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Abstract: Based on the multiplicity evaluation in some real situations, this paper firstly introduces a
single-valued neutrosophic multiset (SVNM) as a subclass of neutrosophic multiset (NM) to express
the multiplicity information and the operational relations of SVNMs. Then, a cosine measure between
SVNMs and weighted cosine measure between SVNMs are presented to measure the cosine degree
between SVNMs, and their properties are investigated. Based on the weighted cosine measure of
SVNMs, a multiple attribute decision-making method under a SVNM environment is proposed,
in which the evaluated values of alternatives are taken in the form of SVNMs. The ranking order of
all alternatives and the best one can be determined by the weighted cosine measure between every
alternative and the ideal alternative. Finally, an actual application on the selecting problem illustrates
the effectiveness and application of the proposed method.

Keywords: single valued neutrosophic set (SVNS); neutrosophic multiset (NM); single valued
neutrosophic multiset (SVNM); cosine measure; multiple attribute decision-making

1. Introduction

In 1965, Zadeh [1] proposed the theory of fuzzy sets (FS), in which every fuzzy element
is expressed by the membership degree T(x) belonging to the scope of [0, 1]. While the fuzzy
membership degree of T(x) is difficult to be determined, or cannot be expressed by an exact real
number, the practicability of FS is limited. In order to avoid the above situation, Turksen [2] extended a
single-value membership to an interval-valued membership. Generally, when the membership degree
T(x) is determined, the non-membership degree can be calculated by 1 − T(x). Considering the
role of the non-membership degree, Atanassov [3] put forward the intuitionistic fuzzy sets (IFS)
and introduced the related theory of IFS. Since then, IFS has been widely used for solving the
decision-making problems. Although the FS theory and IFS theory have been constantly extended
and completed, they are not applicable to all the fuzzy problems. In 1998, Smarandache [4]
added the uncertain degree to the IFS and put forward the theory of the neutrosophic set (NS),
which is a general form of the FS and IFS. NS is composed of the neutrosophic components of truth,
indeterminacy, and falsity denoted by T, I, F, respectively. Since then, many forms of the neutrosophic
set were proposed as extensions of the neutrosophic set. Wang and Smarandache [5,6] introduced a
single-valued neutrosophic set (SVNS) and an interval neutrosophic set (INS). Smarandache [7] and
Smarandache and Ye [8] presented n-value and refined-single valued neutrosophic sets (R-SVNSs).
Fan and Ye [9] presented a refined-interval neutrosophic set (R-INS). Ye [10] presented a dynamic
single-valued neutrosophic multiset (DSVM), and so on.
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Now, more researches have been done on the NS theory by experts and scholars. Ye [11,12]
proposed the correlation coefficient and the weighted coefficient correlation of SVNS and proved that
cosine similarity is a special case of the SVNS correlation coefficient. Broumi and Smarandache [13]
proposed three vector similarity methods to simplify the similarity of SVNS, including Jaccard
similarity, Dice similarity, and cosine similarity. Majumdar and Samanta [14] gave the similarity
formula of SVNSs. Broumi and Smarandache [15] gave the correlation coefficient of INSs. Based on
the Hamming and Euclidean distances, Ye [16] defined the similarity of INSs. For the operation rules
of NSs, Smarandache, Ye, and Chi [4,16,17] gave different operation rules, respectively, where they all
have certain rationality and applicability.

Recently, Smarandache [18] introduced the neutrosophic multiset and the neutrosophic multiset
algebraic structures, in which one or more elements are repeated for some times, keeping the same
or different neutrosophic components. Its concept is different from the concept of single-valued
neutrosophic multiset in [10,19]. Until now, there are few studies and applications of neutrosophic
multisets (NM) in science and engineering fields, so we introduce a single valued neutrosophic multiset
(SVNM) as a subclass of the neutrosophic multiset (NM) to express the multiplicity information and
propose a decision-making method based on the weighted cosine measures of SVNMs, and then
provide a decision-making example to show its application under SVNM environments.

The remaining sections of this article are organized as follows. Section 2 describes some basic
concepts of SVNS, NM, and the cosine measure of SVNSs. Section 3 presents a SVNM and its basic
operational relations. Section 4 proposes a cosine measure between SVNMs and a weighted cosine
measure between SVNMs and investigates their properties. Section 5 establishes a multiple attribute
decision-making method using the weighted cosine measure of SVNMs under SVNM environment.
Section 6 presents an actual example to demonstrate the application of the proposed methods under
SVNM environment. Section 7 gives a conclusion and further research.

2. Some Concepts of SVNS and NM

Definition 1 [5]. Let X be a space of points (objects), with a generic element x in X. A SVNS R in X can
be characterized by a truth-membership function TR(x), an indeterminacy-membership function IR(x), and a
falsity-membership function FR(x), where TR(x), IR(x), FR(x) ∈ [0, 1] for each point x in X. Then, a SVNS R
can be expressed by the following form:

R = {〈x, TR(x), IR(x), FR(x)〉|x ∈ X}.

Thus, the SVNS R satisfies the condition 0 ≤ TR(x) + IR(x) + FR(x) ≤ 3.
For two SVNSs M and N, the relations of them are defined as follows [5]:

(1) M ⊆ N if and only if TM(x) ≤ TN(x), IM(x) ≥ IN(x), FM(x) ≥ FN(x) for any x in X;
(2) M = N if and only if M ⊆ N and N ⊆M;
(3) Mc = { 〈x, FM(x), 1− IM(x), TM(x)〉|x ∈ X }.

For writing convenience, an element called single-valued neutrosophic number (SVNN) in the
SVNS R can be denoted by R = 〈TR(x), IR(x), FR(x)〉 for any x in X. For two SVNNs M and N,
the operational relations of them can be defined as follows [5]:

(1) M ∪ N = <max(TM(x), TN(x)), min(IM(x), IN(x)), min(FM(x), FN(x)) > for any x in X;
(2) M ∩ N = <min(TM(x), TN(x)), max(IM(x), IN(x)), max(FM(x), FN(x)) > for any x in X.

