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Abstract: In existing principle component analysis (PCA) methods for histogram-valued symbolic
data, projection results are approximated based on Moore’s algebra and fail to reflect the data’s true
structure, mainly because there is no precise, unified calculation method for the linear combination of
histogram data. In this paper, we propose a new PCA method for histogram data that distinguishes
itself from various well-established methods in that it can project observations onto the space spanned
by principal components more accurately and rapidly by sampling through a MapReduce framework.
The new histogram PCA method is implemented under the same assumption of “orthogonal
dimensions for every observation” with the existing literatures. To project observations, the method
first samples from the original histogram variables to acquire single-valued data, on which linear
combination operations can be performed. Then, the projection of observations can be given by linear
combination of loading vectors and single-valued samples, which is close to accurate projection
results. Finally, the projection is summarized to histogram data. These procedures involve complex
algorithms and large-scale data, which makes the new method time-consuming. To speed it up,
we undertake a parallel implementation of the new method in a multicore MapReduce framework.
A simulation study and an empirical study confirm that the new method is effective and time-saving.

Keywords: histogram-valued symbolic data; Principal component analysis; sampling; mapreduce; parallel

1. Introduction

Generalized Principal Component Analysis (PCA) is an important research tool in the Symbolic
Data Analysis (SDA) [1]. PCA is a statistical procedure that uses orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components (PCs) [2–4]. PCA is commonly used for dimension reduction
[5,6] by specifying a few PCs that account for as much of the variability in the original dataset
as possible. It is well known that PCA has been primarily developed for single-valued variables.
However, the explosion of big data from a wide range of application domains presents new challenges
for traditional PCA, as it is difficult to gain insight from mass observation even in a low-dimensional
space. Symbolic data analysis [7–10] has developed a new path for solving this problem.

Symbolic data was first introduced by [7] and aims to summarize large-scale data with conceptual
observations described by symbolic descriptors, such as interval data, histogram, and continuous
distribution data. Application fields of symbolic data include economic management, finance,
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and sociodemographic surveys. Thus, some researchers devoted themselves to studying new PCA
methods for symbolic data. Here, we are interested in PCA for histogram data, where each variable
value for each unit is a set of weights associated with the bins of variable values. The weights can
be considered to be the frequency or probability of their associated bin for the corresponding unit.
The sum of the weights is equal to 1.

Several studies contribute to the extension of PCA to histogram data. Reference [11] attempted
to analyze a symbolic dataset for dimensionality reduction when the features are of histogram type.
This approach assumes that the modal variables have the same number of ordered bins and uses
the PCA of tables associated with each bin. References [12,13] assumed that the same number of
bins was ordered for each variable. References [1,14] proposed approaches based on distributions of
histogram transformation, which is not possible in the case of nonordinal bins. Nevertheless, the Ichino
method solves this case by ranking bins by their frequency among the whole population of individuals.
Reference [15] presented a strategy for extending standard PCA to histogram data. This method
uses metabins that mix bins from different bar charts and enhance interpretability. Then it proposes
Copular PCA to handle the probabilities and underlying dependencies. The method presented
by [1] builds metabins and metabin trajectories for each individual from the nominal histogram
variables. Reference [15] also proved that the method proposed by [1] is an alternate solution to
Copular PCA. Reference [16] expressed an accurate distribution of linear combination of quantitative
symbolic variables by convolutions of their probability distribution functions. Reference [17] use
Multiple Factor Analysis (MFA) approach for the analysis of data described by distributional variables.
Each distributional variable induces a set new numeric variable related to the quantiles of each
distribution. Reference [18] deals with the current situation of histogram use through histogram PCA.

Despite the number of experts who study PCA for histogram data, there are still many challenging
issues that have not been fully addressed in previous publications. In PCA methods for histogram
data, projection results are approximated based on Moore’s algebra [19] and fail to reflect the data’s
true structure, mainly because methods of linear combinations of histogram data are imprecise and
not unified. The PSPCA method proposed by [16] can obtain precise projections, but the process of
calculating convolutions is very complicated and time consuming, requiring a more efficient method
of PCA for histogram data.

