in spatial directions.
The corresponding field equations for BI model are

2ȦḂ

AB
+
Ḃ2

B2
+

(
Ȧ

A
+ 2

Ḃ

B

)
ψ̇

ψ
− ω

2

ψ̇2

ψ2
=

ρm + ρD
ψ

, (5)

2B̈

B
+
Ḃ2

B2
+
ψ̈

ψ
+

2Ḃ

B

ψ̇

ψ
+
ω

2

ψ̇2

ψ2
= −pD

ψ
, (6)

B̈

B
+
ȦḂ

AB
+
Ä

A
+

(
Ȧ

A
+
Ḃ

B

)
ψ̇

ψ
+
ψ̈

ψ
+
ω

2

ψ̇2

ψ2
= −pD

ψ
, (7)

4

ψ =
T(m)

2ω + 3
, (3)

where

T(m)
ij = (ρ + p)uiuj − pgij,

T(ψ)
ij = ψ,i;j − gij
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ȦḂ

AB
+
Ä
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The corresponding field equations for BI model are

2ȦḂ
AB

+
Ḃ2

B2 +

(
Ȧ
A
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Ḃ
B

)
ψ̇

ψ
− ω

2
ψ̇2

ψ2 =
ρm + ρD

ψ
, (5)

2B̈
B

+
Ḃ2

B2 +
ψ̈

ψ
+

2Ḃ
B

ψ̇

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (6)

B̈
B
+

ȦḂ
AB
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Ä
A

+

(
Ȧ
A

+
Ḃ
B

)
ψ̇

ψ
+

ψ̈

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (7)

where dot represents derivative with respect to t. In the above equations, ρD and ρm indicate DE and
DM energy densities, respectively, while pD is the pressure of DE. For the scalar field ψ, the wave
equation in (3) takes the form

ψ̈ +

(
Ȧ
B
+ 2

Ḃ
B

)
ψ̇− ρm + ρD − 3pD

2ω + 3
= 0. (8)

For the sake of simplicity, we take A = Bm, m 6= 1, consequently, Equations (5), (7) and (8) turn
out to be

(2m + 1)
Ḃ2

B2 + (m + 2)
Ḃ
B

ψ̇

ψ
− ω

2
ψ̇2

ψ2 =
ρm + ρD

ψ
, (9)

(m + 1)
B̈
B
+ m2 Ḃ2

B2 + (m + 1)
Ḃ
B

ψ̇

ψ
+

Ḃ
B

ψ̇

ψ
+

ψ̈

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (10)

ψ̈ + (m + 2)
Ḃ
B

ψ̇− ρm + ρD − 3pD
2ω + 3

= 0. (11)

Due to non-linear field equations, we suppose power-law model for the scalar field as ψ(t) = ψ0Bα,
α > 0 and ψ0 are constants. Subtracting Equation (10) from (6) and using power-law relation, we obtain
a differential equation for the scale factor B as

B̈
B
+ (m + α + 1)

Ḃ2

B2 = 0,

whose integration leads to
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B(t) = (m + α + 2)
1

m+α+2 (c1t + c2)
1

m+α+2 , (12)

where c1 and c2 are integration constants. Consequently, we have

A(t) = ((m + α + 2)(c1t + c2))
m

m+α+2 .

For our line element, the mean Hubble parameter is given as

H =
1
3

(
Ȧ
A

+ 2
Ḃ
B

)
.

Using A = Bm and Equation (12), the above equation yields

H =
c1(m + 2)

(m + α + 2)(c1t + c2)
. (13)

In the following, we discuss non-interacting and interacting cases of NHDE and investigate
cosmological parameters graphically.

2.1. Non-Interacting Case

In this section, we discuss the case when DE and DM do not interact, the corresponding
conservation equations are

ρ̇D + 3(1 + ωD)ρD H = 0, (14)

ρ̇m + 3ρm H = 0, (15)

where ωD = pD
ρD

is the EoS parameter through which we analyze different universe eras. The energy
density of HDE model is defined as

ρD = 3n2M2
pL−2,

where n is a dimensionless constant. The energy density of NHDE model is given by

ρD = 3n2M2
pL−2

(
1− εL

3rc

)
, (16)

here rc =
M2

p

2M3
5

is the crossover length scale while ε = ±1 denotes self-accelerated and normal branches

of solution. If L � 3rc, the above energy density reduces to the energy density of HDE model.
The fractional energy densities in their usual form are given as