For two SVNNs M and N, the operational rules of them can be defined as follows [5]:

M + N = 〈TM(x) + TN(x)− TM(x)TN(x), IM(x)IN(x), FM(x)FN(x)〉 for any x in X; (1)

M× N =< TM(x)TN(x), IM(x) + IN(x)− IM(x)IN(x), FM(x) + FN(x)− FM(x)FN(x)
> for any x in X;

(2)
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ϕM =< 1− (1− TM(x))ϕ, (IM(x))ϕ, (FM(x))ϕ > for ϕ > 0 and any x in X; (3)

Mϕ =< (TM(x))ϕ, (1− IM(x))ϕ, (1− FM(x))ϕ >, for ϕ > 0 and any x in X. (4)

Definition 2 [20]. Let X = {x1, x2, . . . , xn} be a space of points (objects), L and M be two SVNSs. The cosine
measure between L and M is defined as follows:

ρ(L, M) =
1
n

n

∑
i=1

cos{π

6
(|TL(xi)− TM(xi)|+ |IL(xi)− IM(xi)|+ |FL(xi)− FM(xi)|)}. (5)

Obviously, the cosine measure between L and M satisfies the following properties [20]:

1© 0 ≤ ρ(L, M) ≤ 1;
2© ρ(L, M) = 1 if and only if L = M;
3© ρ(L, M) = ρ(M, L).

Definition 3 [18]. Let X be a space of points (objects), and a neutrosophic multiset is repeated by one or more
elements with the same or different neutrosophic components.

For example, M = {(m1, 〈0.7, 0.2, 0.1 〉), (m2, 〈0.6, 0.4, 0.1 〉), (m3, 〈0.8, 0.3, 0.2 〉)}
is a neutrosophic set rather than a neutrosophic multiset; while K =
{(k1, 〈0.7, 0.2, 0.1 〉), (k1, 〈0.7, 0.2, 0.1 〉), (k1〈, 0.7, 0.2, 0.1 〉), (k2, 〈0.6, 0.4, 0.1 〉)} is a neutrosophic multiset,
where the element k1 is repeated. Then, we can say that the element k1 has neutrosophic multiplicity 3
with the same neutrosophic components.

Meanwhile, L = {(l1, 〈0.7, 0.2, 0.1 〉), (l1, 〈0.6, 0.3, 0.1 〉), (l1, 〈0.8, 0.1, 0.1 〉), (l2, 〈0.6, 0.4, 0.1 〉)} is also
a neutrosophic multiset since the element l1 is repeated, and then we can say that the element l1 has
neutrosophic multiplicity 3 with different neutrosophic components.

If the element l1 is repeated times with the same neutrosophic comonents, we say l1 has
multiplicity. If the element l1 is repeated times with different neutrosophic comonents, we say l1
has the neutrosophic multiplicity (nm). The nm function can be defined as follows:

nm: X→N = {1, 2, 3, . . . , ∞} for any r ∈ R
nm(r) = {(p1, 〈T1, I1, F1〉), (p2, 〈T2, I2, F2〉), . . . , (pi, 〈Ti, Ii, Fi〉), . . .},

which means that r is repeated by p1 times with the neutrosophic components 〈T1, I1, F1〉; r is repeated
by p2 times with the neutrosophic components 〈T2, I2, F2〉; . . . ; r is repeated by pi times with the
neutrosophic components 〈Ti, Ii, Fi〉; and so on. p1, p2, . . . , pi, . . . ∈ N, and

〈
Tj, Ij, Fj

〉
6= 〈Tk, Ik, Fk〉,

for j 6= k and j, k ∈ N. Then a neutrosophic multiset R can be written as:

(R, nm(r)) or {(r, nm(r), f or r ∈ R)}. (6)

Now, with respect to the previous neutrosophic multisets K, L, we compute the neutrosophic
multiplicity function:

nmK : K → N;
nmK(k1) = {(3, 〈0.7, 0.2, 0.1 〉)};
nmK(k2) = {(1, 〈0.6, 0.4, 0.1〉)};
nmL : L→ N ;
nmL(l1) = {(1, 〈0.7, 0.2, 0.1〉), (1, 〈0.6, 0.3, 0.1〉), (1, 〈0.8, 0.1, 0.1〉)};
nmL(l2) = {(1, 〈0.6, 0.4, 0.1〉)}.



Symmetry 2018, 10, 154 4 of 13

3. Single Valued Neutrosophic Multiset

Definition 4. Let X be a space of points (objects) with a generic element x in X and N = {1, 2, 3, . . . , ∞}.
A SVNM R in X can be defined as follows:

R =
{

x,
(
(pR1,〈TR1(x), IR1(x),FR1(x)〉),(pR2,〈TR2(x), IR2(x),FR2(x)〉), . . . ,

(
pRj,
〈
TRj(x), IRj(x),FRj(x)

〉
)
)∣∣x ∈ X

}
,

where TRk(x), IRk(x), FRk(x) express the truth-membership function, the indeterminacy-membership
function, and the falsity-membership function, respectively. TR1(x), TR2(x), . . . , TRk(x) ∈ [0, 1],
IR1(x), IR2(x), . . . , IRk(x) ∈ [0, 1], FR1(x), FR2(x), . . . , FRk(x) ∈ [0, 1] and 0 ≤ TRk(x) + IRk(x) +
FRk(x) ≤ 3, for k = 1, 2, . . . j, j ∈ N, pR1, pR2, . . . , pRj ∈ N and pR1 + pR2 + . . . + pRj ≥ 2.

For convenience, a SVNM R can be denoted by the following simplified form:

R = {x, (pRk, 〈TRk(x), IRk(x), FRk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . , j.

For example, with a universal set X = {x1, x2}, a SVNM R is given as:

R = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.2〉)), (x2, (1, 〈0.7, 0.3, 0.1〉), (2, 〈0.7, 0.2, 0.3〉))}.

Then
nmR(x1) = {(2, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.2〉)};
nmR(x2) = {(1, 〈0.7, 0.3, 0.1〉), (2, 〈0.7, 0.2, 0.3〉)}.

Definition 5. Let X be a space of points (objects) with a generic element x in X, M and L be two SVNMs,

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j,

L = {x, (pLk, 〈TLk(x), ILk(x), FLk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j,

Then the relations of them are given as follows:

1© M = L, if and only if pMk = pLk, TMk(x) = TLk(x), IMk(x) = ILk(x), FMk(x) = FLk(x),
f or k = 1, 2, . . . , j;

2© M ∪ L = {x, ((pMk ∨ pLk), 〈TMk(x) ∨ TLk(x), IMk(x) ∧ ILk(x), FMk(x) ∧ FLk(x) 〉)|x ∈ X},
f or k = 1, 2, . . . , j;

3© M ∩ L = {x, ((pMk ∧ pLk), 〈TMk(x) ∧ TLk(x), IMk(x) ∨ ILk(x), FMk(x) ∨ FLk(x) 〉)|x ∈ X},
f or k = 1, 2, . . . , j.