In this paper, we investigate a sampling-based PCA method for histogram data to solve the
dimension reduction problem of histogram data. This method can project observations onto the space
spanned by PCs more accurately and rapidly using a MapReduce framework. Assuming orthogonal
dimensions for every observation [20], as in existing literature, to project observations onto the space
spanned by PCs, we first sample from the original histogram variables to acquire single-valued data
on which linear combination operations can be performed. Then, the projection of observations can be
described by a linear combination of loading vectors and single-valued samples. Lastly, the projection
is summarized to histogram data. As random sampling is used in this process, the projection results of
different samplings may be different, resulting in the projection results of the proposed method being
only close to accurate projections. However, we have proved that for a sufficiently large sample size,
the projection results tend towards stability and are close to the accurate projections.

Because this method uses complex algorithms and large-scale data, it is quite time consuming.
To speed up the method, we undertake a parallel implementation of the new method through
a multicore MapReduce framework. MapReduce is a popular parallel programming model for
cloud computing platforms and has been effective in processing large datasets using multicore or
multiprocessor systems [21–25]. We conducted a simulation experiment to confirm that the new
method is effective and can be substantially accelerated.

It should be emphasized that we only propose the MapReduce framework for sampling-based
histogram PCA for big data. When there is sufficient data, we can use a big data platform like Hadoop
and adopt parallel computing methods, such as GPU computing and MPI (Message Passing Interface).
In this paper, we simply consider a multicore MapReduce parallel implementation.
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The remainder of this paper is organized as follows. In Section 2, we propose a sampling-based
Histogram PCA method. Section 3 describes the implementation of the new method in a multicore
MapReduce framework. Next, in Section 4, a simulation study of the new method and its parallel
implementation are presented. We also compare the execution times of serial and parallel processing.
In Section 5, we report the results of our empirical study. Finally, Section 6 outlines our conclusions.

2. Sampling-Based Histogram PCA

In this section, we first define the inner product operator for histogram-valued data, then derive
histogram PCA, and finally project the observations onto the space spanned by principal components
using sampling.

2.1. Basic Operators

Let X be a data matrix that can be expressed as a vector of observations or of variables.

X = [eT
1 . . . eT

n ]
T = [X1 . . . Xp], (1)

where ei = (xi1, . . . , xip), i = 1, . . . , n denotes the ith observation and Xj = (x1j, . . ., xnj)
T , j = 1, . . . , p

denotes the jth variable. Additionally, the random variable xij represents the jth variable of the ith
observation, with realization xij in the classical case and ξij in the symbolic case.

Next, we give the empirical distribution functions and descriptive statistics for histogram data.
For further detail, refer to [9,26].

Let ei, i = 1, . . . , n, be a random sample. Let the jth variable have a histogram-valued realization ξij,

ξij = {[a1
ij, b1

ij), p1
ij; [a

2
ij, b2

ij), p2
ij; . . . ; [a

sij
ij , b

sij
ij ], p

sij
ij } (2)

where [al
ij, bl

ij) is the lth subinterval of ξij and pl
ij is its associated relative frequency. Let sij denote the

number of subintervals in ξij. Then, al
ij ≤ bl

ij for all l = 1, . . . , sij, and ∑
sij
l=1 pl

ij = 1.
Reference [27] extended the empirical distribution function derived by [26] for interval data to

histogram data. Based on the assumption that all values within each subinterval [a1
ij, b1

ij) are uniformly

distributed, they defined the empirical distribution of a point Ws within subinterval [a1
ij, b1

ij) as

P(Ws ≤ w) =


0, w < al

ij,
(w− al

ij)/(b
l
ij − al

ij), al
ij ≤ w < bl

ij,
1, bl

ij ≤ w.
(3)

Furthermore, assume that each object is equally likely to be observed with probability 1/n;
then, the empirical distribution function of W is

FW(w) =
1
n

n

∑
i=1

[ ∑
l:w∈ξ l

ij

pl
ij(w− al

ij)/(b
l
ij − al

ij) + ∑
l:w≥bl

ij

pl
ij], (4)

where ξ l
ij = [a1

ij, b1
ij). The empirical density function of W is defined as

fW(w) =
1
n

n

∑
i=1

∑
l:w∈ξ l

ij

pl
ij/(b

l
ij − al

ij). (5)

The symbolic sample mean derived from the density function shown in Equation (5) is