Ωm =
ρm

ρcr
=

4ωρm

3ψ2H2 , (17)

ΩD =
ρD
ρcr

= c2
(

1− ε

3Hrc

)
, (18)

where rc =
1

2H
√

Ωrc
. Taking time derivative of Equation (16), we obtain

ρ̇D = ρD

(
2

ψ̇

ψ
+ 2

Ḣ
H

)
+

c2εψ2√ΩrcḢH
2ω

. (19)

Using Equation (13), we have
Ḣ
H2 =

−3(m + α + 2)
m + 2

. (20)

Differentiating Equation (18) with respect to t, we find
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Ω̇D =
2
3

εc2
√

Ωrc
Ḣ
H

.

Using Equations (14) and (19), the EoS parameter turns out to be

ωD = −1− 2α

m + 2
+

(
ΩD + c2

ΩD

)(
m + α + 2

m + 2

)
. (21)

We fix the value of fractional density of DE as ΩD = 0.73 [30] while other parameters are fixed
as c = 0.8, m = −1.55 and α > 0. Using these values in the above equation, we see that ωD < 0
which corresponds to accelerated behavior of the universe. Caldwell and Linder [31] investigated that
the quintessence model of DE can be separated into two distinct regions, i.e., thawing and freezing
regions through ωD − ω̇D plane. The thawing region is characterized when ω̇D > 0, ωD < 0 while
the freezing region is determined for ω̇D < 0, ωD < 0. Taking the time derivative of Equation (21),
it follows that

ω̇D = −2
3

ε
√

Ωrc
c4c1(m + α + 2)

Ω2
D(c1t + c2)(m + 2)

. (22)

In this scenario, we plot ωD − ω̇D plane for two values of integration constant c2 (Figure 1).
The left plot indicates that positive value of c2 leads to ω̇D > 0, ωD < 0 which corresponds to thawing
region. The right graph is plotted for c2 = −10 showing that negative value of c2 yields freezing region
for NHDE model.
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Figure 1. Plot of ωD − ω̇D plane with c2 = 5 (left), c2 = −10 (right), c1 = 1, c = 0.8, m = −1.55 and
α = 3.5 for non-interacting case.

Now, we analyze stability of the NHDE model using squared speed of sound given as

υ2
s =

ṗD
ρ̇D

= ωD + ω̇D
ρD
ρ̇D

. (23)

The model is unstable for υ2
s (t) < 0 while υ2

s (t) > 0 leads to stability. Using Equations (19), (21)
and (22) in (23), it follows that

υ2
s = −1− 2α

m+2 +
(

ΩD+c2

ΩD

) (m+α+2
m+2

)

− 2ε
√

Ωrc
c4c1(m+α+2)((m+α+2)(c1t+c2))

2α
m+α+2 (1− 2

3 ε
√

Ωrc)

Ω2
D(c1t+c2)(m+2)

×
[

3((m + α + 2)(c1t + c2))
2α

m+α+2 (1− 2
3 ε
√

Ωrc)(
2αc1

(m+α+2)(c1t+c2)

− 2c1
c1t+c2

)− 2c1ε(m + α + 2)
2

m+α+2−3(c1t + c2)
2

m+α+4−3
]−1

.

(24)
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The graph of υ2
s (t) versus t is shown in Figure 2, where the unit of time t is taken as second.

The change in free parameters does not affect the behavior of υ2
s (t), so we show only one plot here.

It is found that υ2
s (t) < 0, representing that our model is unstable.

0 1 2 3 4 5
t

-14.590

-14.585

-14.580

-14.575

-14.570

Υ
2

s
HtL

Figure 2. Plot of υ2
s (t) versus t (the unit of which is second) with c1 = 1, c2 = 5, c = 0.8, m = −1.55

and α = 3.5 for non-interacting case.