For convenience, we can use r = ((pr1,< Tr1(x), Ir1(x), Fr1(x) >), (pr2,< Tr2(x), Ir2(x), Fr2(x) >
), . . . , (prj,< Trj(x), Irj(x), Frj(x) >)) to express a basic element in a SVNM R and call r a single valued
neutrosophic multiset element (SVNME).

For example, with a universal set X = {x1, x2}, then two SVNMs M and L are given as:

M = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.4, 0.1, 0.2〉)), (x2, (1, 〈0.7, 0.3, 0.1 〉))};

L = {(x1, (1, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.1〉)), (x2, (1, 〈0.9, 0.3, 0.1〉))};

M ∪ L = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.4, 0.1, 0.2〉), (1, 〈0.8, 0.2, 0.1〉)), (x2, (1, 〈0.7, 0.3, 0.1〉), (1, 〈0.9, 0.3, 0.1〉))}

M ∩ L = {x1, (1, 〈0.6, 0.2, 0.1〉)}.

Definition 6. Let X be a space of points (objects) with a generic element x in X and M be a SVNM, we can
change a SVNM M into a SVNS M̃ by using the operational rules of SVNS.

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x)〉)|x ∈ X}, f or k = 1, 2, . . . , j.
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Then

M̃ = {〈x, 1−
j

∏
k=1

(1− TMk(x))pMk ,
j

∏
k=1

(IMk(x))pMk ,
j

∏
k=1

(FMk(x))pMk 〉|x ∈ X}. (7)

Proof. Set m1, m2, . . . mj are basic elements in M.
When k = 1, we can get
m1 = (〈Tm1(x), Im1(x), Fm1(x)〉, 〈Tm1(x), Im1(x), Fm1(x)〉, . . . , 〈Tm1(x), Im1(x), Fm1(x) 〉),

which has neutrosophic multiplicity pm1.
According to the operational rules of SVNSs, we can get:

+ m1 = 1− (1− Tm1(x))pm1 , (Im1(x))pm1 , (Fm1(x))pm1 .

As the same reason, when k = 2, we can get

+ m2 = 1− (1− Tm2(x))pm2 , (Im1(x))pm2 , (Fm2(x))pm2 .

Then

m1 + m2 = 1− (1− Tm1(x))pm1(1− Tm2(x))pm2 , (Im1(x))pm1(Im1(x))pm2 , (Fm2(x))pm1(Fm2(x))pm2

= 1−∏2
k=1(1− Tmk(x))pmk , ∏2

k=1(Imk(x))pmk , ∏2
k=1(Fmk(x))pmk ;

Suppose when k = i, the Equation (7) is established, then we can get:

m1 + m2 + . . . + mi = 1−
i

∏
k=1

(−Tmk(x) )pmk ,
i

∏
k=1

(Imk(x))pmk ,
i

∏
k=1

(Fmk(x))pmk ;

Then

m1 + m2 + . . . + mi +mi+1

= 1−
i

∏
k=1

(1− Tmk(x))pmk + 1−
(

1− Tm(i+1)(x)
)pm(i+1)

−
(

1−
i

∏
k=1

(1− Tmk(x))pmk

)(
1−

(
1− Tm(i+1)(x)

)pm(i+1)
)

,(
i

∏
k=1

(Imk(x))pmk

)(
Im(i+1)(x)

)pm(i+1)
,(

i
∏

k=1
(Fmk(x))pmk

)(
Fm(i+1)(x)

)pm(i+1)

= 1−∏i+1
k=1(1− Tmk(x))pmk , ∏i+1

k=1(Imk(x))pmk , ∏i+1
k=1(Fmk(x))pmk .

To sum up, when k = i + 1, Equation (7) is true, and then according to the mathematical induction,
we can get that the aggregation result is also true.

Definition 7. Let X = {x1, x2, . . . , xn} be a universe of discourse, and M and N be two SVNMs, and then the
operational rules of SVNMs are defined as follows:

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j;

N = {x, (pNk, 〈TNk(x), INk(x), FNk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j ;
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M⊕ N
= {〈x, 1

−
j

∏
k=1

(1− TMk(x))pMk
j

∏
k=1

(1

−TNk(x))pNk ,
j

∏
k=1

(IMk(x))pMk
j

∏
k=1

(INk(x))pNk ,
j

∏
k=1

(FMk(x))pMk
j

∏
k=1

(FNk(x))pNk 〉|x ∈ X}

M⊗ N = {〈x,

(
1−

j
∏

k=1
(1− TMk(x))pMk

)(
1−

j
∏

k=1
(1− TNk(x))pNk

)
,

j
∏

k=1
(IMk(x))pMk

+
j

∏
k=1

(INk(x))pNk −
j

∏
k=1

(IMk(x))pMk
j

∏
k=1

(INk(x))pNk ,
j

∏
k=1

(FMk(x))pMk

+
j

∏
k=1

(FNk(x))pNk −
j

∏
k=1

(FMk(x))pMk
j

∏
k=1

(FNk(x))pNk 〉|x ∈ X}

ϕM = {〈x,

(
1−

(
j

∏
k=1

(1− TMk(x))pMk

)ϕ)
,

(
j

∏
k=1

(IMk(x))pMk

)ϕ

,

(
j

∏
k=1

(FNk(x))pNk

)ϕ

〉|x ∈ X}

Mϕ = {〈x,

(
1−

j
∏

k=1
(1− TMk(x))pMk

)ϕ

, 1−
(

1−
j

∏
k=1

(IMk(x))pMk

)ϕ

, 1

−
(

1−
j

∏
k=1

(FNk(x))pNk

)ϕ

〉|x ∈ X}

4. Cosine Measures of Single-Value Neutrosophic Multisets

Cosine measures are usually used in science and engineering applications. In this section,
we propose a cosine measure of SVNMs and a weighted cosine measure of SVNMs.