W =
1

2n

n

∑
i=1

sij

∑
l=1

pl
ij(al

ij + bl
ij). (6)
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Accordingly, the centralization of xij is given by

x̃ij = xij −W. (7)

After centralization, the symbolic sample variance and covariance are, respectively,

S2 =
1

3n

n

∑
i=1

sij

∑
l=1

pl
ij[(al

ij)
2 + al

ijb
l
ij + (bl

ij)
2], (8)

and

Sij =
1

4n

n

∑
i=1

[
sik

∑
l=1

pl
ik(al

ik + bl
ik)][

sjk

∑
l=1

pl
jk(al

jk + bl
jk)], i 6= j. (9)

2.2. The PCA Algorithm of Histogram Data

Based on the operators above, we begin to derive histogram-valued PCs. For simplicity of
notation, we assume that all histogram-valued data units have been centralized.

The kth histogram-valued PC Yk(k = 1 . . . p) is a linear combination of X1, X2, . . . , Xp,

Yk = Xuk =
p

∑
j=1

ujkXj, (10)

where uk = (u1k . . . upk)
T ∈ Rp is subject to uT

k uk = 1 and uT
k ul = 0, ∀l 6= k. Then, the symbolic

sample variance of Yk(k = 1 . . . p) can be derived from

S2
Yk

= (u1k, u2k, . . . , upk)


S2

1 S12 · · · S1p
S21 S2

2 · · · S2p
...

...
. . .

...
Sp1 Sp2 · · · S2

p




u1k
u2k

...
upk

 = uT
k Σuk, (11)

where Σ represents the sample covariance matrix as X1, X2, . . . , Xp, in which S2
i and Sij(i, j = 1 . . . p)

are present in Equations (8) and (9).
The following process is the same as that for classical PCA. (for details, see the original sources).
Set u1, u2, . . . , um as the eigenvectors of Σ, corresponding to the eigenvalues λ1 > λ2 > . . . > λm.

The derivation of PC coefficients is transformed into the eigendecomposition of the covariance matrix.
The contribution rate(CR) of the mth PC to the total variance can be measured by

CRm =
S2

Ym
p
∑

j=1
S2

Yj

=
λm
p
∑

j=1
λj

. (12)

2.3. The Projection Process

In existing PCA methods for histogram data, the projection results are approximated based
on Moore’s algebra [19] and fail to reflect true data structures, mainly because there are no precise,
unified methods for linearly combining histogram data.

In this paper, we project observations onto the space spanned by PCs with a sampling method.
Using the concept of symbolic data, histogram-valued data can be generated from a mass of
numerical data. Retroactively, we can also sample from histogram-valued data to obtain numerical
data on which linear combination operations can be performed. As PC coefficients and numerical
variables corresponding to the original histogram-valued variables are obtained, we can calculate the
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numerical projections by linearly combining them. Then, histogram-valued projections of the original
observations can be summarized from numerical projections.

Let xij represent the ith observation unit of the jth variable Xj in histogram-valued matrix X. ξij in
Equation (2) is a realization of xij. Based on the assumption that all values within each subinterval
[a1

ij, b1
ij) are uniformly distributed, to obtain numerical data corresponding to ξij, we select mi samples

from those subintervals of ξij through random sampling. To maintain the coherence of the numerical
sample matrix, the sample sizes of different variables from the same observation are assumed to be
equal. After the random sampling process, the numerical sample matrix corresponding to the original
histogram-valued matrix, which we call matrix P, can be obtained. As the dimension of X is n× p,

the dimension of P is
n
∑

i=1
mi × p.

According to Equation (10), the kth numerical PC NYk(k = 1 . . . p) is a linear combination of
P1, P2, . . . , Pp,

NYk = Puk =
p

∑
j=1

ujkPj. (13)

The calculation in Equation (13) can be performed because P1, P2, . . . , Pp are numerical variables.
The projection approach in Equation (13) is similar to the classic PCA approach. Finally, we obtain
histogram-valued PCs through generating numerical PCs. In this way, histogram-valued observations
are successfully projected onto the space spanned by PCs.

The above analysis can be summarized by the following algorithm:

• Step 1: Centralize the histogram-valued matrix X in Equation (1) and keep the notations consistent
for simplicity.