2.2. Interacting Case

Here we study the case when both dark components, i.e., DM and DE, interact with each other.
In this case, the continuity equations are given by

ρ̇D + 3(1 + ωD)ρD H = −Γ, (25)

ρ̇m + 3ρmH = Γ, (26)

where Γ = 3b2HρD is a particular interacting term with the interacting parameter b2. Using
Equations (20) and (25), the EoS parameter is given by

ωD = −1− b2 − 2α

m + 2
+

(
ΩD + c2

ΩD

)(
m + α + 2

m + 2

)
. (27)

In order to observe the behavior of the EoS parameter, we fix the constants ΩD, m, c, α as for
the previous case while the interacting parameter will be varied. We observe that ωD exhibits similar
behavior as in non-interacting case, i.e., it demonstrates accelerated behavior of the universe. Taking
derivative of the above equation with respect to t, we have

ω̇D = −2
3

ε
√

Ωrc
c4c1(m + α + 2)

Ω2
D(c1t + c2)(m + 2)

. (28)

Figure 3 shows the graph of ωD − ω̇D plane for two values of the interacting parameter. It is
found that ωD − ω̇D plane corresponds to thawing and freezing regions for c2 = 5 and c2 = −10,
respectively. Using Equations (19), (27) and (28) in (23), the sound speed parameter takes the form
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υ2
s = −1− b2 − 2α

m+2 +
(

ΩD+c2

ΩD

) (m+α+2
m+2

)

− 2ε
√

Ωrc
c4c1(m+α+2)((m+α+2)(c1t+c2))

2α
m+α+2 (1− 2

3 ε
√

Ωrc)

Ω2
D(c1t+c2)(m+2)

×
[

3((m + α + 2)(c1t + c2))
2α

m+α+2 (1− 2
3 ε
√

Ωrc)(
2αc1

(m+α+2)(c1t+c2)

− 2c1
c1t+c2

)− 2c1ε(m + α + 2)
2

m+α+2−3(c1t + c2)
2

m+α+4−3
]−1

.

(29)

The graph of υ2
s (t) versus t is plotted in Figure 4 which shows that υ2

s (t) < 0 demonstrating that
our model is not stable. Here, the unit of time t is taken as second.
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Figure 3. Plot of ωD − ω̇D plane with c2 = 5 (left), c2 = −10 (right), c1 = 1, c = 0.8, m = −1.55 and
α = 3.5 for interacting case.
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Figure 4. Plot of υ2
s (t) versus t (the unit of which is second) with c1 = 1, c2 = 5, c = 0.8, m = −1.55

and α = 3.5 for interacting case.

3. Om-Diagnostic

Here, we study different stages of the universe through the Om-diagnostic tool [32]. This helps
to observe the behavior of the DE model and divides it into two sections. The positive values of
Om(t) give phantom-like behavior and its negative values correspond to the quintessence region.
The Om-diagnostic tool is defined as

Om(t) =
h2(t)− 1

t3 − 1
, (30)
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where h(t) = H(t)
H0

, H0 is the Hubble constant. Using Equation (13), the above equation becomes

Om(t) =

(m+2)2c2
1

9H2
0 ((m+α+2)(c1t+c2))2 − 1

t3 − 1
. (31)

We see that the Om-diagnostic tool attains negative values in the range 1.02 ≤ t ≤ 5 which shows
quintessence behavior of the universe (Figure 5, in which the unit of time t is taken as second).

2 3 4 5
t

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

OmHtL

Figure 5. Plot of Om(t) versus t (the unit of which is second) with c1 = 1, c2 = 5, m = −1.55, α = 3.5
and H0 = 68.

4. Conclusions

In this paper, we investigate the NHDE approach in a BI cosmological model, to discuss the
expanding behavior of the universe in the framework of BD theory. For this purpose, the cosmological
parameters are evaluated in two scenarios. First, we consider the case where DM and DE do not interact
with each other. In this case, the EoS parameter is negative, leading to a universe that experiences
accelerated expansion. We have also analyzed its behavior on the ωD − ω̇D plane, which indicates
that our model lies either in the thawing or in the freezing region, corresponding to a positive or
a negative value of the associated integration constant, respectively. Furthermore, the stability of the
NHDE model is investigated, using the corresponding speed of sound parameter. It is found that this
parameter attains negative values, leading to unstable cosmological models.

Second, the interaction between DM and DE is taken into account. In this case, the same
parameters as before are formulated yielding that the EoS remains negative for two values of the
interaction parameter, b2, i.e., our universe is in an expanding phase. It is also found that the ωD − ω̇D
plane analysis demonstrates similar behavior for both values of b2, i.e., our model remains in the
thawing and freezing regions. Furthermore, we conclude that such a model does not exhibit stable
behavior. Finally, cosmological evolution is discussed also with the aid of the Om-diagnostic tool,
which, in our case, exhibits quintessence behavior of the universe. It is quite interesting to mention
that our results are consistent with the corresponding isotropic universe model [17].
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