Definition 8. Let X = {x1, x2, . . . , xn} be a universe of discourse, M and N be two SVNMs,

M =
{

xi, (pM1, 〈TM1(xi), IM1(xi), FM1(xi)〉), (pM2, 〈TM2(xi), IM2(xi), FM2(xi)〉), . . . ,
(

pMj,
〈

TMj(xi), IMj(xi), FMj(xi)
〉)∣∣xi ∈ X

}
,

N =
{

xi, (pN1, 〈TN1(xi), IN1(xi), FN1(xi)〉), (pN2, 〈TN2(xi), IN2(xi), FN2(xi)〉), . . . ,
(

pNj,
〈

TNj(xi), INj(xi), FNj(xi)
〉) ∣∣∣xi ∈ X

}
Then, a cosine measure between two SVNMs M and N is defined as follows:

ρ(M, N) = 1
n

n
∑

i=1
cos

{
π
6

∣∣∣∣∣ j
∏

k=1
(1− TMk(xi))

pMk −
j

∏
k=1

(1− TNk(xi))
pNk

∣∣∣∣∣
+

∣∣∣∣∣ j
∏

k=1
(IMk(xi))

pMk −
j

∏
k=1

(INk(xi))
pNk

∣∣∣∣∣
+

∣∣∣∣∣ j
∏

k=1
(FMk(xi))

pMk −
j

∏
k=1

(FNk(xi))
pNk

∣∣∣∣∣
} (8)

Theorem 1. The cosine measure ρ(M, N) between two SVNMs M and N satisfies the following properties:

1© ρ(M, N) = ρ(N, M);
2© 0 ≤ ρ(M, N) ≤ 1;
3© ρ(M, N) = 1, i f and only i f M = N.

Proof. 1©: For
∣∣∣∏j

k=1(1−TMk(xi))
pMk−∏

j
k=1(1−TNk(xi))

pNk
∣∣∣+ ∣∣∣∏j

k=1(IMk(xi))
pMk −∏

j
k=1(INk(xi))

pNk
∣∣∣+∣∣∣∏j

k=1(FMk(xi))
pMk −∏

j
k=1(FNk(xi))

pNk
∣∣∣ =

∣∣∣∏j
k=1(1− TNk(xi))

pNk −∏
j
k=1(1− TMk(xi))

pMk
∣∣∣ +∣∣∣∏j

k=1(INk(xi))
pNk −∏

j
k=1(IMk(xi))

pMk
∣∣∣ + ∣∣∣∏j

k=1(FNk(xi))
pNk −∏

j
k=1(FMk(xi))

pMk
∣∣∣, so we can

get ρ(M, N) = ρ(N, M).
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2©: For 0 ≤ TMk(xi) ≤ 1, 0 ≤ IMk(xi) ≤ 1, 0 ≤ FMk(xi) ≤ 1, 0 ≤ TNk(xi) ≤ 1, 0 ≤ INk(xi) ≤ 1, 0 ≤
FNk(xi) ≤ 1 ;
Then, we can get

0 ≤ 1− TMk(xi) ≤ 1 and 0 ≤ 1− TNk(xi) ≤ 1;

0 ≤
j

∏
k=1

(1− TMk(xi))
pMk ≤ 1 and 0 ≤

j

∏
k=1

(1− TNk(xi))
pNk ≤ 1;

So,

0 ≤
∣∣∣∣∣ j

∏
k=1

(1− TMk(xi))
pMk −

j

∏
k=1

(1− TNk(xi))
pNk

∣∣∣∣∣ ≤ 1.

For the same reason, we can get

0 ≤
∣∣∣∣∣ j

∏
k=1

(IMk(xi))
pMk −

j
∏

k=1
(INk(xi))

pNk

∣∣∣∣∣ ≤ 1and0

≤
∣∣∣∣∣ j

∏
k=1

(FMk(xi))
pMk −

j
∏

k=1
(FNk(xi))

pNk

∣∣∣∣∣ ≤ 1
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0 ≤ |∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | ≤ 1.  

☐. 

For the same reason, we can get 

0 ≤ |∏(𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

| ≤ 1    𝑎𝑛𝑑   0

≤ |∏(𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

| ≤ 1 

 

Above all, we can get 0 ≤ |∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | +

|∏ (𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | ≤ 3  and  0 ≤

∑ 𝑐𝑜𝑠𝑛
𝑖=1 {

𝜋

6
|∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))

𝑝𝑁𝑘𝑗
𝑘=1 | + |∏ (𝐼𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 −

∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 |} ≤ 1; 

𝜌(𝑀, 𝑁) =
1

𝑛
∑ 𝑐𝑜𝑠

𝑛

𝑖=1

{
𝜋

6
|∏(1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|} 

=
1

𝑛
(𝑐𝑜𝑠 {

𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥1))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥1))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥1))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|)}

+ 𝑐𝑜𝑠 {
𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥2))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥2))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥2))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|)} + ⋯

+ 𝑐𝑜𝑠 {
𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥𝑛))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥𝑛))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥𝑛))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|)}) 
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0 ≤ |∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | ≤ 1.  

☐. 

For the same reason, we can get 

0 ≤ |∏(𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

| ≤ 1    𝑎𝑛𝑑   0

≤ |∏(𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

| ≤ 1 

 

Above all, we can get 0 ≤ |∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | +

|∏ (𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | ≤ 3  and  0 ≤

∑ 𝑐𝑜𝑠𝑛
𝑖=1 {

𝜋

6
|∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))

𝑝𝑁𝑘𝑗
𝑘=1 | + |∏ (𝐼𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 −

∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 |} ≤ 1; 

𝜌(𝑀, 𝑁) =
1

𝑛
∑ 𝑐𝑜𝑠

𝑛

𝑖=1

{
𝜋

6
|∏(1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|} 

=
1

𝑛
(𝑐𝑜𝑠 {

𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥1))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥1))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥1))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥1))
𝑝𝑁𝑘

𝑗

𝑘=1

|)}

+ 𝑐𝑜𝑠 {
𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥2))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥2))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥2))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥2))
𝑝𝑁𝑘

𝑗

𝑘=1

|)} + ⋯

+ 𝑐𝑜𝑠 {
𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥𝑛))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥𝑛))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥𝑛))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑛))
𝑝𝑁𝑘

𝑗

𝑘=1

|)}) 
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Let 𝑐𝑜𝑠 {
𝜋

6
(|∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))

𝑝𝑁𝑘𝑗
𝑘=1 | + |∏ (𝐼𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 −

∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 |)} = 𝑎𝑖 (𝑖 = 1,2, … 𝑛) , then 𝜌(𝑀, 𝑁) =
1

𝑛
{𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛}. 

According to 0 ≤ 𝑐𝑜𝑠 {
𝜋

6
(|∏ (1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 − ∏ (1 − 𝑇𝑁𝑘(𝑥𝑖))

𝑝𝑁𝑘𝑗
𝑘=1 | + |∏ (𝐼𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘𝑗
𝑘=1 −

∏ (𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 | + |∏ (𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘𝑗

𝑘=1 − ∏ (𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘𝑗

𝑘=1 |)} = 𝑎𝑖 ≤ 1, we can obtain 0 ≤ 𝑎1 + 𝑎2 +

⋯ + 𝑎𝑛 ≤ 𝑛 and 0 ≤
1

𝑛
(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛) ≤ 1, so we can get 0 ≤ 𝜌(𝑀, 𝑁) ≤ 1 . 