• Step 2: Calculate the covariance matrix Σ of X using Equations (8) and (9).
• Step 3: Eigendecompose Σ for orthonormalized eigenvectors u1, u2, . . . , um(m ≤ p) in accordance

with the eigenvalues λ1 > λ2 > . . . > λm, which are PC coefficients and PC variances, respectively.
• Step 4: Obtain numerical matrix P through random sampling from X.
• Step 5: Compute the numerical PCs NY1, NY2, . . . , NYm using Equation (13).
• Step 6: Generate histogram-valued PCs Y1, Y2, . . . , Ym by summarizing numerical PCs NY1, NY2,

. . . , NYm.

During this procedure, it is crucial to guarantee that any column of the matrix P obtained by
sampling has the same distribution as the corresponding column in X, or that the distance between
these two distributions is small enough to be negligible. Considering the empirical cumulative
distribution approximates the true cumulative distribution favorably, we can determine that the
difference between these two distributions converges as the sample size goes to infinity. Here, we give
some key conclusions from the perspective of asymptotic theory.

Kolmogorov-Smirnov distance is a useful measure of global closeness between distributions
Fm(x) and F(x)

Dm = sup
−∞<x<∞

|Fm(x)− F(x)|. (14)

The asymptotic properties of Kolmogorov-Smirnov distance Dm have been studied and many
related conclusions have been built. Extreme fluctuations in the convergence of Dm to 0 can be
characterized by [28]

limm→∞
m1/2Dm

(2 log log m)1/2 = sup
x

√
F(x)(1− F(x)). (15)

Here, we deal with histogram data, in which case F(x) is not continuous; thus, we cannot give
supx

√
F(x)(1− F(x)). According to Equation (15), Dm converges with a rate slower than m−1/2 by

a factor (log log m)1/2.
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From the pointwise closeness of Fm(x) to F(x), we can easily observe that

Fm(x) is AN
(

F(x),
F(x)[1− F(x)]

n

)
, f or f ixed x, (16)

where AN is asymptotic normality.
Therefore, global and local differences between the histogram obtained from sampling data and

the original can be controlled when the sample size is large, illustrating the feasibility of the proposed
sampling method. It should be noted that the original histogram data, which is not continuous,
is treated as the true distribution, but the conclusions above can cover discontinuous cases, although
the formula expression may be complex. Related theoretical issues will be considered in the future.

3. MapReduce for Multicore, Sampling-Based Histogram PCA

The sampling-based histogram PCA approach presented in Section 2 involves complex algorithms
and large-scale data, which makes the method time-consuming and degrades its computation efficiency.
To speed up the method, we undertake its parallel implementation using a multicore MapReduce
framework in this section.

MapReduce is a programming model for processing large datasets with a parallel, distributed
algorithm on a cluster. A MapReduce program is composed of a map procedure that filters and
sorts data and a reduce procedure that performs a summary operation [21]. Reference [22] show
that algorithms that can be written in a “summation form” can be easily parallelized on multicore
computers. Coincidentally, Equations (8), (9) and (13) are written in this form. In addition, the random
sampling procedure can also be parallelized. Consequently, we adapt the MapReduce paradigm to
implement our histogram PCA algorithm.

The multicore MapReduce frame for histogram PCA is presented in Figure 1, which shows a high-
level view of our architecture and how it processes the data. In Step 1, the MapReduce engine calculates
the mean of each histogram variable using Equation (6) using pseudocode shown in Algorithm 1.

Algorithm 1 MapReduce for calculating the mean of each histogram variable

1: function MAP1(key, value)
2:
3: // key: row ID of the observation in X
4:
5: // value: observations in X
6:
7: for each element ξij in value do
8:

9: sumij =
1
2

sij

∑
l=1

pl
ij(al

ij + bl
ij)

10:
11: end for
12:
13: return (coordinate, sumij)// coordinate: coordinates of elements in X
14:
15: end function
16:
17: function REDUCE1(coordinate, sumij)
18:
19: for j = 1→ p do
20:
21: W j =