: If M = N then 𝑇𝑀𝑘(𝑥𝑖) = 𝑇𝑁𝑘(𝑥𝑖), 𝐼𝑀𝑘(𝑥𝑖) = 𝐼𝑁𝑘(𝑥𝑖), 𝑎𝑛𝑑 𝐹𝑀𝑘(𝑥𝑖) = 𝐹𝑁𝑘(𝑥𝑖) for any 𝑥𝑖 ∈ 𝑋 𝑎𝑛𝑑 𝑖 =

1,2, … 𝑛, so we can get 𝜌(𝑀, 𝑁) = 1, if and only if 𝑀 = 𝑁. 

Now, we consider different weights for each element 𝑥𝑖(𝑖 = 1,2, … , 𝑛) in X. Then, let 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛)𝑇 be the weight vector of each element 𝑥𝑖(𝑖 = 1,2, … , 𝑛) with 𝑤𝑖 ∈ [0,1], and ∑ 𝑤𝑖
𝑛
𝑖=1 =

1. Hence, we further extend the cosine measure of Equation (8) to the following weighted cosine 

measure of SVNM: 

𝜌𝑤(𝑀, 𝑁) = ∑ 𝑤𝑖𝑐𝑜𝑠

𝑛

𝑖=1

{
𝜋

6
(|∏(1 − 𝑇𝑀𝑘(𝑥𝑖))

𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(1 − 𝑇𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐼𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐼𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|

+ |∏(𝐹𝑀𝑘(𝑥𝑖))
𝑝𝑀𝑘

𝑗

𝑘=1

− ∏(𝐹𝑁𝑘(𝑥𝑖))
𝑝𝑁𝑘

𝑗

𝑘=1

|)}  

(9) 

Theorem 2. The cosine measure 𝜌𝑤(𝑀, 𝑁) between two SVNMs M and N satisfies the following properties: 

  𝜌𝑤(𝑀, 𝑁) = 𝜌𝑤(𝑁, 𝑀); 

  0 ≤ 𝜌𝑤(𝑀, 𝑁) ≤ 1; 

 𝜌𝑤(𝑀, 𝑁) = 1, 𝑖𝑓  𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑀 = 𝑁. 

The proof of Theorem 2 is similar to that of the Theorem 1, so we omitted it here. 

5. Cosine Measure of SVNM for Multiple Attribute Decision-Making 

In this section, we use the weighted cosine measure of SVNM to deal with the multiple attribute 

decision-making problems with SVNM information.  

Let 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑚} as a set of alternatives and 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} as a set of attributes, 

then they can be established in a decision-making problem. However, sometimes 𝑥𝑖(𝑖 = 1, 2, … , 𝑛) 

may have multiplicity, and then we can use the form of a SVNM to represent the evaluation value.  

Let  𝑔𝑟 = {𝑥𝑖 , (𝑝𝑔𝑟1, 〈𝑇𝑔𝑟1(𝑥𝑖), 𝐼𝑔𝑟1(𝑥𝑖), 𝐹𝑔𝑟1(𝑥𝑖)〉), (𝑝𝑔𝑟2, 〈𝑇𝑔𝑟2(𝑥𝑖), 𝐼𝑔𝑟2(𝑥𝑖), 𝐹𝑔𝑟2(𝑥𝑖)〉), … , (𝑝𝑔𝑟𝑗 , 〈𝑇𝑔𝑟𝑗(𝑥𝑖), 𝐼𝑔𝑟𝑗(𝑥𝑖), 𝐹𝑔𝑟𝑗(𝑥𝑖)〉)|𝑥𝑖 ∈

𝑋}, for r = 1, 2, …, m and i = 1, 2, …, n. Then we can establish the SVNM decision matrix D, which is 

shown in Table 1. 

Table 1. The single-valued neutrosophic multiset (SVNM) decision matrix D. 

 𝒙𝟏 … 

𝑔1 𝑥1, (𝑝𝑔11, 〈𝑇𝑔11(𝑥1), 𝐼𝑔11(𝑥1), 𝐹𝑔11(𝑥1)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥1), 𝐼𝑔1𝑗(𝑥1), 𝐹𝑔1𝑗(𝑥1)〉) … 

𝑔2 𝑥1, (𝑝𝑔21, 〈𝑇𝑔21(𝑥1), 𝐼𝑔21(𝑥1), 𝐹𝑔21(𝑥1)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥1), 𝐼𝑔2𝑗(𝑥1), 𝐹𝑔2𝑗(𝑥1)〉) … 
… … … 

𝑔𝑚 𝑥1, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥1), 𝐼𝑔𝑚1(𝑥1), 𝐹𝑔𝑚1(𝑥1)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥1), 𝐼𝑔𝑚𝑗(𝑥1), 𝐹𝑔𝑚𝑗(𝑥1)〉) … 

 𝒙𝒏  

 𝑥𝑛, (𝑝𝑔11, 〈𝑇𝑔11(𝑥𝑛), 𝐼𝑔11(𝑥𝑛), 𝐹𝑔11(𝑥𝑛)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥𝑛), 𝐼𝑔1𝑗(𝑥𝑛), 𝐹𝑔1𝑗(𝑥𝑛)〉)  

 𝑥𝑛, (𝑝𝑔21, 〈𝑇𝑔21(𝑥𝑛), 𝐼𝑔21(𝑥𝑛), 𝐹𝑔21(𝑥𝑛)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥𝑛), 𝐼𝑔2𝑗(𝑥𝑛), 𝐹𝑔2𝑗(𝑥𝑛)〉)  

 …  

 𝑥𝑛, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥𝑛), 𝐼𝑔𝑚1(𝑥𝑛), 𝐹𝑔𝑚1(𝑥𝑛)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥𝑛), 𝐼𝑔𝑚𝑗(𝑥𝑛), 𝐹𝑔𝑚𝑗(𝑥𝑛)〉)  

3©: If M = N then TMk(xi) = TNk(xi), IMk(xi) = INk(xi), and FMk(xi) = FNk(xi) for any xi ∈
X and i = 1, 2, . . . n, so we can get ρ(M, N) = 1, if and only if M = N.

Now, we consider different weights for each element xi(i = 1, 2, . . . , n) in X. Then, let w =

(w1, w2, . . . , wn)
T be the weight vector of each element xi(i = 1, 2, . . . , n) with wi ∈ [0, 1], and ∑n

i=1 wi =

1. Hence, we further extend the cosine measure of Equation (8) to the following weighted cosine
measure of SVNM:
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Theorem 2. The cosine measure 𝜌𝑤(𝑀, 𝑁) between two SVNMs M and N satisfies the following properties: 

  𝜌𝑤(𝑀, 𝑁) = 𝜌𝑤(𝑁, 𝑀); 
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Let  𝑔𝑟 = {𝑥𝑖 , (𝑝𝑔𝑟1, 〈𝑇𝑔𝑟1(𝑥𝑖), 𝐼𝑔𝑟1(𝑥𝑖), 𝐹𝑔𝑟1(𝑥𝑖)〉), (𝑝𝑔𝑟2, 〈𝑇𝑔𝑟2(𝑥𝑖), 𝐼𝑔𝑟2(𝑥𝑖), 𝐹𝑔𝑟2(𝑥𝑖)〉), … , (𝑝𝑔𝑟𝑗 , 〈𝑇𝑔𝑟𝑗(𝑥𝑖), 𝐼𝑔𝑟𝑗(𝑥𝑖), 𝐹𝑔𝑟𝑗(𝑥𝑖)〉)|𝑥𝑖 ∈

𝑋}, for r = 1, 2, …, m and i = 1, 2, …, n. Then we can establish the SVNM decision matrix D, which is 

shown in Table 1. 

Table 1. The single-valued neutrosophic multiset (SVNM) decision matrix D. 

 𝒙𝟏 … 

𝑔1 𝑥1, (𝑝𝑔11, 〈𝑇𝑔11(𝑥1), 𝐼𝑔11(𝑥1), 𝐹𝑔11(𝑥1)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥1), 𝐼𝑔1𝑗(𝑥1), 𝐹𝑔1𝑗(𝑥1)〉) … 

𝑔2 𝑥1, (𝑝𝑔21, 〈𝑇𝑔21(𝑥1), 𝐼𝑔21(𝑥1), 𝐹𝑔21(𝑥1)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥1), 𝐼𝑔2𝑗(𝑥1), 𝐹𝑔2𝑗(𝑥1)〉) … 
… … … 

𝑔𝑚 𝑥1, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥1), 𝐼𝑔𝑚1(𝑥1), 𝐹𝑔𝑚1(𝑥1)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥1), 𝐼𝑔𝑚𝑗(𝑥1), 𝐹𝑔𝑚𝑗(𝑥1)〉) … 

 𝒙𝒏  

 𝑥𝑛, (𝑝𝑔11, 〈𝑇𝑔11(𝑥𝑛), 𝐼𝑔11(𝑥𝑛), 𝐹𝑔11(𝑥𝑛)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥𝑛), 𝐼𝑔1𝑗(𝑥𝑛), 𝐹𝑔1𝑗(𝑥𝑛)〉)  

 𝑥𝑛, (𝑝𝑔21, 〈𝑇𝑔21(𝑥𝑛), 𝐼𝑔21(𝑥𝑛), 𝐹𝑔21(𝑥𝑛)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥𝑛), 𝐼𝑔2𝑗(𝑥𝑛), 𝐹𝑔2𝑗(𝑥𝑛)〉)  

 …  

 𝑥𝑛, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥𝑛), 𝐼𝑔𝑚1(𝑥𝑛), 𝐹𝑔𝑚1(𝑥𝑛)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥𝑛), 𝐼𝑔𝑚𝑗(𝑥𝑛), 𝐹𝑔𝑚𝑗(𝑥𝑛)〉)  

Theorem 2. The cosine measure ρw(M, N) between two SVNMs M and N satisfies the following properties:

1© ρw(M, N) = ρw(N, M);
2© 0 ≤ ρw(M, N) ≤ 1;
3© ρw(M, N) = 1, i f and only i f M = N.

The proof of Theorem 2 is similar to that of the Theorem 1, so we omitted it here.

5. Cosine Measure of SVNM for Multiple Attribute Decision-Making

In this section, we use the weighted cosine measure of SVNM to deal with the multiple attribute
decision-making problems with SVNM information.

Let G = {g1, g2, . . . , gm} as a set of alternatives and X = {x1, x2, . . . , xn} as a set of attributes,
then they can be established in a decision-making problem. However, sometimes xi(i = 1, 2, . . . , n)
may have multiplicity, and then we can use the form of a SVNM to represent the evaluation value.
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shown in Table 1. 

Table 1. The single-valued neutrosophic multiset (SVNM) decision matrix D. 

 𝒙𝟏 … 

𝑔1 𝑥1, (𝑝𝑔11, 〈𝑇𝑔11(𝑥1), 𝐼𝑔11(𝑥1), 𝐹𝑔11(𝑥1)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥1), 𝐼𝑔1𝑗(𝑥1), 𝐹𝑔1𝑗(𝑥1)〉) … 

𝑔2 𝑥1, (𝑝𝑔21, 〈𝑇𝑔21(𝑥1), 𝐼𝑔21(𝑥1), 𝐹𝑔21(𝑥1)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥1), 𝐼𝑔2𝑗(𝑥1), 𝐹𝑔2𝑗(𝑥1)〉) … 
… … … 

𝑔𝑚 𝑥1, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥1), 𝐼𝑔𝑚1(𝑥1), 𝐹𝑔𝑚1(𝑥1)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥1), 𝐼𝑔𝑚𝑗(𝑥1), 𝐹𝑔𝑚𝑗(𝑥1)〉) … 

 𝒙𝒏  

 𝑥𝑛, (𝑝𝑔11, 〈𝑇𝑔11(𝑥𝑛), 𝐼𝑔11(𝑥𝑛), 𝐹𝑔11(𝑥𝑛)〉), … , (𝑝𝑔1𝑗 , 〈𝑇𝑔1𝑗(𝑥𝑛), 𝐼𝑔1𝑗(𝑥𝑛), 𝐹𝑔1𝑗(𝑥𝑛)〉)  

 𝑥𝑛, (𝑝𝑔21, 〈𝑇𝑔21(𝑥𝑛), 𝐼𝑔21(𝑥𝑛), 𝐹𝑔21(𝑥𝑛)〉), … , (𝑝𝑔2𝑗 , 〈𝑇𝑔2𝑗(𝑥𝑛), 𝐼𝑔2𝑗(𝑥𝑛), 𝐹𝑔2𝑗(𝑥𝑛)〉)  