1
n

n
∑

i=1
sumij // Calculating the mean of each histogram variable

22:
23: end for
24:
25: return (column_id, W j)
26:
27: end function

Then, the variables are centralized using Equation (7). Every variable has its own engine instance,
and every MapReduce task is delegated to its engine. Similarly, calculating the covariance matrix of
histogram data using Equations (8) and (9) in Step 2, random sampling from X in Step 4, and computing
the numerical principal components NY1, NY2, . . . , NYm using Equation (13) in Step 5 can also be
delegated to MapReduce engines. The map and reduce functions are presented in Algorithms 2 and 3.
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Algorithm 2 MapReduce for centralizing histogram data and calculating the covariance matrix of
histogram data

1: function MAP2(key, value)
2:
3: // key: row ID of the observation in X
4:
5: // value: observations in X
6:
7: for each element ξij in value do
8:
9: ξij = ξij −W j //Centralizing histogram data

10:

11: sumij =
1
2

sij

∑
l=1

pl
ij(al

ij + bl
ij)

12:
13: end for
14:
15: return (coordinate, sumij)// coordinate: coordinates of elements in X
16:
17: end function
18:
19: function REDUCE2(coordinate, sumij)
20:
21: for i = 1→ p do
22:
23: for j = 1→ p do
24:
25: if i == j then
26:

27: Sij =
1

3n

n
∑

i=1

sij

∑
l=1

pl
ij[(al

ij)
2 + al

ijb
l
ij + (bl

ij)
2]

28:
29: else
30:

31: Sij =
1

4n

n
∑

i=1
[

sik
∑

l=1
pl

ik(al
ik + bl

ik)][
sjk

∑
l=1

pl
jk(al

jk + bl
jk)]

32:
33: // Calculating the covariance matrix of histogram data
34:
35: end if
36:
37: end for
38:
39: end for
40:
41: return (cov_id, Sij)// cov_id: coordinates of elements in S
42:
43: end function

Algorithm 3 MapReduce for sampling-based histogram PCA

1: function MAP3(key, value)
2:
3: // key: row ID of the observation in X
4:
5: // value: observations in X
6:
7: for each element ξij in value do
8:
9: Pij ←Randomly sampling numerical data from ξij, the sample size is K.

10:
11: end for
12:
13: return (coordinate, Pij)
14:
15: end function
16:
17: function REDUCE3(coordinate, Pij)
18:
19: for each element Pij in P do
20:
21: NYik =

p
∑

j=1
ujkPij

22:
23: //Calculating the ith observation of the kth numerical PC
24:
25: Yik ← Summarizing numerical PCs to obtain histogram PCs
26:
27: end for
28:
29: return (pc_id, Yk)// Yk: the kth histogram PC
30:
31: end function
32:
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Figure 1. The multicore MapReduce frame for histogram PCA.

4. Simulation Study

To analyze the performance of the new histogram PCA method and demonstrate whether
MapReduce parallelization can speed it up, we carried out a simulation study involving three examples.

{U(1, 3), N(1, 1), χ2(1), lnN(0, 0.5),−lnN(0, 0.5)}.

Of the examples, Example 1 investigates the histogram PCA accuracy in Section 2.2, Example
2 evaluates the precision of the sampling-based projection process of histogram PCA in Section 2.3,
and Example 3 compares the method’s execution time in parallel and serial systems.

The environment in which we conducted experiments is a PC with 8 Core Intel i7-6700K 4.00 GHz
CPU and 8 GB RAM running Windows 7.

4.1. Example 1

With Example 1, we aim to investigate the accuracy of the histogram PCA algorithm.
The simulated symbolic data tables are built as in [29]. Based on the concept of symbolic variables,
to obtain n observations associated with a histogram-valued variable Xk, we simulate K real values
xNUM

ik corresponding to each unit. These values are then organized in histograms that represent the
empirical distribution for each unit. The distribution of the microdata that allow histogram generation,
corresponding to each observation of the variables Xk(k = 1 . . . p), is randomly selected from a mixture
of distributions. Without loss of generality, in all observations, the widths of the subintervals in each
histogram are the same.

Thus, we generate n histogram observations and the corresponding n×K single-value data points.
The single-value data points can be viewed as the original data, which we aim to approximate using
histogram-valued data. Consequently, experimental PCA results obtained from single-value data can
work as an evaluation benchmark for the histogram PCA algorithm.

The detailed process of Example 1 is as follows:
(1) Generate a synthetic histogram dataset X with p variables and n observations and the

corresponding single-value dataset, denoted as XNUM.
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(2) Adopt the new histogram PCA method on X and perform classical PCA on XNUM.
The obtained PC coefficients are denoted as uj and uNUM

j , and the corresponding PC variances

are represented by λj and λNUM
j , j = 1, 2, . . . , p.

(3) Compute the following two indicators [30]:

(a) Absolute cosine value (ACV) of PC coefficients:

ACV(uj) =
∣∣ (uj)

TuNUM
j

‖uj‖‖uNUM
j ‖

∣∣. (17)

Since cosine measures the angle between two vectors, ACV describes the similarity between PC
coefficients uj and the benchmark uNUM

j . A higher ACV indicates a better performance of the new
histogram PCA method. (b) Relative error (RE) of PC variances:

RE(λj) =
∣∣λj − λNUM

j

λNUM
j

∣∣. (18)

Taking PC variances obtained from XNUM as a benchmark, the lower the RE is, the better the new
histogram PCA method has performed.

The parameters for the experiments are set as follows: n = 30, p = 3, K = 50, 100, 500, 1000, 5000.
We can compare the performance of the new histogram PCA method with the single-value

benchmark based on the resulting PC coefficients and variances.
The comparative results of the PC coefficients are shown in Table 1 using the ACV measure,

and the comparative results of PC variances are shown in Table 2 using the RE measure. In general,
the new histogram method yields fairly good results. The ACV values are all very close to 1, which
indicates that the PC coefficients of the new histogram PCA method are similar to the benchmark PC
coefficients. The values of RE all fluctuate near zero, which verifies that the PC variances of the new
histogram PCA method have only small differences with benchmark PC variances.

Table 1. ACV values of the new histogram PCA.

K ACV(u1) ACV(u2) ACV(u3)

50 1.0000 0.9999 0.9999
100 0.9988 0.9976 0.9988
500 0.9956 0.9927 0.9956

1000 0.9990 0.9994 0.9986
5000 0.9977 0.9995 0.9980

Furthermore, Tables 1 and 2 show that the values of ACV and RE change little, as the number
of single-value data points K increases. Additionally, there is no obvious regularity between the
indicators and K. Consequently, it can be concluded that the performance of the new histogram PCA
method is accurate and not influenced by K.

Table 2. RE values for the new histogram PCA method.

K RE(λ1) RE(λ2) RE(λ3)

50 0.0056 0.0386 0.0215
100 0.0019 0.0108 0.0212
500 0.0139 0.0120 0.0179

1000 0.0331 0.0370 0.0288
5000 0.0464 0.0862 0.0359
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4.2. Example 2

In this example, we consider the precision of the sampling-based projection process. The simulated
symbolic data tables were built in the same way as in Example 1. To obtain n observations associated
with histogram-valued variable Xk, we simulated 5000 real values xNUM

ik corresponding to each unit.
These values were then organized in histograms. The distribution of the microdata was also randomly
selected from a mixture of distributions:

{U(1, 3), N(1, 1), χ2(1), lnN(0, 0.5),−lnN(0, 0.5)}.

As in Example 1, for all observations, the widths of the subintervals in each histogram are
the same.

Thus, we generate n histogram observations and the corresponding n× 5000 single-value data
points. The histogram dataset was adopted for comparing our sampling-based histogram PCA with
the PSPCA method proposed by [16]. Single-value data points can also be viewed as the original
data we aim to approximate using histogram-valued data. Consequently, experimental PCA results
obtained from single-value data can work as the evaluation benchmark for the results of the histogram
PCA algorithm.

Per Section 2.3, during the projection process, we select mi single-value samples from the ith
observation. In this example, we assume that the sizes of single-value samples in each observation are
all the same and are denoted as M. The detailed process of Example 2 follows:

(1) Generate a synthetic histogram dataset X with p variables and n observations and the
corresponding single-value data set, denoted as XNUM.

(2) Adopt sampling-based histogram PCA and PSPCA methods to X. The obtained histogram
PCs are denoted as Yj(M) and YPSPCA

j respectively, where M is the sample size of each histogram unit.

Classical PCA is performed on XNUM. The obtained histogram PCs are YNUM
j .