 …  

 𝑥𝑛, (𝑝𝑔𝑚1, 〈𝑇𝑔𝑚1(𝑥𝑛), 𝐼𝑔𝑚1(𝑥𝑛), 𝐹𝑔𝑚1(𝑥𝑛)〉), … , (𝑝𝑔𝑚𝑗 , 〈𝑇𝑔𝑚𝑗(𝑥𝑛), 𝐼𝑔𝑚𝑗(𝑥𝑛), 𝐹𝑔𝑚𝑗(𝑥𝑛)〉)  

shown in Table 1.
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Table 1. The single-valued neutrosophic multiset (SVNM) decision matrix D.

x1 . . .

g1 x1,
(

pg11,
〈

Tg11(x1), Ig11(x1), Fg11(x1)
〉)

, . . . ,
(

pg1 j,
〈

Tg1 j(x1), Ig1 j(x1), Fg1 j(x1)
〉)

. . .

g2 x1,
(

pg21,
〈

Tg21(x1), Ig21(x1), Fg21(x1)
〉)

, . . . ,
(

pg2 j,
〈

Tg2 j(x1), Ig2 j(x1), Fg2 j(x1)
〉)

. . .
. . . . . . . . .
gm x1,

(
pgm1,

〈
Tgm1(x1), Igm1(x1), Fgm1(x1)

〉)
, . . . ,

(
pgm j,

〈
Tgm j(x1), Igm j(x1), Fgm j(x1)

〉)
. . .

xn

xn,
(

pg11,
〈

Tg11(xn), Ig11(xn), Fg11(xn)
〉)

, . . . ,
(

pg1 j,
〈

Tg1 j(xn), Ig1 j(xn), Fg1 j(xn)
〉)

xn,
(

pg21,
〈

Tg21(xn), Ig21(xn), Fg21(xn)
〉)

, . . . ,
(

pg2 j,
〈

Tg2 j(xn), Ig2 j(xn), Fg2 j(xn)
〉)

. . .
xn,
(

pgm1,
〈

Tgm1(xn), Igm1(xn), Fgm1(xn)
〉)

, . . . ,
(

pgm j,
〈

Tgm j(xn), Igm j(xn), Fgm j(xn)
〉)

Step 1: By using Equation (7), we change the SVNM decision matrix D into SVNS decision
matrix D̃, which is shown in Table 2.

Table 2. The single-valued neutrosophic set (SVNS) decision matrix D̃.

x1 . . .

g̃1 〈x1, 1−
j

∏
k=1

(
1− Tg1k(x1)

)pg1k
,

j
∏

k=1

(
Ig1k(x1)

)pg1k
,

j
∏

k=1

(
Fg1k(x1)

)pg1k
〉 . . .

g̃2 〈x1, 1−
j

∏
k=1

(
1− Tg2k(x1)

)pg2k
,

j
∏

k=1

(
Ig2k(x1)

)pg2k
,

j
∏

k=1

(
Fg2k(x1)

)pg2k
〉 . . .

. . . . . . . . .

g̃m 〈x1, 1−
j

∏
k=1

(
1− Tgmk(x1)

)pgmk
,

j
∏

k=1

(
Igmk(x1)

)pgmk
,

j
∏

k=1

(
Fgmk(x1)

)pgmk
〉 . . .

xn

〈xn, 1−
j

∏
k=1

(
1− Tg1k(xn)

)pg1k
,

j
∏

k=1

(
Ig1k(xn)

)pg1k
,

j
∏

k=1

(
Fg1k(xn)

)pg1k
〉

〈xn, 1−
j

∏
k=1

(
1− Tg2k(xn)

)pg2k
,

j
∏

k=1

(
Ig2k(xn)

)pg2k
,

j
∏

k=1

(
Fg2k(xn)

)pg2k
〉

. . .

〈xn, 1−
j

∏
k=1

(
1− Tgmk(xn)

)pgmk
,

j
∏

k=1

(
Igmk(xn)

)pgmk
,

j
∏

k=1

(
Fgmk(xn)

)pgmk
〉

Step 2: Setting Tg∗(xi) is the maximum truth value in each column xi of the decision matrix D̃,
Ig∗(xi) and Fg∗(xi) are the minimum indeterminate and falsity values in each column xi of the decision
matrix D̃, respectively, the ideal solution can be determined as x∗i .

x∗i =
〈

Tg∗(xi), Ig∗(xi), Fg∗(xi)
〉
, for i = 1, 2, . . . , n.

So, we can get the ideal alternative g∗ = {x∗1,, x∗2,, . . . , x∗n}.
Step 3: When the weight vector of attributes for the different importance of each attribute

xi(i = 1, 2, . . . , n) is given by w = (w1,w2, . . . , wn)
T with wi ≥ 0 and ∑n

i=1 wi = 1, then we utilize
the weighted cosine measure to deal with multiple attribute decision-making problems with SVNM
information. The weighted cosine measure between an alternative g̃r(r = 1, 2, . . . , m) and the ideal
alternative g∗ can be calculated by using the following formula:

ρw(gr, g∗) = ρw(g̃r, g∗)

=
n
∑

i=1
wicos{π

6 (
∣∣∣Tg̃r (xi)− Tg∗(xi)

∣∣∣+ ∣∣∣Ig̃r (xi)− Ig∗(xi)
∣∣∣

+
∣∣∣Fg̃r (xi)− Fg∗(xi)

∣∣∣)}.

(10)
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Step 4: According to the values of ρw(g̃r, g∗) for r = 1, 2, . . . , m, we rank the alternatives and select
the best one.

Step 5: End.
The formalization of the steps is illustrated in Figure 1.
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6. Numerical Example and Comparative Analysis

6.1. Numerical Example

Now, we utilize a practical example for the decision-making problem adapted from the
literature [21] to demonstrate the applications of the proposed method under a SVNM environment.
Now, one customer wants to buy a car, he selects four types of cars and evaluates them according to
four attributes. Then, we build a decision model. There are four possible alternatives (g1, g2, g3, g4)

to be considered. The decision should be taken according to four attributes: fuel economy (x1),
price (x2), comfort (x3), and safety (x4). The weight vector of these four attributes is given by
w = (0.5, 0.25, 0.125, 0.125)T . Then, the customer tests the four cars on the road with less obstacles and
on the road with more obstacles, respectively, and after testing, some attributes may have two different
evaluated values or the same value. So, the customer evaluates the four cars (alternatives) under the
four attributes by the form of SVNMs.

Step 1: Establish the SVNM decision matrix D provided by the customer, which is given as the
following SVNM decision matrix D in Table 3.

Table 3. The SVNM decision matrix D.

x1 x2 x3 x4

g1 (1, 〈0.5, 0.7, 0.2〉), (1, 〈0.7, 0.3, 0.6〉) 1, 〈0.4, 0.4, 0.5〉 (1, 〈0.7, 0.7, 0.5〉), (1, 〈0.8, 0.7, 0.6〉) (1, 〈0.1, 0.5, 0.7〉), (1, 〈0.5, 0.2, 0.8〉)
g2 (1, 〈0.9, 0.7, 0.5〉), (1, 〈0.7, 0.7, 0.1〉) 1, 〈0.7, 0.6, 0.8〉 2, 〈0.9, 0.4, 0.6〉 (1, 〈0.5, 0.2, 0.7〉, (1, 〈0.5, 0.1, 0.9〉)
g3 (1, 〈0.3, 0.4, 0.2〉, (1, 〈0.6, 0.3, 0.7〉) 1, 〈0.2, 0.2, 0.2〉 (1, 〈0.9, 0.5, 0.5〉, (1, 〈0.6, 0.5, 0.2〉) (1, 〈0.7, 0.5, 0.3〉, (1, 〈0.4, 0.2, 0.2〉)
g4 (1, 〈0.9, 0.7, 0.2〉, (1, 〈0.8, 0.6, 0.1〉) 1, 〈0.3, 0.5, 0.2〉 (1, 〈0.5, 0.4, 0.5〉, (1, 〈0.1, 0.7, 0.2〉) 2, 〈0.4, 0.2, 0.8〉

Step 2: By using Equation (7), we change the SVNM decision matrix D into SVNS decision
matrix D̃, which is shown in Table 4.

Table 4. The SVNS decision matrix D̃.

x1 x2 x3 x4

g̃1 〈0.85, 0.21, 0.12〉 〈0.4, 0.4, 0.5〉 〈0.94, 0.49, 0.3〉 〈0.55, 0.1, 0.56〉
g̃2 〈0.97, 0.49, 0.05〉 〈0.7, 0.6, 0.8〉 〈0.99, 0.16, 0.36〉 〈0.75, 0.02, 0.63〉
g̃3 〈0.72, 0.12, 0.14〉 〈0.2, 0.2, 0.2〉 〈0.96, 0.25, 0.1〉 〈0.82, 0.1, 0.06〉
g̃4 〈0.98, 0.42, 0.02〉 〈0.3, 0.5, 0.2〉 〈0.55, 0.28, 0.1〉 〈0.64, 0.04, 0.64〉
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Step 3: According to the decision matrix D̃, we can get the ideal alternative g∗:

g∗ = {〈0.98, 0.12, 0.02〉〈0.7, 0.2, 0.2〉〈0.99, 0.16, 0.1〉〈0.82, 0.02, 0.06〉}. (11)

Step 4: By applying the Equation (10), we can obtain the values of the weighted cosine measure
between each alternative and the ideal alternative g∗ as follows:

ρw(g1, g∗) = 0.9535, ρw(g2, g∗) = 0.9511,
ρw(g3, g∗) = 0.9813 and ρw(g4, g∗) = 9616.

(12)

Step 5: According to the above values of weighted cosine measure, we can rank the four
alternatives: g3 � g4 � g1 � g2. Therefore, the alternative g3 is the best choice.

This example clearly indicates that the proposed decision-making method based on the
weighted cosine measure of SVNMs is relatively simple and easy for dealing with multiple attribute
decision-making problems under SVNM environment.

6.2. Comparative Analysis

In what follows, we compare the proposed method for SVNM with other existing related methods
for SVNM; all the results are shown in Table 5.

Table 5. The ranking orders by utilizing four different methods.

Method Result Ranking Order The Best Alternative

Method 1 based on
correlation coefficient
in [11]

ρw(g1, g∗) = 0.9053,
ρw(g2, g∗) = 0.9017,
ρw(g3, g∗) = 0.9516,
ρw(g4, g∗) = 0.8816.

g3 � g1 � g2 � g4 g3

Method 2 based on
similarity in [16]

ρw(g1, g∗) = 0.8204,
ρw(g2, g∗) = 0.8108,
ρw(g3, g∗) = 0.8867,
ρw(g4, g∗) = 0.8358.

g3 � g4 � g2 � g1 g3

Method 3 based on
similarity in [16]

ρw(g1, g∗) = 0.7898,
ρw(g2, g∗) = 0.7121,
ρw(g3, g∗) = 0.8125,
ρw(g4, g∗) = 0.7553.

g3 � g1 � g4 � g2 g3

The proposed method

ρw(g1, g∗) = 0.9535,
ρw(g2, g∗) = 0.9511,
ρw(g3, g∗) = 0.9813,
ρw(g4, g∗) = 9616.

g3 � g4 � g1 � g2 g3

From Table 5, these four methods have the same best alternative g3. Many methods such as
similarity measure, correlation coefficient, and cosine measure can all be used in SVNM to handle the
multiple attribute decision-making problems and can get the similar results.

The proposed decision-making method can express and handle the multiplicity evaluated data
given by decision makers or experts, while various existing neutrosophic decision-making methods
cannot deal with these problems.

7. Conclusions

Based on the multiplicity evaluation in some real situations, this paper introduced a SVNM as a
subclass of NM to express the multiplicity information and the operational relations of SVNMs.
The SVNM is expressed by its one or more elements, which may have multiplicity. Therefore,
SVNM has the desirable advantages and characteristics of expressing and handling the multiplicity
problems, while existing neutrosophic sets cannot deal with them.
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Then, we proposed the cosine measure of SVNMs and weighted cosine measure of SVNMs and
investigated their properties. Based on the weighted cosine measure of SVNMs, the multiple attribute
decision-making methods under SVNM environments was proposed, in which the evaluated values
were taken the form of SVNMEs. Through the weighed cosine measure between each alternative and
the ideal alternative, one can determine the ranking order of all alternatives and can select the best
one. Finally, a practical example adapted from the literature [21] about buying cars was presented to
demonstrate the effectiveness and practicality of the proposed method in this paper. According to the
ranking orders, we can find that the ranking result with weighted cosine measures is agreement with
the ranking results in literature [21]. Then, the proposed method is suitable for actual applications in
multiple attribute decision-making problems with single-value neutrosophic multiplicity information.

In the future, we shall extend SVNMs to interval neutrosophic multisets and develop the
application of interval neutrosophic multisets for handling the decision-making methods or
other domains.
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