(3) Compute the Wasserstein distance d(Yj, YNUM
j ) between Yj and YNUM

j [31].

d(Yj, YNUM
j ) =

1
n

n

∑
i=1

d(Yij, YNUM
ij ). (19)

(4) Compute the Wasserstein distance d(Yj, YPSPCA
j ) between Yj and YPSPCA

j .

d(Yj, YPSPCA
j ) =

1
n

n

∑
i=1

d(Yij, YPSPCA
ij ). (20)

The parameters for the experiments are set as n = 30, p = 3, and M = 50, 100, 500, 1000, 5000.
Then, we can compare the performance of our sampling-based histogram PCA method with the

single-value benchmark and the PSPCA method with the resulting PCs, as shown in Figure 2.
The solid line shows the Wasserstein distance between Yj and YPSPCA

j and the dotted line denotes

the Wasserstein distance between Yj and YNUM
j . The results shown in this figure indicate that

the projections of sampling-based histogram PCA, PSPCA, and the single-value benchmarks are
generally close. More specifically, the distances decrease as the random sampling size increases during
sampling-based projection; when the sample size is more than 1000, the difference is close to zero.
These results demonstrate the accuracy of sampling-based histogram PCA projection.
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Figure 2. Wasserstein distance between Yj, YPSPCA
j and YNUM

j .

4.3. Example 3

In the third example, we verify the time-saving effects of the multicore MapReduce
implementation of the new histogram PCA method. First, we generated observations of the
histogram-valued variables Xk, (k = 1 . . . p). Then, we implemented the method in two different
versions: one running MapReduce and the other a serial implementation without the new framework.
The execution times of both approaches are compared. Here, we compare results using 1, 2, 4 and
8 cores.

First, we create observations for each histogram-valued variable xk. The simulated symbolic data
tables are built as in Examples 1 and 2.

Based on the concept of symbolic variables, to obtain n observations associated with
a histogram-valued variable Xk, we simulate 5000 real values corresponding to each unit. These values
are then organized in histograms that represent the empirical distribution for each unit. In all
observations, the widths of the histograms subintervals are the same.

To perform the simulation experiment, symbolic tables that illustrate different situations were
created. In this study, a full factorial design is employed, with the following factors:

• Distribution of the microdata that allow histogram generation corresponding to each observation
of the variables Xk(k = 1 . . . p):

1. Uniform distribution:

xkj ∼ U(δ1(j), δ2(j)), δ1(j) ∼ U(−2, 0), δ1(j) ∼ U(0, 2), j = 1, . . . , n; (21)

2. Normal distribution:

xkj ∼ N(µ(j), σ2(j)), µ(j) ∼ U(0, 1), σ2(j) ∼ U(0, 2), j = 1, . . . , n; (22)

3. Log-Normal distribution:
xkj ∼ lnN(µ(j), σ2(j)), (23)

µ(j) ∼ U(−0.5, 0.5), σ2(j) ∼ U(0.5, 1), j = 1, . . . , n;

4. Mixture of distributions: Randomly selected from

{U(1, 3), N(1, 1), χ2(1), lnN(0, 0.5),−lnN(0, 0.5)}. (24)
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• Number of histogram-valued variables: p = 3; 5.
• Observation size: n = 100; 500; 1000; 3000.

Based on the simulated histogram-valued variables, we conducted the new histogram PCA
method in both parallel and serial. The random sampling size from histogram-valued variables in
Step 4 is also 5000, the same as the number of real values we began with to simulate histogram-valued
variables. Index CR1 and CR2 are computed using Equation (12) to analyze the behavior of the new
histogram PCA method.Moreover, the execution time of both approach are compared to evaluate the
speedup effect.

As the conclusion of different situations is almost the same, for the sake of brevity, in this section,
we only provide the results for p = 3 and the uniform distribution.

Table 3 shows the contribution rate of the 1th and 2th PCs. As can be seen from the table, CR1 and
CR2 explain most of the original information contained in the histogram-valued matrix, indicating
that the new histogram PCA method performs well.

Table 3. Contribution rate of first and second PCs.

p = 3, Uniform

n CR1 CR2

100 51.19% 24.44%
500 52.18% 23.92%
1000 53.10% 23.46%
3000 53.21% 23.40%

Figure 3 demonstrates the speedup of the method for 1, 2, 4 and 8 processing cores under the
MapReduce frame. In Figure 3, we can see that for a given number of cores, execution time increases
with sample size. In addition, when sample size is constant, the execution time of the parallel and serial
approaches is nearly equivalent when using 1 core. As the number of cores increases, the execution time
of the serial approach is essentially unchanged, whereas the execution time of the parallel approach is
gradually reduced; the ratio of the execution time between the serial and parallel approaches is nearly
the same as the core number. We conclude that the speed increase using a parallel approach with
a multicore MapReduce frame is significant.

(a) 1 core (b) 2 cores

(c) 4 cores (d) 8 cores

Figure 3. Execution time (s) of serial and parallel approaches with 1, 2, 4 and 8 cores.
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5. Empirical Study

Nowadays, the rapid development of the Internet has created opportunities for the development
of movie sites. The major functions of movie sites are to calculate movie ratings based on user rating
data and to then recommend high-quality movies. Since the set of user rating data is massive, symbolic
data can be utilized.

In this section, we use real data to evaluate the performance of sampling-based histogram PCA.
The data consists of 198,315 ratings from a Chinese movie site from October 2009 to May 2014.
The ratings come from three different types of users: visitors, normal registered users, and expert
users. In the first step, we summarize movie ratings from the different user types to obtain scoring
histograms for each type of user for a movie. Then, the dataset becomes a histogram symbolic table of
500 observations and 3 variables. Finally, sampling-based histogram PCA can be conducted on the
generated histogram symbolic table. We computed the CR index of each PC and show the loading plot
of the first and the second PCs in Table 4 and Figure 4.

Table 4. Contribution rate of PCs.

PC CR

F1 73.87%
F2 23.21%
F3 2.92%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PC1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PC2

Normal Registered Users

Visitors

Expert Users

Figure 4. Loading plot on the first and the second PCs.

The results show that the first PC summarizes 73.87% of the total information carried by the
original variables. The first PC is positively associated with visitors’, normal registered users’,
and expert users’ rating histograms. Thus, we could simply use the first PC as an integrated
embodiment of the three types of user ratings, simplifying the evaluation and comparison of
different movies.

Next, we verify the performance of the sampling-based projection process using the projection
results on the first PC. As the explanatory power of the first PC is very good, if the scores of the first
PC can identify the different characteristics of the movies, the projection results are reasonable.

In this empirical study, clustering analysis is implemented on these movies based on the
Wasserstein distances [31] between pairs of projections on the first PC and movies are divided into five
clusters. During the projection process, we randomly sample 1000 single-value samples from each
histogram observation. The projection results of the clusters are showed in Figure 5, where the curves
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in the first row are the projections of the movies in each cluster. For convenience, we use curve instead
of histogram to show the a movie’s scoring probabilities in each score section. The histograms in the
second row are the centers of the five clusters in the first row.

Figure 5. Projection Results.

The results show that the characteristics of different categories of movie are different. The movies
in Cluster 1 receive high ratings; movies in Cluster 2 are distributed relatively equally across score
sections; movies in Cluster 3 are distributed relatively equally among low-score sections; and the
movies in Clusters 4 and 5 are low grade, mainly distributed in 3 and 3-4 point ratings, respectively.

As can be seen, the final ratings histograms clearly reflect different types of movies, which indicate
that the method proposed in this paper performs effectively.

6. Conclusions

As there is no precise, unified method of linear combination of histogram-valued symbolic data,
the paper presents a more accurate histogram PCA method, which can project observations onto the
space spanned by PCs by random sampling numerical data from the histogram-valued variables.
Furthermore, considering that the sampling algorithm is time-consuming and that the sampling can be
done separately, we adopt a MapReduce paradigm to implement the new histogram PCA algorithm.
A simulation study and an empirical study were performed to analyze the behavior of the new
histogram PCA method and to demonstrate the effect of MapReduce parallel implementation. The new
method performs well and can be sped up significantly through a multicore MapReduce framework.

In practice, the sampling method for the linear combination of histogram data proposed in the
paper can be popularized and applied widely on other multivariable statistical models for histogram
data, such as linear regression model, linear discriminant analysis model, and so on. Using sampling
method will provide a new perspective for these methods, but further research is needed in the future.
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